| 1 | gezelter | 1539 | /* | 
| 2 |  |  | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | chuckv | 1538 | * | 
| 4 |  |  | * The University of Notre Dame grants you ("Licensee") a | 
| 5 |  |  | * non-exclusive, royalty free, license to use, modify and | 
| 6 |  |  | * redistribute this software in source and binary code form, provided | 
| 7 |  |  | * that the following conditions are met: | 
| 8 |  |  | * | 
| 9 |  |  | * 1. Redistributions of source code must retain the above copyright | 
| 10 |  |  | *    notice, this list of conditions and the following disclaimer. | 
| 11 |  |  | * | 
| 12 |  |  | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 |  |  | *    notice, this list of conditions and the following disclaimer in the | 
| 14 |  |  | *    documentation and/or other materials provided with the | 
| 15 |  |  | *    distribution. | 
| 16 |  |  | * | 
| 17 |  |  | * This software is provided "AS IS," without a warranty of any | 
| 18 |  |  | * kind. All express or implied conditions, representations and | 
| 19 |  |  | * warranties, including any implied warranty of merchantability, | 
| 20 |  |  | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 |  |  | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 |  |  | * be liable for any damages suffered by licensee as a result of | 
| 23 |  |  | * using, modifying or distributing the software or its | 
| 24 |  |  | * derivatives. In no event will the University of Notre Dame or its | 
| 25 |  |  | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 |  |  | * direct, indirect, special, consequential, incidental or punitive | 
| 27 |  |  | * damages, however caused and regardless of the theory of liability, | 
| 28 |  |  | * arising out of the use of or inability to use software, even if the | 
| 29 |  |  | * University of Notre Dame has been advised of the possibility of | 
| 30 |  |  | * such damages. | 
| 31 |  |  | * | 
| 32 |  |  | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 |  |  | * research, please cite the appropriate papers when you publish your | 
| 34 |  |  | * work.  Good starting points are: | 
| 35 |  |  | * | 
| 36 |  |  | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 |  |  | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 |  |  | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 |  |  | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 40 |  |  | */ | 
| 41 | gezelter | 1549 | #include "parallel/ForceMatrixDecomposition.hpp" | 
| 42 | gezelter | 1539 | #include "math/SquareMatrix3.hpp" | 
| 43 | gezelter | 1544 | #include "nonbonded/NonBondedInteraction.hpp" | 
| 44 |  |  | #include "brains/SnapshotManager.hpp" | 
| 45 | chuckv | 1538 |  | 
| 46 | gezelter | 1541 | using namespace std; | 
| 47 | gezelter | 1539 | namespace OpenMD { | 
| 48 | chuckv | 1538 |  | 
| 49 | gezelter | 1544 | /** | 
| 50 |  |  | * distributeInitialData is essentially a copy of the older fortran | 
| 51 |  |  | * SimulationSetup | 
| 52 |  |  | */ | 
| 53 |  |  |  | 
| 54 | gezelter | 1549 | void ForceMatrixDecomposition::distributeInitialData() { | 
| 55 | gezelter | 1551 | snap_ = sman_->getCurrentSnapshot(); | 
| 56 |  |  | storageLayout_ = sman_->getStorageLayout(); | 
| 57 | gezelter | 1544 | #ifdef IS_MPI | 
