| 1 | gezelter | 1741 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ | 
| 2 |  |  |  | 
| 3 |  |  | /* | 
| 4 |  |  | Copyright (C) 2007 Ferdinando Ametrano | 
| 5 |  |  | Copyright (C) 2007 François du Vignaud | 
| 6 |  |  | Copyright (C) 2001, 2002, 2003 Nicolas Di Césaré | 
| 7 |  |  |  | 
| 8 |  |  | This file is part of QuantLib, a free-software/open-source library | 
| 9 |  |  | for financial quantitative analysts and developers - http://quantlib.org/ | 
| 10 |  |  |  | 
| 11 |  |  | QuantLib is free software: you can redistribute it and/or modify it | 
| 12 |  |  | under the terms of the QuantLib license.  You should have received a | 
| 13 |  |  | copy of the license along with this program; if not, please email | 
| 14 |  |  | <quantlib-dev@lists.sf.net>. The license is also available online at | 
| 15 |  |  | <http://quantlib.org/license.shtml>. | 
| 16 |  |  |  | 
| 17 |  |  | This program is distributed in the hope that it will be useful, but WITHOUT | 
| 18 |  |  | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
| 19 |  |  | FOR A PARTICULAR PURPOSE.  See the license for more details. | 
| 20 |  |  | */ | 
| 21 |  |  |  | 
| 22 |  |  | /*! \file problem.hpp | 
| 23 |  |  | \brief Abstract optimization problem class | 
| 24 |  |  | */ | 
| 25 |  |  |  | 
| 26 |  |  | #ifndef quantlib_optimization_problem_h | 
| 27 |  |  | #define quantlib_optimization_problem_h | 
| 28 |  |  |  | 
| 29 |  |  | #include "optimization/Method.hpp" | 
| 30 |  |  | #include "optimization/ObjectiveFunction.hpp" | 
| 31 |  |  | #include "optimization/StatusFunction.hpp" | 
| 32 |  |  |  | 
| 33 |  |  | namespace QuantLib { | 
| 34 |  |  |  | 
| 35 |  |  | class Constraint; | 
| 36 |  |  | //! Constrained optimization problem | 
| 37 |  |  | class Problem { | 
| 38 |  |  | public: | 
| 39 |  |  | //! default constructor | 
| 40 |  |  | Problem(ObjectiveFunction& objectiveFunction, | 
| 41 |  |  | Constraint& constraint, | 
| 42 |  |  | OpenMD::StatusFunction& statFunc, | 
| 43 |  |  | const DynamicVector<RealType>& initialValue = DynamicVector<RealType>()) | 
| 44 |  |  | : objectiveFunction_(objectiveFunction), constraint_(constraint), | 
| 45 |  |  | currentValue_(initialValue), statusFunction_(statFunc) {} | 
| 46 |  |  |  | 
| 47 |  |  | /*! \warning it does not reset the current minumum to any initial value | 
| 48 |  |  | */ | 
| 49 |  |  | void reset(); | 
| 50 |  |  |  | 
| 51 |  |  | //! call objective function computation and increment evaluation counter | 
| 52 |  |  | RealType value(const DynamicVector<RealType>& x); | 
| 53 |  |  |  | 
| 54 |  |  | //! call objective function gradient computation and increment | 
| 55 |  |  | //  evaluation counter | 
| 56 |  |  | void gradient(DynamicVector<RealType>& grad_f, | 
| 57 |  |  | const DynamicVector<RealType>& x); | 
| 58 |  |  |  | 
| 59 |  |  | //! call objective function computation and it gradient | 
| 60 |  |  | RealType valueAndGradient(DynamicVector<RealType>& grad_f, | 
| 61 |  |  | const DynamicVector<RealType>& x); | 
| 62 |  |  |  | 
| 63 |  |  | //! Constraint | 
| 64 |  |  | Constraint& constraint() const { return constraint_; } | 
| 65 |  |  |  | 
| 66 |  |  | //! Objective function | 
| 67 |  |  | ObjectiveFunction& objectiveFunction() const { return objectiveFunction_; } | 
| 68 |  |  |  | 
