| 1 | gezelter | 1539 | /* | 
| 2 |  |  | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | chuckv | 1538 | * | 
| 4 |  |  | * The University of Notre Dame grants you ("Licensee") a | 
| 5 |  |  | * non-exclusive, royalty free, license to use, modify and | 
| 6 |  |  | * redistribute this software in source and binary code form, provided | 
| 7 |  |  | * that the following conditions are met: | 
| 8 |  |  | * | 
| 9 |  |  | * 1. Redistributions of source code must retain the above copyright | 
| 10 |  |  | *    notice, this list of conditions and the following disclaimer. | 
| 11 |  |  | * | 
| 12 |  |  | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 |  |  | *    notice, this list of conditions and the following disclaimer in the | 
| 14 |  |  | *    documentation and/or other materials provided with the | 
| 15 |  |  | *    distribution. | 
| 16 |  |  | * | 
| 17 |  |  | * This software is provided "AS IS," without a warranty of any | 
| 18 |  |  | * kind. All express or implied conditions, representations and | 
| 19 |  |  | * warranties, including any implied warranty of merchantability, | 
| 20 |  |  | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 |  |  | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 |  |  | * be liable for any damages suffered by licensee as a result of | 
| 23 |  |  | * using, modifying or distributing the software or its | 
| 24 |  |  | * derivatives. In no event will the University of Notre Dame or its | 
| 25 |  |  | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 |  |  | * direct, indirect, special, consequential, incidental or punitive | 
| 27 |  |  | * damages, however caused and regardless of the theory of liability, | 
| 28 |  |  | * arising out of the use of or inability to use software, even if the | 
| 29 |  |  | * University of Notre Dame has been advised of the possibility of | 
| 30 |  |  | * such damages. | 
| 31 |  |  | * | 
| 32 |  |  | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 |  |  | * research, please cite the appropriate papers when you publish your | 
| 34 |  |  | * work.  Good starting points are: | 
| 35 |  |  | * | 
| 36 |  |  | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 |  |  | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 |  |  | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 |  |  | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 40 |  |  | */ | 
| 41 | gezelter | 1549 | #include "parallel/ForceMatrixDecomposition.hpp" | 
| 42 | gezelter | 1539 | #include "math/SquareMatrix3.hpp" | 
| 43 | gezelter | 1544 | #include "nonbonded/NonBondedInteraction.hpp" | 
| 44 |  |  | #include "brains/SnapshotManager.hpp" | 
| 45 | gezelter | 1570 | #include "brains/PairList.hpp" | 
| 46 | chuckv | 1538 |  | 
| 47 | gezelter | 1541 | using namespace std; | 
| 48 | gezelter | 1539 | namespace OpenMD { | 
| 49 | chuckv | 1538 |  | 
| 50 | gezelter | 1544 | /** | 
| 51 |  |  | * distributeInitialData is essentially a copy of the older fortran | 
| 52 |  |  | * SimulationSetup | 
| 53 |  |  | */ | 
| 54 |  |  |  | 
| 55 | gezelter | 1549 | void ForceMatrixDecomposition::distributeInitialData() { | 
| 56 | gezelter | 1551 | snap_ = sman_->getCurrentSnapshot(); | 
| 57 |  |  | storageLayout_ = sman_->getStorageLayout(); | 
| 58 | gezelter | 1571 | ff_ = info_->getForceField(); | 
| 59 | gezelter | 1567 | nLocal_ = snap_->getNumberOfAtoms(); | 
| 60 | chuckv | 1538 |  | 
| 61 | gezelter | 1577 | nGroups_ = info_->getNLocalCutoffGroups(); | 
| 62 | gezelter | 1579 | cerr << "in dId, nGroups = " << nGroups_ << "\n"; | 
| 63 | gezelter | 1569 | // gather the information for atomtype IDs (atids): | 
| 64 | gezelter | 1571 | identsLocal = info_->getIdentArray(); | 
| 65 | gezelter | 1569 | AtomLocalToGlobal = info_->getGlobalAtomIndices(); | 
| 66 |  |  | cgLocalToGlobal = info_->getGlobalGroupIndices(); | 
| 67 |  |  | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); | 