| 58 | gezelter | 1551 | int nLocal = snap_->getNumberOfAtoms(); | 
| 59 |  |  | int nGroups = snap_->getNumberOfCutoffGroups(); | 
| 60 |  |  |  | 
| 61 | gezelter | 1549 | AtomCommIntRow = new Communicator<Row,int>(nLocal); | 
| 62 |  |  | AtomCommRealRow = new Communicator<Row,RealType>(nLocal); | 
| 63 |  |  | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal); | 
| 64 |  |  | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal); | 
| 65 | chuckv | 1538 |  | 
| 66 | gezelter | 1549 | AtomCommIntColumn = new Communicator<Column,int>(nLocal); | 
| 67 |  |  | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal); | 
| 68 |  |  | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal); | 
| 69 |  |  | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal); | 
| 70 | chuckv | 1538 |  | 
| 71 | gezelter | 1549 | cgCommIntRow = new Communicator<Row,int>(nGroups); | 
| 72 |  |  | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups); | 
| 73 |  |  | cgCommIntColumn = new Communicator<Column,int>(nGroups); | 
| 74 |  |  | cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups); | 
| 75 | gezelter | 1541 |  | 
| 76 | gezelter | 1549 | int nAtomsInRow = AtomCommIntRow->getSize(); | 
| 77 |  |  | int nAtomsInCol = AtomCommIntColumn->getSize(); | 
| 78 |  |  | int nGroupsInRow = cgCommIntRow->getSize(); | 
| 79 |  |  | int nGroupsInCol = cgCommIntColumn->getSize(); | 
| 80 | gezelter | 1551 |  | 
| 81 |  |  | // Modify the data storage objects with the correct layouts and sizes: | 
| 82 |  |  | atomRowData.resize(nAtomsInRow); | 
| 83 |  |  | atomRowData.setStorageLayout(storageLayout_); | 
| 84 |  |  | atomColData.resize(nAtomsInCol); | 
| 85 |  |  | atomColData.setStorageLayout(storageLayout_); | 
| 86 |  |  | cgRowData.resize(nGroupsInRow); | 
| 87 |  |  | cgRowData.setStorageLayout(DataStorage::dslPosition); | 
| 88 |  |  | cgColData.resize(nGroupsInCol); | 
| 89 |  |  | cgColData.setStorageLayout(DataStorage::dslPosition); | 
| 90 | gezelter | 1549 |  | 
| 91 | gezelter | 1544 | vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES, | 
| 92 |  |  | vector<RealType> (nAtomsInRow, 0.0)); | 
| 93 |  |  | vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES, | 
| 94 |  |  | vector<RealType> (nAtomsInCol, 0.0)); | 
| 95 | gezelter | 1551 |  | 
| 96 |  |  |  | 
| 97 | gezelter | 1544 | vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0); | 
| 98 | gezelter | 1549 |  | 
| 99 | gezelter | 1544 | // gather the information for atomtype IDs (atids): | 
| 100 | gezelter | 1547 | vector<int> identsLocal = info_->getIdentArray(); | 
| 101 |  |  | identsRow.reserve(nAtomsInRow); | 
| 102 |  |  | identsCol.reserve(nAtomsInCol); | 
| 103 | gezelter | 1549 |  | 
| 104 |  |  | AtomCommIntRow->gather(identsLocal, identsRow); | 
| 105 |  |  | AtomCommIntColumn->gather(identsLocal, identsCol); | 
| 106 |  |  |  | 
| 107 |  |  | AtomLocalToGlobal = info_->getGlobalAtomIndices(); | 
| 108 |  |  | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | 
| 109 |  |  | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); | 
| 110 |  |  |  | 
| 111 |  |  | cgLocalToGlobal = info_->getGlobalGroupIndices(); | 
| 112 |  |  | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); | 
| 113 |  |  | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); | 