| 69 |  |  | void setCurrentValue(const DynamicVector<RealType>& currentValue) { | 
| 70 |  |  | currentValue_=currentValue; | 
| 71 | gezelter | 1747 | statusFunction_.writeStatus(currentValue); | 
| 72 | gezelter | 1741 | } | 
| 73 |  |  |  | 
| 74 |  |  | //! current value of the local minimum | 
| 75 |  |  | const DynamicVector<RealType>& currentValue() const { return currentValue_; } | 
| 76 |  |  |  | 
| 77 |  |  | void setFunctionValue(RealType functionValue) { | 
| 78 |  |  | functionValue_=functionValue; | 
| 79 |  |  | } | 
| 80 |  |  |  | 
| 81 |  |  | //! value of objective function | 
| 82 |  |  | RealType functionValue() const { return functionValue_; } | 
| 83 |  |  |  | 
| 84 |  |  | void setGradientNormValue(RealType squaredNorm) { | 
| 85 |  |  | squaredNorm_=squaredNorm; | 
| 86 |  |  | } | 
| 87 |  |  | //! value of objective function gradient norm | 
| 88 |  |  | RealType gradientNormValue() const { return squaredNorm_; } | 
| 89 |  |  |  | 
| 90 |  |  | //! number of evaluation of objective function | 
| 91 |  |  | int functionEvaluation() const { return functionEvaluation_; } | 
| 92 |  |  |  | 
| 93 |  |  | //! number of evaluation of objective function gradient | 
| 94 |  |  | int gradientEvaluation() const { return gradientEvaluation_; } | 
| 95 |  |  |  | 
| 96 |  |  | RealType DotProduct(DynamicVector<RealType>& v1, DynamicVector<RealType>& v2); | 
| 97 |  |  | RealType computeGradientNormValue(DynamicVector<RealType>& grad_f); | 
| 98 |  |  |  | 
| 99 |  |  |  | 
| 100 |  |  | protected: | 
| 101 |  |  | //! Unconstrained objective function | 
| 102 |  |  | ObjectiveFunction& objectiveFunction_; | 
| 103 |  |  | //! Constraint | 
| 104 |  |  | Constraint& constraint_; | 
| 105 |  |  | //! current value of the local minimum | 
| 106 |  |  | DynamicVector<RealType> currentValue_; | 
| 107 |  |  | //! function and gradient norm values at the curentValue_ (i.e. the last step) | 
| 108 |  |  | RealType functionValue_, squaredNorm_; | 
| 109 |  |  | //! number of evaluation of objective function and its gradient | 
| 110 |  |  | int functionEvaluation_, gradientEvaluation_; | 
| 111 |  |  | //! status function | 
| 112 |  |  | StatusFunction& statusFunction_; | 
| 113 |  |  |  | 
| 114 |  |  | }; | 
| 115 |  |  |  | 
| 116 |  |  | // inline definitions | 
| 117 |  |  | inline RealType Problem::value(const DynamicVector<RealType>& x) { | 
| 118 |  |  | ++functionEvaluation_; | 
| 119 |  |  | return objectiveFunction_.value(x); | 
| 120 |  |  | } | 
| 121 |  |  |  | 
| 122 |  |  | inline void Problem::gradient(DynamicVector<RealType>& grad_f, | 
| 123 |  |  | const DynamicVector<RealType>& x) { | 
| 124 |  |  | ++gradientEvaluation_; | 
| 125 |  |  | objectiveFunction_.gradient(grad_f, x); | 
| 126 |  |  | } | 
| 127 |  |  |  | 
| 128 |  |  | inline RealType Problem::valueAndGradient(DynamicVector<RealType>& grad_f, | 
| 129 |  |  | const DynamicVector<RealType>& x) { | 
| 130 |  |  | ++functionEvaluation_; | 
| 131 |  |  | ++gradientEvaluation_; | 
| 132 |  |  | return objectiveFunction_.valueAndGradient(grad_f, x); | 
| 133 |  |  | } | 
| 134 |  |  |  | 
| 135 |  |  | inline void Problem::reset() { | 
| 136 |  |  | functionEvaluation_ = gradientEvaluation_ = 0; | 
| 137 |  |  | functionValue_ = squaredNorm_ = NULL; | 
| 138 |  |  | } | 
| 139 |  |  |  | 
| 140 |  |  | } | 
| 141 |  |  |  | 
| 142 |  |  | #endif |