| 68 |  |  | vector<RealType> massFactorsLocal = info_->getMassFactors(); | 
| 69 | gezelter | 1570 | PairList excludes = info_->getExcludedInteractions(); | 
| 70 |  |  | PairList oneTwo = info_->getOneTwoInteractions(); | 
| 71 |  |  | PairList oneThree = info_->getOneThreeInteractions(); | 
| 72 |  |  | PairList oneFour = info_->getOneFourInteractions(); | 
| 73 | gezelter | 1569 |  | 
| 74 | gezelter | 1567 | #ifdef IS_MPI | 
| 75 |  |  |  | 
| 76 |  |  | AtomCommIntRow = new Communicator<Row,int>(nLocal_); | 
| 77 |  |  | AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); | 
| 78 |  |  | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); | 
| 79 |  |  | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); | 
| 80 | gezelter | 1575 | AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); | 
| 81 | chuckv | 1538 |  | 
| 82 | gezelter | 1567 | AtomCommIntColumn = new Communicator<Column,int>(nLocal_); | 
| 83 |  |  | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); | 
| 84 |  |  | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); | 
| 85 |  |  | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); | 
| 86 | gezelter | 1575 | AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); | 
| 87 | gezelter | 1541 |  | 
| 88 | gezelter | 1567 | cgCommIntRow = new Communicator<Row,int>(nGroups_); | 
| 89 |  |  | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); | 
| 90 |  |  | cgCommIntColumn = new Communicator<Column,int>(nGroups_); | 
| 91 |  |  | cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); | 
| 92 | gezelter | 1551 |  | 
| 93 | gezelter | 1567 | nAtomsInRow_ = AtomCommIntRow->getSize(); | 
| 94 |  |  | nAtomsInCol_ = AtomCommIntColumn->getSize(); | 
| 95 |  |  | nGroupsInRow_ = cgCommIntRow->getSize(); | 
| 96 |  |  | nGroupsInCol_ = cgCommIntColumn->getSize(); | 
| 97 |  |  |  | 
| 98 | gezelter | 1551 | // Modify the data storage objects with the correct layouts and sizes: | 
| 99 | gezelter | 1567 | atomRowData.resize(nAtomsInRow_); | 
| 100 | gezelter | 1551 | atomRowData.setStorageLayout(storageLayout_); | 
| 101 | gezelter | 1567 | atomColData.resize(nAtomsInCol_); | 
| 102 | gezelter | 1551 | atomColData.setStorageLayout(storageLayout_); | 
| 103 | gezelter | 1567 | cgRowData.resize(nGroupsInRow_); | 
| 104 | gezelter | 1551 | cgRowData.setStorageLayout(DataStorage::dslPosition); | 
| 105 | gezelter | 1567 | cgColData.resize(nGroupsInCol_); | 
| 106 | gezelter | 1551 | cgColData.setStorageLayout(DataStorage::dslPosition); | 
| 107 | gezelter | 1575 |  | 
| 108 | gezelter | 1577 | identsRow.resize(nAtomsInRow_); | 
| 109 |  |  | identsCol.resize(nAtomsInCol_); | 
| 110 | gezelter | 1549 |  | 
| 111 |  |  | AtomCommIntRow->gather(identsLocal, identsRow); | 
| 112 |  |  | AtomCommIntColumn->gather(identsLocal, identsCol); | 
| 113 |  |  |  | 
| 114 |  |  | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | 
| 115 |  |  | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); | 
| 116 |  |  |  | 
| 117 |  |  | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); | 
| 118 |  |  | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); | 
| 119 | gezelter | 1541 |  | 
| 120 | gezelter | 1569 | AtomCommRealRow->gather(massFactorsLocal, massFactorsRow); | 
| 121 |  |  | AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol); | 
| 122 |  |  |  | 
| 123 |  |  | groupListRow_.clear(); | 
| 124 | gezelter | 1577 | groupListRow_.resize(nGroupsInRow_); | 
| 125 | gezelter | 1569 | for (int i = 0; i < nGroupsInRow_; i++) { | 
| 126 |  |  | int gid = cgRowToGlobal[i]; | 
| 127 |  |  | for (int j = 0; j < nAtomsInRow_; j++) { | 
| 128 |  |  | int aid = AtomRowToGlobal[j]; | 
| 129 |  |  | if (globalGroupMembership[aid] == gid) | 
| 130 |  |  | groupListRow_[i].push_back(j); | 
| 131 |  |  | } | 
| 132 |  |  | } | 
| 133 |  |  |  | 
| 134 |  |  | groupListCol_.clear(); | 