| 114 | gezelter | 1541 |  | 
| 115 | gezelter | 1544 | // still need: | 
| 116 |  |  | // topoDist | 
| 117 |  |  | // exclude | 
| 118 | chuckv | 1538 | #endif | 
| 119 | gezelter | 1539 | } | 
| 120 |  |  |  | 
| 121 | chuckv | 1538 |  | 
| 122 |  |  |  | 
| 123 | gezelter | 1549 | void ForceMatrixDecomposition::distributeData()  { | 
| 124 | gezelter | 1551 | snap_ = sman_->getCurrentSnapshot(); | 
| 125 |  |  | storageLayout_ = sman_->getStorageLayout(); | 
| 126 | chuckv | 1538 | #ifdef IS_MPI | 
| 127 | gezelter | 1540 |  | 
| 128 | gezelter | 1539 | // gather up the atomic positions | 
| 129 | gezelter | 1551 | AtomCommVectorRow->gather(snap_->atomData.position, | 
| 130 |  |  | atomRowData.position); | 
| 131 |  |  | AtomCommVectorColumn->gather(snap_->atomData.position, | 
| 132 |  |  | atomColData.position); | 
| 133 | gezelter | 1539 |  | 
| 134 |  |  | // gather up the cutoff group positions | 
| 135 | gezelter | 1551 | cgCommVectorRow->gather(snap_->cgData.position, | 
| 136 |  |  | cgRowData.position); | 
| 137 |  |  | cgCommVectorColumn->gather(snap_->cgData.position, | 
| 138 |  |  | cgColData.position); | 
| 139 | gezelter | 1539 |  | 
| 140 |  |  | // if needed, gather the atomic rotation matrices | 
| 141 | gezelter | 1551 | if (storageLayout_ & DataStorage::dslAmat) { | 
| 142 |  |  | AtomCommMatrixRow->gather(snap_->atomData.aMat, | 
| 143 |  |  | atomRowData.aMat); | 
| 144 |  |  | AtomCommMatrixColumn->gather(snap_->atomData.aMat, | 
| 145 |  |  | atomColData.aMat); | 
| 146 | gezelter | 1539 | } | 
| 147 |  |  |  | 
| 148 |  |  | // if needed, gather the atomic eletrostatic frames | 
| 149 | gezelter | 1551 | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 150 |  |  | AtomCommMatrixRow->gather(snap_->atomData.electroFrame, | 
| 151 |  |  | atomRowData.electroFrame); | 
| 152 |  |  | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, | 
| 153 |  |  | atomColData.electroFrame); | 
| 154 | gezelter | 1539 | } | 
| 155 |  |  | #endif | 
| 156 |  |  | } | 
| 157 |  |  |  | 
| 158 | gezelter | 1549 | void ForceMatrixDecomposition::collectIntermediateData() { | 
| 159 | gezelter | 1551 | snap_ = sman_->getCurrentSnapshot(); | 
| 160 |  |  | storageLayout_ = sman_->getStorageLayout(); | 
| 161 | gezelter | 1539 | #ifdef IS_MPI | 
| 162 |  |  |  | 
| 163 | gezelter | 1551 | if (storageLayout_ & DataStorage::dslDensity) { | 
| 164 |  |  |  | 
| 165 |  |  | AtomCommRealRow->scatter(atomRowData.density, | 
| 166 |  |  | snap_->atomData.density); | 
| 167 |  |  |  | 
| 168 |  |  | int n = snap_->atomData.density.size(); | 
| 169 | gezelter | 1541 | std::vector<RealType> rho_tmp(n, 0.0); | 
| 170 | gezelter | 1551 | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); | 
| 171 | gezelter | 1539 | for (int i = 0; i < n; i++) | 
| 172 | gezelter | 1551 | snap_->atomData.density[i] += rho_tmp[i]; | 
| 173 | gezelter | 1539 | } | 
| 174 | chuckv | 1538 | #endif | 
| 175 | gezelter | 1539 | } | 
| 176 |  |  |  | 
| 177 | gezelter | 1549 | void ForceMatrixDecomposition::distributeIntermediateData() { | 
| 178 | gezelter | 1551 | snap_ = sman_->getCurrentSnapshot(); | 
| 179 |  |  | storageLayout_ = sman_->getStorageLayout(); | 
| 180 | chuckv | 1538 | #ifdef IS_MPI | 
