| 1 | /* | 
| 2 | * Copyright (c) 2012 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | *    notice, this list of conditions and the following disclaimer. | 
| 11 | * | 
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | *    documentation and/or other materials provided with the | 
| 15 | *    distribution. | 
| 16 | * | 
| 17 | * This software is provided "AS IS," without a warranty of any | 
| 18 | * kind. All express or implied conditions, representations and | 
| 19 | * warranties, including any implied warranty of merchantability, | 
| 20 | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | * be liable for any damages suffered by licensee as a result of | 
| 23 | * using, modifying or distributing the software or its | 
| 24 | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | * damages, however caused and regardless of the theory of liability, | 
| 28 | * arising out of the use of or inability to use software, even if the | 
| 29 | * University of Notre Dame has been advised of the possibility of | 
| 30 | * such damages. | 
| 31 | * | 
| 32 | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | * research, please cite the appropriate papers when you publish your | 
| 34 | * work.  Good starting points are: | 
| 35 | * | 
| 36 | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | */ | 
| 42 |  | 
| 43 | #include "optimization/PotentialEnergyObjectiveFunction.hpp" | 
| 44 |  | 
| 45 | namespace OpenMD{ | 
| 46 |  | 
| 47 | PotentialEnergyObjectiveFunction::PotentialEnergyObjectiveFunction(SimInfo* info, ForceManager* forceMan) | 
| 48 | : info_(info), forceMan_(forceMan), thermo(info) { | 
| 49 | } | 
| 50 |  | 
| 51 |  | 
| 52 |  | 
| 53 | RealType PotentialEnergyObjectiveFunction::value(const DynamicVector<RealType>& x) { | 
| 54 | setCoor(x); | 
| 55 | forceMan_->calcForces(); | 
| 56 | return thermo.getPotential(); | 
| 57 | } | 
| 58 |  | 
| 59 | void PotentialEnergyObjectiveFunction::gradient(DynamicVector<RealType>& grad, const DynamicVector<RealType>& x) { | 
| 60 |  | 
| 61 | setCoor(x); | 
| 62 | forceMan_->calcForces(); | 
| 63 | getGrad(grad); | 
| 64 | } | 
| 65 |  | 
| 66 | RealType PotentialEnergyObjectiveFunction::valueAndGradient(DynamicVector<RealType>& grad, | 
| 67 | const DynamicVector<RealType>& x) { | 
| 68 |  | 
| 69 | setCoor(x); | 
| 70 | forceMan_->calcForces(); | 
| 71 | getGrad(grad); | 
| 72 | return thermo.getPotential(); | 
| 73 | } | 
| 74 |  | 
| 75 | void PotentialEnergyObjectiveFunction::setCoor(const DynamicVector<RealType> &x) const { | 
| 76 | Vector3d position; | 
| 77 | Vector3d eulerAngle; | 
| 78 | SimInfo::MoleculeIterator i; | 
| 79 | Molecule::IntegrableObjectIterator  j; | 
| 80 | Molecule* mol; | 
| 81 | StuntDouble* integrableObject; | 
| 82 | int index = 0; | 
| 83 |  | 
| 84 | for (mol = info_->beginMolecule(i); mol != NULL; | 
| 85 | mol = info_->nextMolecule(i)) { | 
| 86 | for (integrableObject = mol->beginIntegrableObject(j); | 
| 87 | integrableObject != NULL; | 
| 88 | integrableObject = mol->nextIntegrableObject(j)) { | 
| 89 |  | 
| 90 | position[0] = x[index++]; | 
| 91 | position[1] = x[index++]; | 
| 92 | position[2] = x[index++]; | 
| 93 |  | 
| 94 | integrableObject->setPos(position); | 
| 95 |  | 
| 96 | if (integrableObject->isDirectional()) { | 
| 97 | eulerAngle[0] = x[index++]; | 
| 98 | eulerAngle[1] = x[index++]; | 
| 99 | eulerAngle[2] = x[index++]; | 
| 100 |  | 
| 101 | integrableObject->setEuler(eulerAngle); | 
| 102 | } | 
| 103 | } | 
| 104 | } | 
| 105 | } | 
| 106 |  | 
| 107 | void PotentialEnergyObjectiveFunction::getGrad(DynamicVector<RealType> &grad) { | 
| 108 | SimInfo::MoleculeIterator i; | 
| 109 | Molecule::IntegrableObjectIterator  j; | 
| 110 | Molecule* mol; | 
| 111 | StuntDouble* integrableObject; | 
| 112 | std::vector<RealType> myGrad; | 
| 113 |  | 
| 114 | int index = 0; | 
| 115 |  | 
| 116 | for (mol = info_->beginMolecule(i); mol != NULL; | 
| 117 | mol = info_->nextMolecule(i)) { | 
| 118 | for (integrableObject = mol->beginIntegrableObject(j); | 
| 119 | integrableObject != NULL; | 
| 120 | integrableObject = mol->nextIntegrableObject(j)) { | 
| 121 | myGrad = integrableObject->getGrad(); | 
| 122 | for (size_t k = 0; k < myGrad.size(); ++k) { | 
| 123 | grad[index++] = myGrad[k]; | 
| 124 | } | 
| 125 | } | 
| 126 | } | 
| 127 | } | 
| 128 |  | 
| 129 | DynamicVector<RealType> PotentialEnergyObjectiveFunction::setInitialCoords() { | 
| 130 | SimInfo::MoleculeIterator i; | 
| 131 | Molecule::IntegrableObjectIterator  j; | 
| 132 | Molecule* mol; | 
| 133 | StuntDouble* integrableObject; | 
| 134 |  | 
| 135 | Vector3d pos; | 
| 136 | Vector3d eulerAngle; | 
| 137 |  | 
| 138 | DynamicVector<RealType> xinit(info_->getNdfLocal(), 0.0); | 
| 139 |  | 
| 140 | int index = 0; | 
| 141 |  | 
| 142 | for (mol = info_->beginMolecule(i); mol != NULL; | 
| 143 | mol = info_->nextMolecule(i)) { | 
| 144 | for (integrableObject = mol->beginIntegrableObject(j); | 
| 145 | integrableObject != NULL; | 
| 146 | integrableObject = mol->nextIntegrableObject(j)) { | 
| 147 |  | 
| 148 | pos = integrableObject->getPos(); | 
| 149 |  | 
| 150 | xinit[index++] = pos[0]; | 
| 151 | xinit[index++] = pos[1]; | 
| 152 | xinit[index++] = pos[2]; | 
| 153 |  | 
| 154 | if (integrableObject->isDirectional()) { | 
| 155 | eulerAngle = integrableObject->getEuler(); | 
| 156 | xinit[index++] = eulerAngle[0]; | 
| 157 | xinit[index++] = eulerAngle[1]; | 
| 158 | xinit[index++] = eulerAngle[2]; | 
| 159 | } | 
| 160 | } | 
| 161 | } | 
| 162 | return xinit; | 
| 163 | } | 
| 164 | } |