| 135 | gezelter | 1577 | groupListCol_.resize(nGroupsInCol_); | 
| 136 | gezelter | 1569 | for (int i = 0; i < nGroupsInCol_; i++) { | 
| 137 |  |  | int gid = cgColToGlobal[i]; | 
| 138 |  |  | for (int j = 0; j < nAtomsInCol_; j++) { | 
| 139 |  |  | int aid = AtomColToGlobal[j]; | 
| 140 |  |  | if (globalGroupMembership[aid] == gid) | 
| 141 |  |  | groupListCol_[i].push_back(j); | 
| 142 |  |  | } | 
| 143 |  |  | } | 
| 144 |  |  |  | 
| 145 | gezelter | 1579 | skipsForAtom.clear(); | 
| 146 |  |  | skipsForAtom.resize(nAtomsInRow_); | 
| 147 |  |  | toposForAtom.clear(); | 
| 148 |  |  | toposForAtom.resize(nAtomsInRow_); | 
| 149 |  |  | topoDist.clear(); | 
| 150 |  |  | topoDist.resize(nAtomsInRow_); | 
| 151 | gezelter | 1570 | for (int i = 0; i < nAtomsInRow_; i++) { | 
| 152 | gezelter | 1571 | int iglob = AtomRowToGlobal[i]; | 
| 153 | gezelter | 1579 |  | 
| 154 | gezelter | 1570 | for (int j = 0; j < nAtomsInCol_; j++) { | 
| 155 | gezelter | 1579 | int jglob = AtomColToGlobal[j]; | 
| 156 |  |  |  | 
| 157 | gezelter | 1570 | if (excludes.hasPair(iglob, jglob)) | 
| 158 | gezelter | 1579 | skipsForAtom[i].push_back(j); | 
| 159 |  |  |  | 
| 160 | gezelter | 1570 | if (oneTwo.hasPair(iglob, jglob)) { | 
| 161 | gezelter | 1579 | toposForAtom[i].push_back(j); | 
| 162 |  |  | topoDist[i].push_back(1); | 
| 163 |  |  | } else { | 
| 164 |  |  | if (oneThree.hasPair(iglob, jglob)) { | 
| 165 |  |  | toposForAtom[i].push_back(j); | 
| 166 |  |  | topoDist[i].push_back(2); | 
| 167 |  |  | } else { | 
| 168 |  |  | if (oneFour.hasPair(iglob, jglob)) { | 
| 169 |  |  | toposForAtom[i].push_back(j); | 
| 170 |  |  | topoDist[i].push_back(3); | 
| 171 |  |  | } | 
| 172 |  |  | } | 
| 173 | gezelter | 1570 | } | 
| 174 |  |  | } | 
| 175 |  |  | } | 
| 176 |  |  |  | 
| 177 | gezelter | 1569 | #endif | 
| 178 | gezelter | 1579 |  | 
| 179 | gezelter | 1569 | groupList_.clear(); | 
| 180 | gezelter | 1577 | groupList_.resize(nGroups_); | 
| 181 | gezelter | 1569 | for (int i = 0; i < nGroups_; i++) { | 
| 182 |  |  | int gid = cgLocalToGlobal[i]; | 
| 183 |  |  | for (int j = 0; j < nLocal_; j++) { | 
| 184 |  |  | int aid = AtomLocalToGlobal[j]; | 
| 185 | gezelter | 1577 | if (globalGroupMembership[aid] == gid) { | 
| 186 | gezelter | 1569 | groupList_[i].push_back(j); | 
| 187 | gezelter | 1577 | } | 
| 188 | gezelter | 1569 | } | 
| 189 |  |  | } | 
| 190 |  |  |  | 
| 191 | gezelter | 1579 | skipsForAtom.clear(); | 
| 192 |  |  | skipsForAtom.resize(nLocal_); | 
| 193 |  |  | toposForAtom.clear(); | 
| 194 |  |  | toposForAtom.resize(nLocal_); | 
| 195 |  |  | topoDist.clear(); | 
| 196 |  |  | topoDist.resize(nLocal_); | 
| 197 | gezelter | 1569 |  | 
| 198 | gezelter | 1570 | for (int i = 0; i < nLocal_; i++) { | 
| 199 |  |  | int iglob = AtomLocalToGlobal[i]; | 
| 200 | gezelter | 1579 |  | 
| 201 | gezelter | 1570 | for (int j = 0; j < nLocal_; j++) { | 
| 202 | gezelter | 1579 | int jglob = AtomLocalToGlobal[j]; | 
| 203 |  |  |  | 
| 204 | gezelter | 1570 | if (excludes.hasPair(iglob, jglob)) | 
| 205 | gezelter | 1579 | skipsForAtom[i].push_back(j); | 
| 206 |  |  |  | 
| 207 | gezelter | 1570 | if (oneTwo.hasPair(iglob, jglob)) { | 
| 208 | gezelter | 1579 | toposForAtom[i].push_back(j); | 
| 209 |  |  | topoDist[i].push_back(1); | 
| 210 |  |  | } else { | 
| 211 |  |  | if (oneThree.hasPair(iglob, jglob)) { | 
| 212 |  |  | toposForAtom[i].push_back(j); | 
| 213 |  |  | topoDist[i].push_back(2); | 
| 214 |  |  | } else { | 
| 215 |  |  | if (oneFour.hasPair(iglob, jglob)) { | 
| 216 |  |  | toposForAtom[i].push_back(j); | 
| 217 |  |  | topoDist[i].push_back(3); | 
| 218 |  |  | } | 
| 219 |  |  | } | 
| 220 | gezelter | 1570 | } | 
| 221 |  |  | } | 
| 222 | gezelter | 1579 | } | 
| 223 |  |  |  | 
| 224 |  |  | createGtypeCutoffMap(); | 
| 225 | gezelter | 1576 | } | 
| 226 |  |  |  | 