| 181 | gezelter | 1551 | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 182 |  |  | AtomCommRealRow->gather(snap_->atomData.functional, | 
| 183 |  |  | atomRowData.functional); | 
| 184 |  |  | AtomCommRealColumn->gather(snap_->atomData.functional, | 
| 185 |  |  | atomColData.functional); | 
| 186 | gezelter | 1539 | } | 
| 187 |  |  |  | 
| 188 | gezelter | 1551 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 189 |  |  | AtomCommRealRow->gather(snap_->atomData.functionalDerivative, | 
| 190 |  |  | atomRowData.functionalDerivative); | 
| 191 |  |  | AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, | 
| 192 |  |  | atomColData.functionalDerivative); | 
| 193 | gezelter | 1539 | } | 
| 194 | chuckv | 1538 | #endif | 
| 195 |  |  | } | 
| 196 | gezelter | 1539 |  | 
| 197 |  |  |  | 
| 198 | gezelter | 1549 | void ForceMatrixDecomposition::collectData() { | 
| 199 | gezelter | 1551 | snap_ = sman_->getCurrentSnapshot(); | 
| 200 |  |  | storageLayout_ = sman_->getStorageLayout(); | 
| 201 |  |  | #ifdef IS_MPI | 
| 202 |  |  | int n = snap_->atomData.force.size(); | 
| 203 | gezelter | 1544 | vector<Vector3d> frc_tmp(n, V3Zero); | 
| 204 | gezelter | 1541 |  | 
| 205 | gezelter | 1551 | AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); | 
| 206 | gezelter | 1541 | for (int i = 0; i < n; i++) { | 
| 207 | gezelter | 1551 | snap_->atomData.force[i] += frc_tmp[i]; | 
| 208 | gezelter | 1541 | frc_tmp[i] = 0.0; | 
| 209 |  |  | } | 
| 210 | gezelter | 1540 |  | 
| 211 | gezelter | 1551 | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); | 
| 212 | gezelter | 1540 | for (int i = 0; i < n; i++) | 
| 213 | gezelter | 1551 | snap_->atomData.force[i] += frc_tmp[i]; | 
| 214 | gezelter | 1540 |  | 
| 215 |  |  |  | 
| 216 | gezelter | 1551 | if (storageLayout_ & DataStorage::dslTorque) { | 
| 217 | gezelter | 1541 |  | 
| 218 | gezelter | 1551 | int nt = snap_->atomData.force.size(); | 
| 219 | gezelter | 1544 | vector<Vector3d> trq_tmp(nt, V3Zero); | 
| 220 | gezelter | 1541 |  | 
| 221 | gezelter | 1551 | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); | 
| 222 | gezelter | 1541 | for (int i = 0; i < n; i++) { | 
| 223 | gezelter | 1551 | snap_->atomData.torque[i] += trq_tmp[i]; | 
| 224 | gezelter | 1541 | trq_tmp[i] = 0.0; | 
| 225 |  |  | } | 
| 226 | gezelter | 1540 |  | 
| 227 | gezelter | 1551 | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); | 
| 228 | gezelter | 1540 | for (int i = 0; i < n; i++) | 
| 229 | gezelter | 1551 | snap_->atomData.torque[i] += trq_tmp[i]; | 
| 230 | gezelter | 1540 | } | 
| 231 |  |  |  | 
| 232 | gezelter | 1551 | int nLocal = snap_->getNumberOfAtoms(); | 
| 233 | gezelter | 1544 |  | 
| 234 |  |  | vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES, | 
| 235 |  |  | vector<RealType> (nLocal, 0.0)); | 
| 236 | gezelter | 1540 |  | 
| 237 | gezelter | 1544 | for (int i = 0; i < N_INTERACTION_FAMILIES; i++) { | 
| 238 | gezelter | 1549 | AtomCommRealRow->scatter(pot_row[i], pot_temp[i]); | 
| 239 | gezelter | 1541 | for (int ii = 0;  ii < pot_temp[i].size(); ii++ ) { | 
| 240 |  |  | pot_local[i] += pot_temp[i][ii]; | 
| 241 |  |  | } | 
| 242 |  |  | } | 
| 243 | gezelter | 1539 | #endif | 
| 244 | chuckv | 1538 | } | 
| 245 | gezelter | 1551 |  | 
| 246 | chuckv | 1538 |  | 