| 227 |  |  | void ForceMatrixDecomposition::createGtypeCutoffMap() { | 
| 228 |  |  |  | 
| 229 |  |  | RealType tol = 1e-6; | 
| 230 |  |  | RealType rc; | 
| 231 |  |  | int atid; | 
| 232 |  |  | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); | 
| 233 |  |  | vector<RealType> atypeCutoff; | 
| 234 | gezelter | 1577 | atypeCutoff.resize( atypes.size() ); | 
| 235 | gezelter | 1576 |  | 
| 236 | gezelter | 1579 | for (set<AtomType*>::iterator at = atypes.begin(); | 
| 237 |  |  | at != atypes.end(); ++at){ | 
| 238 | gezelter | 1576 | rc = interactionMan_->getSuggestedCutoffRadius(*at); | 
| 239 |  |  | atid = (*at)->getIdent(); | 
| 240 |  |  | atypeCutoff[atid] = rc; | 
| 241 | gezelter | 1570 | } | 
| 242 | gezelter | 1576 |  | 
| 243 |  |  | vector<RealType> gTypeCutoffs; | 
| 244 |  |  |  | 
| 245 |  |  | // first we do a single loop over the cutoff groups to find the | 
| 246 |  |  | // largest cutoff for any atypes present in this group. | 
| 247 |  |  | #ifdef IS_MPI | 
| 248 |  |  | vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); | 
| 249 | gezelter | 1579 | groupRowToGtype.resize(nGroupsInRow_); | 
| 250 | gezelter | 1576 | for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { | 
| 251 |  |  | vector<int> atomListRow = getAtomsInGroupRow(cg1); | 
| 252 |  |  | for (vector<int>::iterator ia = atomListRow.begin(); | 
| 253 |  |  | ia != atomListRow.end(); ++ia) { | 
| 254 |  |  | int atom1 = (*ia); | 
| 255 |  |  | atid = identsRow[atom1]; | 
| 256 |  |  | if (atypeCutoff[atid] > groupCutoffRow[cg1]) { | 
| 257 |  |  | groupCutoffRow[cg1] = atypeCutoff[atid]; | 
| 258 |  |  | } | 
| 259 |  |  | } | 
| 260 |  |  |  | 
| 261 |  |  | bool gTypeFound = false; | 
| 262 |  |  | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 263 |  |  | if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) { | 
| 264 |  |  | groupRowToGtype[cg1] = gt; | 
| 265 |  |  | gTypeFound = true; | 
| 266 |  |  | } | 
| 267 |  |  | } | 
| 268 |  |  | if (!gTypeFound) { | 
| 269 |  |  | gTypeCutoffs.push_back( groupCutoffRow[cg1] ); | 
| 270 |  |  | groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; | 
| 271 |  |  | } | 
| 272 |  |  |  | 
| 273 |  |  | } | 
| 274 |  |  | vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); | 
| 275 | gezelter | 1579 | groupColToGtype.resize(nGroupsInCol_); | 
| 276 | gezelter | 1576 | for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { | 
| 277 |  |  | vector<int> atomListCol = getAtomsInGroupColumn(cg2); | 
| 278 |  |  | for (vector<int>::iterator jb = atomListCol.begin(); | 
| 279 |  |  | jb != atomListCol.end(); ++jb) { | 
| 280 |  |  | int atom2 = (*jb); | 
| 281 |  |  | atid = identsCol[atom2]; | 
| 282 |  |  | if (atypeCutoff[atid] > groupCutoffCol[cg2]) { | 
| 283 |  |  | groupCutoffCol[cg2] = atypeCutoff[atid]; | 
| 284 |  |  | } | 
| 285 |  |  | } | 
| 286 |  |  | bool gTypeFound = false; | 
| 287 |  |  | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 288 |  |  | if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) { | 
| 289 |  |  | groupColToGtype[cg2] = gt; | 
| 290 |  |  | gTypeFound = true; | 
| 291 |  |  | } | 
| 292 |  |  | } | 
| 293 |  |  | if (!gTypeFound) { | 
| 294 |  |  | gTypeCutoffs.push_back( groupCutoffCol[cg2] ); | 
| 295 |  |  | groupColToGtype[cg2] = gTypeCutoffs.size() - 1; | 
| 296 |  |  | } | 
| 297 |  |  | } | 
| 298 |  |  | #else | 
| 299 | gezelter | 1579 |  | 
| 300 | gezelter | 1576 | vector<RealType> groupCutoff(nGroups_, 0.0); | 
| 301 | gezelter | 1579 | groupToGtype.resize(nGroups_); | 
| 302 |  |  |  | 
| 303 |  |  | cerr << "nGroups = " << nGroups_ << "\n"; | 
| 304 | gezelter | 1576 | for (int cg1 = 0; cg1 < nGroups_; cg1++) { | 
| 305 | gezelter | 1579 |  | 
| 306 | gezelter | 1576 | groupCutoff[cg1] = 0.0; | 
| 307 |  |  | vector<int> atomList = getAtomsInGroupRow(cg1); | 
| 308 | gezelter | 1579 |  | 
| 309 | gezelter | 1576 | for (vector<int>::iterator ia = atomList.begin(); | 
| 310 |  |  | ia != atomList.end(); ++ia) { | 
| 311 |  |  | int atom1 = (*ia); | 
| 312 |  |  | atid = identsLocal[atom1]; | 
| 313 |  |  | if (atypeCutoff[atid] > groupCutoff[cg1]) { | 
| 314 |  |  | groupCutoff[cg1] = atypeCutoff[atid]; | 
| 315 |  |  | } | 
| 316 |  |  | } | 
| 317 |  |  |  | 
| 318 |  |  | bool gTypeFound = false; | 
| 319 |  |  | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 320 |  |  | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { | 
| 321 |  |  | groupToGtype[cg1] = gt; | 
| 322 |  |  | gTypeFound = true; | 
| 323 |  |  | } | 
| 324 |  |  | } | 
| 325 |  |  | if (!gTypeFound) { | 
| 326 |  |  | gTypeCutoffs.push_back( groupCutoff[cg1] ); | 
| 327 |  |  | groupToGtype[cg1] = gTypeCutoffs.size() - 1; | 
| 328 |  |  | } | 
| 329 |  |  | } | 
| 330 |  |  | #endif | 
| 331 |  |  |  | 
| 332 | gezelter | 1579 | cerr << "gTypeCutoffs.size() = " << gTypeCutoffs.size() << "\n"; | 
| 333 | gezelter | 1576 | // Now we find the maximum group cutoff value present in the simulation | 
| 334 |  |  |  | 
| 335 | gezelter | 1579 | RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); | 
| 336 | gezelter | 1576 |  | 
| 337 |  |  | #ifdef IS_MPI | 
| 338 |  |  | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); | 
| 339 |  |  | #endif | 
| 340 |  |  |  | 
| 341 |  |  | RealType tradRcut = groupMax; | 
| 342 |  |  |  | 
| 343 |  |  | for (int i = 0; i < gTypeCutoffs.size();  i++) { | 
| 344 | gezelter | 1579 | for (int j = 0; j < gTypeCutoffs.size();  j++) { | 
| 345 | gezelter | 1576 | RealType thisRcut; | 
| 346 |  |  | switch(cutoffPolicy_) { | 
| 347 |  |  | case TRADITIONAL: | 
| 348 |  |  | thisRcut = tradRcut; | 
| 349 | gezelter | 1579 | break; | 
| 350 | gezelter | 1576 | case MIX: | 
| 351 |  |  | thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); | 
| 352 | gezelter | 1579 | break; | 
| 353 | gezelter | 1576 | case MAX: | 
| 354 |  |  | thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); | 
| 355 | gezelter | 1579 | break; | 
| 356 | gezelter | 1576 | default: | 
| 357 |  |  | sprintf(painCave.errMsg, | 
| 358 |  |  | "ForceMatrixDecomposition::createGtypeCutoffMap " | 
| 359 |  |  | "hit an unknown cutoff policy!\n"); | 
| 360 |  |  | painCave.severity = OPENMD_ERROR; | 
| 361 |  |  | painCave.isFatal = 1; | 
| 362 | gezelter | 1579 | simError(); | 
| 363 |  |  | break; | 
| 364 | gezelter | 1576 | } | 
| 365 |  |  |  | 
| 366 |  |  | pair<int,int> key = make_pair(i,j); | 
| 367 |  |  | gTypeCutoffMap[key].first = thisRcut; | 
| 368 |  |  |  | 
| 369 |  |  | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; | 
| 370 |  |  |  | 
| 371 |  |  | gTypeCutoffMap[key].second = thisRcut*thisRcut; | 
| 372 |  |  |  | 
| 373 |  |  | gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); | 
| 374 |  |  |  | 
| 375 |  |  | // sanity check | 
| 376 |  |  |  | 
| 377 |  |  | if (userChoseCutoff_) { | 
| 378 |  |  | if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { | 
| 379 |  |  | sprintf(painCave.errMsg, | 
| 380 |  |  | "ForceMatrixDecomposition::createGtypeCutoffMap " | 
| 381 |  |  | "user-specified rCut does not match computed group Cutoff\n"); | 
| 382 |  |  | painCave.severity = OPENMD_ERROR; | 
| 383 |  |  | painCave.isFatal = 1; | 
| 384 |  |  | simError(); | 
| 385 |  |  | } | 
| 386 |  |  | } | 
| 387 |  |  | } | 
| 388 |  |  | } | 
| 389 | gezelter | 1539 | } | 
| 390 | gezelter | 1576 |  | 
| 391 |  |  |  | 
| 392 |  |  | groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { | 
| 393 | gezelter | 1579 | int i, j; | 
| 394 | gezelter | 1576 | #ifdef IS_MPI | 
| 395 |  |  | i = groupRowToGtype[cg1]; | 
| 396 |  |  | j = groupColToGtype[cg2]; | 
| 397 |  |  | #else | 
| 398 |  |  | i = groupToGtype[cg1]; | 
| 399 |  |  | j = groupToGtype[cg2]; | 
| 400 | gezelter | 1579 | #endif | 
| 401 | gezelter | 1576 | return gTypeCutoffMap[make_pair(i,j)]; | 
| 402 |  |  | } | 