| 247 | gezelter | 1551 | Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ | 
| 248 |  |  | Vector3d d; | 
| 249 |  |  |  | 
| 250 |  |  | #ifdef IS_MPI | 
| 251 |  |  | d = cgColData.position[cg2] - cgRowData.position[cg1]; | 
| 252 |  |  | #else | 
| 253 |  |  | d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; | 
| 254 |  |  | #endif | 
| 255 |  |  |  | 
| 256 |  |  | snap_->wrapVector(d); | 
| 257 |  |  | return d; | 
| 258 |  |  | } | 
| 259 |  |  |  | 
| 260 |  |  |  | 
| 261 |  |  | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ | 
| 262 |  |  |  | 
| 263 |  |  | Vector3d d; | 
| 264 |  |  |  | 
| 265 |  |  | #ifdef IS_MPI | 
| 266 |  |  | d = cgRowData.position[cg1] - atomRowData.position[atom1]; | 
| 267 |  |  | #else | 
| 268 |  |  | d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; | 
| 269 |  |  | #endif | 
| 270 |  |  |  | 
| 271 |  |  | snap_->wrapVector(d); | 
| 272 |  |  | return d; | 
| 273 |  |  | } | 
| 274 |  |  |  | 
| 275 |  |  | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){ | 
| 276 |  |  | Vector3d d; | 
| 277 |  |  |  | 
| 278 |  |  | #ifdef IS_MPI | 
| 279 |  |  | d = cgColData.position[cg2] - atomColData.position[atom2]; | 
| 280 |  |  | #else | 
| 281 |  |  | d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; | 
| 282 |  |  | #endif | 
| 283 |  |  |  | 
| 284 |  |  | snap_->wrapVector(d); | 
| 285 |  |  | return d; | 
| 286 |  |  | } | 
| 287 |  |  |  | 
| 288 |  |  | Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ | 
| 289 |  |  | Vector3d d; | 
| 290 |  |  |  | 
| 291 |  |  | #ifdef IS_MPI | 
| 292 |  |  | d = atomColData.position[atom2] - atomRowData.position[atom1]; | 
| 293 |  |  | #else | 
| 294 |  |  | d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; | 
| 295 |  |  | #endif | 
| 296 |  |  |  | 
| 297 |  |  | snap_->wrapVector(d); | 
| 298 |  |  | return d; | 
| 299 |  |  | } | 
| 300 |  |  |  | 
| 301 |  |  | void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ | 
| 302 |  |  | #ifdef IS_MPI | 
| 303 |  |  | atomRowData.force[atom1] += fg; | 
| 304 |  |  | #else | 
| 305 |  |  | snap_->atomData.force[atom1] += fg; | 
| 306 |  |  | #endif | 
| 307 |  |  | } | 
| 308 |  |  |  | 
| 309 |  |  | void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){ | 
| 310 |  |  | #ifdef IS_MPI | 
| 311 |  |  | atomColData.force[atom2] += fg; | 
| 312 |  |  | #else | 
| 313 |  |  | snap_->atomData.force[atom2] += fg; | 
| 314 |  |  | #endif | 
| 315 |  |  |  | 
| 316 |  |  | } | 
| 317 |  |  |  | 
| 318 |  |  | // filling interaction blocks with pointers | 
| 319 |  |  | InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) { | 
| 320 |  |  |  | 
| 321 |  |  | InteractionData idat; | 
| 322 |  |  | #ifdef IS_MPI | 
| 323 |  |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 324 | gezelter | 1554 | idat.A1 = &(atomRowData.aMat[atom1]); | 
| 325 |  |  | idat.A2 = &(atomColData.aMat[atom2]); | 
| 326 | gezelter | 1551 | } | 
| 327 |  |  |  | 
| 328 |  |  | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 329 | gezelter | 1554 | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); | 
| 330 |  |  | idat.eFrame2 = &(atomColData.electroFrame[atom2]); | 
| 331 | gezelter | 1551 | } | 
| 332 |  |  |  | 
| 333 |  |  | if (storageLayout_ & DataStorage::dslTorque) { | 