| 403 |  |  |  | 
| 404 | gezelter | 1579 | int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { | 
| 405 |  |  | for (int j = 0; j < toposForAtom[atom1].size(); j++) { | 
| 406 |  |  | if (toposForAtom[atom1][j] == atom2) | 
| 407 |  |  | return topoDist[atom1][j]; | 
| 408 |  |  | } | 
| 409 |  |  | return 0; | 
| 410 |  |  | } | 
| 411 | gezelter | 1576 |  | 
| 412 | gezelter | 1575 | void ForceMatrixDecomposition::zeroWorkArrays() { | 
| 413 |  |  |  | 
| 414 |  |  | for (int j = 0; j < N_INTERACTION_FAMILIES; j++) { | 
| 415 |  |  | longRangePot_[j] = 0.0; | 
| 416 |  |  | } | 
| 417 |  |  |  | 
| 418 |  |  | #ifdef IS_MPI | 
| 419 |  |  | if (storageLayout_ & DataStorage::dslForce) { | 
| 420 |  |  | fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); | 
| 421 |  |  | fill(atomColData.force.begin(), atomColData.force.end(), V3Zero); | 
| 422 |  |  | } | 
| 423 |  |  |  | 
| 424 |  |  | if (storageLayout_ & DataStorage::dslTorque) { | 
| 425 |  |  | fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero); | 
| 426 |  |  | fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero); | 
| 427 |  |  | } | 
| 428 |  |  |  | 
| 429 |  |  | fill(pot_row.begin(), pot_row.end(), | 
| 430 |  |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 431 |  |  |  | 
| 432 |  |  | fill(pot_col.begin(), pot_col.end(), | 
| 433 |  |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 434 |  |  |  | 
| 435 |  |  | pot_local = Vector<RealType, N_INTERACTION_FAMILIES>(0.0); | 
| 436 |  |  |  | 
| 437 |  |  | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 438 |  |  | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); | 
| 439 |  |  | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); | 
| 440 |  |  | } | 
| 441 |  |  |  | 
| 442 |  |  | if (storageLayout_ & DataStorage::dslDensity) { | 
| 443 |  |  | fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0); | 
| 444 |  |  | fill(atomColData.density.begin(), atomColData.density.end(), 0.0); | 
| 445 |  |  | } | 
| 446 |  |  |  | 
| 447 |  |  | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 448 |  |  | fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); | 
| 449 |  |  | fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); | 
| 450 |  |  | } | 
| 451 |  |  |  | 
| 452 |  |  | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 453 |  |  | fill(atomRowData.functionalDerivative.begin(), | 
| 454 |  |  | atomRowData.functionalDerivative.end(), 0.0); | 
| 455 |  |  | fill(atomColData.functionalDerivative.begin(), | 
| 456 |  |  | atomColData.functionalDerivative.end(), 0.0); | 
| 457 |  |  | } | 
| 458 |  |  |  | 
| 459 |  |  | #else | 
| 460 |  |  |  | 
| 461 |  |  | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 462 |  |  | fill(snap_->atomData.particlePot.begin(), | 
| 463 |  |  | snap_->atomData.particlePot.end(), 0.0); | 
| 464 |  |  | } | 
| 465 |  |  |  | 
| 466 |  |  | if (storageLayout_ & DataStorage::dslDensity) { | 
| 467 |  |  | fill(snap_->atomData.density.begin(), | 
| 468 |  |  | snap_->atomData.density.end(), 0.0); | 
| 469 |  |  | } | 
| 470 |  |  | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 471 |  |  | fill(snap_->atomData.functional.begin(), | 
| 472 |  |  | snap_->atomData.functional.end(), 0.0); | 
| 473 |  |  | } | 
| 474 |  |  | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 475 |  |  | fill(snap_->atomData.functionalDerivative.begin(), | 
| 476 |  |  | snap_->atomData.functionalDerivative.end(), 0.0); | 
| 477 |  |  | } | 
| 478 |  |  | #endif | 
| 479 |  |  |  | 
| 480 |  |  | } | 
| 481 |  |  |  | 
| 482 |  |  |  | 
| 483 | gezelter | 1549 | void ForceMatrixDecomposition::distributeData()  { | 
| 484 | gezelter | 1551 | snap_ = sman_->getCurrentSnapshot(); | 
| 485 |  |  | storageLayout_ = sman_->getStorageLayout(); | 
| 486 | chuckv | 1538 | #ifdef IS_MPI | 
| 487 | gezelter | 1540 |  | 