| 334 | gezelter | 1554 | idat.t1 = &(atomRowData.torque[atom1]); | 
| 335 |  |  | idat.t2 = &(atomColData.torque[atom2]); | 
| 336 | gezelter | 1551 | } | 
| 337 |  |  |  | 
| 338 |  |  | if (storageLayout_ & DataStorage::dslDensity) { | 
| 339 | gezelter | 1554 | idat.rho1 = &(atomRowData.density[atom1]); | 
| 340 |  |  | idat.rho2 = &(atomColData.density[atom2]); | 
| 341 | gezelter | 1551 | } | 
| 342 |  |  |  | 
| 343 |  |  | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 344 | gezelter | 1554 | idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); | 
| 345 |  |  | idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); | 
| 346 | gezelter | 1551 | } | 
| 347 | gezelter | 1562 | #else | 
| 348 |  |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 349 |  |  | idat.A1 = &(snap_->atomData.aMat[atom1]); | 
| 350 |  |  | idat.A2 = &(snap_->atomData.aMat[atom2]); | 
| 351 |  |  | } | 
| 352 |  |  |  | 
| 353 |  |  | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 354 |  |  | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); | 
| 355 |  |  | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); | 
| 356 |  |  | } | 
| 357 |  |  |  | 
| 358 |  |  | if (storageLayout_ & DataStorage::dslTorque) { | 
| 359 |  |  | idat.t1 = &(snap_->atomData.torque[atom1]); | 
| 360 |  |  | idat.t2 = &(snap_->atomData.torque[atom2]); | 
| 361 |  |  | } | 
| 362 |  |  |  | 
| 363 |  |  | if (storageLayout_ & DataStorage::dslDensity) { | 
| 364 |  |  | idat.rho1 = &(snap_->atomData.density[atom1]); | 
| 365 |  |  | idat.rho2 = &(snap_->atomData.density[atom2]); | 
| 366 |  |  | } | 
| 367 |  |  |  | 
| 368 |  |  | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 369 |  |  | idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); | 
| 370 |  |  | idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); | 
| 371 |  |  | } | 
| 372 | gezelter | 1551 | #endif | 
| 373 |  |  |  | 
| 374 |  |  | } | 
| 375 |  |  | InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ | 
| 376 | gezelter | 1562 | InteractionData idat; | 
| 377 |  |  | skippedCharge1 | 
| 378 |  |  | skippedCharge2 | 
| 379 |  |  | rij | 
| 380 |  |  | d | 
| 381 |  |  | electroMult | 
| 382 |  |  | sw | 
| 383 |  |  | f | 
| 384 |  |  | #ifdef IS_MPI | 
| 385 |  |  |  | 
| 386 |  |  | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 387 |  |  | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); | 
| 388 |  |  | idat.eFrame2 = &(atomColData.electroFrame[atom2]); | 
| 389 |  |  | } | 
| 390 |  |  | if (storageLayout_ & DataStorage::dslTorque) { | 
| 391 |  |  | idat.t1 = &(atomRowData.torque[atom1]); | 
| 392 |  |  | idat.t2 = &(atomColData.torque[atom2]); | 
| 393 |  |  | } | 
| 394 |  |  |  | 
| 395 |  |  |  | 
| 396 | gezelter | 1551 | } | 
| 397 |  |  | SelfData ForceMatrixDecomposition::fillSelfData(int atom1) { | 
| 398 |  |  | } | 
| 399 |  |  |  | 
| 400 | gezelter | 1562 |  | 
| 401 |  |  | /* | 
| 402 |  |  | * buildNeighborList | 
| 403 |  |  | * | 
| 404 |  |  | * first element of pair is row-indexed CutoffGroup | 
| 405 |  |  | * second element of pair is column-indexed CutoffGroup | 
| 406 |  |  | */ | 
| 407 |  |  | vector<pair<int, int> >  buildNeighborList() { | 
| 408 |  |  | Vector3d dr, invWid, rs, shift; | 