| 488 | gezelter | 1539 | // gather up the atomic positions | 
| 489 | gezelter | 1551 | AtomCommVectorRow->gather(snap_->atomData.position, | 
| 490 |  |  | atomRowData.position); | 
| 491 |  |  | AtomCommVectorColumn->gather(snap_->atomData.position, | 
| 492 |  |  | atomColData.position); | 
| 493 | gezelter | 1539 |  | 
| 494 |  |  | // gather up the cutoff group positions | 
| 495 | gezelter | 1551 | cgCommVectorRow->gather(snap_->cgData.position, | 
| 496 |  |  | cgRowData.position); | 
| 497 |  |  | cgCommVectorColumn->gather(snap_->cgData.position, | 
| 498 |  |  | cgColData.position); | 
| 499 | gezelter | 1539 |  | 
| 500 |  |  | // if needed, gather the atomic rotation matrices | 
| 501 | gezelter | 1551 | if (storageLayout_ & DataStorage::dslAmat) { | 
| 502 |  |  | AtomCommMatrixRow->gather(snap_->atomData.aMat, | 
| 503 |  |  | atomRowData.aMat); | 
| 504 |  |  | AtomCommMatrixColumn->gather(snap_->atomData.aMat, | 
| 505 |  |  | atomColData.aMat); | 
| 506 | gezelter | 1539 | } | 
| 507 |  |  |  | 
| 508 |  |  | // if needed, gather the atomic eletrostatic frames | 
| 509 | gezelter | 1551 | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 510 |  |  | AtomCommMatrixRow->gather(snap_->atomData.electroFrame, | 
| 511 |  |  | atomRowData.electroFrame); | 
| 512 |  |  | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, | 
| 513 |  |  | atomColData.electroFrame); | 
| 514 | gezelter | 1539 | } | 
| 515 |  |  | #endif | 
| 516 |  |  | } | 
| 517 |  |  |  | 
| 518 | gezelter | 1575 | /* collects information obtained during the pre-pair loop onto local | 
| 519 |  |  | * data structures. | 
| 520 |  |  | */ | 
| 521 | gezelter | 1549 | void ForceMatrixDecomposition::collectIntermediateData() { | 
| 522 | gezelter | 1551 | snap_ = sman_->getCurrentSnapshot(); | 
| 523 |  |  | storageLayout_ = sman_->getStorageLayout(); | 
| 524 | gezelter | 1539 | #ifdef IS_MPI | 
| 525 |  |  |  | 
| 526 | gezelter | 1551 | if (storageLayout_ & DataStorage::dslDensity) { | 
| 527 |  |  |  | 
| 528 |  |  | AtomCommRealRow->scatter(atomRowData.density, | 
| 529 |  |  | snap_->atomData.density); | 
| 530 |  |  |  | 
| 531 |  |  | int n = snap_->atomData.density.size(); | 
| 532 | gezelter | 1575 | vector<RealType> rho_tmp(n, 0.0); | 
| 533 | gezelter | 1551 | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); | 
| 534 | gezelter | 1539 | for (int i = 0; i < n; i++) | 
| 535 | gezelter | 1551 | snap_->atomData.density[i] += rho_tmp[i]; | 
| 536 | gezelter | 1539 | } | 
| 537 | chuckv | 1538 | #endif | 
| 538 | gezelter | 1539 | } | 
| 539 | gezelter | 1575 |  | 
| 540 |  |  | /* | 
| 541 |  |  | * redistributes information obtained during the pre-pair loop out to | 
| 542 |  |  | * row and column-indexed data structures | 
| 543 |  |  | */ | 
| 544 | gezelter | 1549 | void ForceMatrixDecomposition::distributeIntermediateData() { | 
| 545 | gezelter | 1551 | snap_ = sman_->getCurrentSnapshot(); | 
| 546 |  |  | storageLayout_ = sman_->getStorageLayout(); | 
| 547 | chuckv | 1538 | #ifdef IS_MPI | 
| 548 | gezelter | 1551 | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 549 |  |  | AtomCommRealRow->gather(snap_->atomData.functional, | 
| 550 |  |  | atomRowData.functional); | 
| 551 |  |  | AtomCommRealColumn->gather(snap_->atomData.functional, | 
| 552 |  |  | atomColData.functional); | 
| 553 | gezelter | 1539 | } | 
| 554 |  |  |  | 
| 555 | gezelter | 1551 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 556 |  |  | AtomCommRealRow->gather(snap_->atomData.functionalDerivative, | 
| 557 |  |  | atomRowData.functionalDerivative); | 
| 558 |  |  | AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, | 
| 559 |  |  | atomColData.functionalDerivative); | 
| 560 | gezelter | 1539 | } | 
| 561 | chuckv | 1538 | #endif | 
| 562 |  |  | } | 
| 563 | gezelter | 1539 |  | 
| 564 |  |  |  | 
| 565 | gezelter | 1549 | void ForceMatrixDecomposition::collectData() { | 