| 409 |  |  | Vector3i cc, m1v, m2s; | 
| 410 |  |  | RealType rrNebr; | 
| 411 |  |  | int c, j1, j2, m1, m1x, m1y, m1z, m2, n, offset; | 
| 412 |  |  |  | 
| 413 |  |  |  | 
| 414 |  |  | vector<pair<int, int> > neighborList; | 
| 415 |  |  | Vector3i nCells; | 
| 416 |  |  | Vector3d invWid, r; | 
| 417 |  |  |  | 
| 418 |  |  | rList_ = (rCut_ + skinThickness_); | 
| 419 |  |  | rl2 = rList_ * rList_; | 
| 420 |  |  |  | 
| 421 |  |  | snap_ = sman_->getCurrentSnapshot(); | 
| 422 |  |  | Mat3x3d Hmat = snap_->getHmat(); | 
| 423 |  |  | Vector3d Hx = Hmat.getColumn(0); | 
| 424 |  |  | Vector3d Hy = Hmat.getColumn(1); | 
| 425 |  |  | Vector3d Hz = Hmat.getColumn(2); | 
| 426 |  |  |  | 
| 427 |  |  | nCells.x() = (int) ( Hx.length() )/ rList_; | 
| 428 |  |  | nCells.y() = (int) ( Hy.length() )/ rList_; | 
| 429 |  |  | nCells.z() = (int) ( Hz.length() )/ rList_; | 
| 430 |  |  |  | 
| 431 |  |  | for (i = 0; i < nGroupsInRow; i++) { | 
| 432 |  |  | rs = cgRowData.position[i]; | 
| 433 |  |  | snap_->scaleVector(rs); | 
| 434 |  |  | } | 
| 435 |  |  |  | 
| 436 |  |  |  | 
| 437 |  |  | VDiv (invWid, cells, region); | 
| 438 |  |  | for (n = nMol; n < nMol + cells.componentProduct(); n ++) cellList[n] = -1; | 
| 439 |  |  | for (n = 0; n < nMol; n ++) { | 
| 440 |  |  | VSAdd (rs, mol[n].r, 0.5, region); | 
| 441 |  |  | VMul (cc, rs, invWid); | 
| 442 |  |  | c = VLinear (cc, cells) + nMol; | 
| 443 |  |  | cellList[n] = cellList[c]; | 
| 444 |  |  | cellList[c] = n; | 
| 445 |  |  | } | 
| 446 |  |  | nebrTabLen = 0; | 
| 447 |  |  | for (m1z = 0; m1z < cells.z(); m1z++) { | 
| 448 |  |  | for (m1y = 0; m1y < cells.y(); m1y++) { | 
| 449 |  |  | for (m1x = 0; m1x < cells.x(); m1x++) { | 
| 450 |  |  | Vector3i m1v(m1x, m1y, m1z); | 
| 451 |  |  | m1 = VLinear(m1v, cells) + nMol; | 
| 452 |  |  | for (offset = 0; offset < nOffset_; offset++) { | 
| 453 |  |  | m2v = m1v + cellOffsets_[offset]; | 
| 454 |  |  | shift = V3Zero(); | 
| 455 |  |  |  | 
| 456 |  |  | if (m2v.x() >= cells.x) { | 
| 457 |  |  | m2v.x() = 0; | 
| 458 |  |  | shift.x() = region.x(); | 
| 459 |  |  | } else if (m2v.x() < 0) { | 
| 460 |  |  | m2v.x() = cells.x() - 1; | 
| 461 |  |  | shift.x() = - region.x(); | 
| 462 |  |  | } | 
| 463 |  |  |  | 
| 464 |  |  | if (m2v.y() >= cells.y()) { | 
| 465 |  |  | m2v.y() = 0; | 
| 466 |  |  | shift.y() = region.y(); | 
| 467 |  |  | } else if (m2v.y() < 0) { | 
| 468 |  |  | m2v.y() = cells.y() - 1; | 
| 469 |  |  | shift.y() = - region.y(); | 
| 470 |  |  | } | 
| 471 |  |  |  | 
| 472 |  |  | m2 = VLinear (m2v, cells) + nMol; | 
| 473 |  |  | for (j1 = cellList[m1]; j1 >= 0; j1 = cellList[j1]) { | 
| 474 |  |  | for (j2 = cellList[m2]; j2 >= 0; j2 = cellList[j2]) { | 
| 475 |  |  | if (m1 != m2 || j2 < j1) { | 
| 476 |  |  | dr = mol[j1].r - mol[j2].r; | 
| 477 |  |  | VSub (dr, mol[j1].r, mol[j2].r); | 
| 478 |  |  | VVSub (dr, shift); | 
| 479 |  |  | if (VLenSq (dr) < rrNebr) { | 
| 480 |  |  | neighborList.push_back(make_pair(j1, j2)); | 
| 481 |  |  | } | 
| 482 |  |  | } | 
| 483 |  |  | } | 
| 484 |  |  | } | 
| 485 |  |  | } | 
| 486 |  |  | } | 
| 487 |  |  | } | 
| 488 |  |  | } | 
| 489 |  |  | } | 
| 490 |  |  |  | 
| 491 | gezelter | 1551 |  | 
| 492 | gezelter | 1539 | } //end namespace OpenMD |