| 566 | gezelter | 1551 | snap_ = sman_->getCurrentSnapshot(); | 
| 567 |  |  | storageLayout_ = sman_->getStorageLayout(); | 
| 568 |  |  | #ifdef IS_MPI | 
| 569 |  |  | int n = snap_->atomData.force.size(); | 
| 570 | gezelter | 1544 | vector<Vector3d> frc_tmp(n, V3Zero); | 
| 571 | gezelter | 1541 |  | 
| 572 | gezelter | 1551 | AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); | 
| 573 | gezelter | 1541 | for (int i = 0; i < n; i++) { | 
| 574 | gezelter | 1551 | snap_->atomData.force[i] += frc_tmp[i]; | 
| 575 | gezelter | 1541 | frc_tmp[i] = 0.0; | 
| 576 |  |  | } | 
| 577 | gezelter | 1540 |  | 
| 578 | gezelter | 1551 | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); | 
| 579 | gezelter | 1540 | for (int i = 0; i < n; i++) | 
| 580 | gezelter | 1551 | snap_->atomData.force[i] += frc_tmp[i]; | 
| 581 | gezelter | 1540 |  | 
| 582 |  |  |  | 
| 583 | gezelter | 1551 | if (storageLayout_ & DataStorage::dslTorque) { | 
| 584 | gezelter | 1541 |  | 
| 585 | gezelter | 1551 | int nt = snap_->atomData.force.size(); | 
| 586 | gezelter | 1544 | vector<Vector3d> trq_tmp(nt, V3Zero); | 
| 587 | gezelter | 1541 |  | 
| 588 | gezelter | 1551 | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); | 
| 589 | gezelter | 1541 | for (int i = 0; i < n; i++) { | 
| 590 | gezelter | 1551 | snap_->atomData.torque[i] += trq_tmp[i]; | 
| 591 | gezelter | 1541 | trq_tmp[i] = 0.0; | 
| 592 |  |  | } | 
| 593 | gezelter | 1540 |  | 
| 594 | gezelter | 1551 | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); | 
| 595 | gezelter | 1540 | for (int i = 0; i < n; i++) | 
| 596 | gezelter | 1551 | snap_->atomData.torque[i] += trq_tmp[i]; | 
| 597 | gezelter | 1540 | } | 
| 598 |  |  |  | 
| 599 | gezelter | 1567 | nLocal_ = snap_->getNumberOfAtoms(); | 
| 600 | gezelter | 1544 |  | 
| 601 | gezelter | 1575 | vector<potVec> pot_temp(nLocal_, | 
| 602 |  |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 603 |  |  |  | 
| 604 |  |  | // scatter/gather pot_row into the members of my column | 
| 605 |  |  |  | 
| 606 |  |  | AtomCommPotRow->scatter(pot_row, pot_temp); | 
| 607 |  |  |  | 
| 608 |  |  | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 609 |  |  | pot_local += pot_temp[ii]; | 
| 610 | gezelter | 1540 |  | 
| 611 | gezelter | 1575 | fill(pot_temp.begin(), pot_temp.end(), | 
| 612 |  |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 613 |  |  |  | 
| 614 |  |  | AtomCommPotColumn->scatter(pot_col, pot_temp); | 
| 615 |  |  |  | 
| 616 |  |  | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 617 |  |  | pot_local += pot_temp[ii]; | 
| 618 |  |  |  | 
| 619 | gezelter | 1539 | #endif | 
| 620 | chuckv | 1538 | } | 
| 621 | gezelter | 1551 |  | 
| 622 | gezelter | 1570 | int ForceMatrixDecomposition::getNAtomsInRow() { | 
| 623 |  |  | #ifdef IS_MPI | 
| 624 |  |  | return nAtomsInRow_; | 
| 625 |  |  | #else | 
| 626 |  |  | return nLocal_; | 
| 627 |  |  | #endif | 
| 628 |  |  | } | 
| 629 |  |  |  | 
| 630 | gezelter | 1569 | /** | 
| 631 |  |  | * returns the list of atoms belonging to this group. | 
| 632 |  |  | */ | 
| 633 |  |  | vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ | 
| 634 |  |  | #ifdef IS_MPI | 
| 635 |  |  | return groupListRow_[cg1]; | 
| 636 |  |  | #else | 
| 637 |  |  | return groupList_[cg1]; | 
| 638 |  |  | #endif | 
| 639 |  |  | } | 
| 640 |  |  |  | 
| 641 |  |  | vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ | 
| 642 |  |  | #ifdef IS_MPI | 
| 643 |  |  | return groupListCol_[cg2]; | 
| 644 |  |  | #else | 
| 645 |  |  | return groupList_[cg2]; | 
| 646 |  |  | #endif | 
| 647 |  |  | } | 
| 648 | chuckv | 1538 |  | 
| 649 | gezelter | 1551 | Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ | 
| 650 |  |  | Vector3d d; | 
| 651 |  |  |  | 
| 652 |  |  | #ifdef IS_MPI | 
| 653 |  |  | d = cgColData.position[cg2] - cgRowData.position[cg1]; | 
| 654 |  |  | #else | 
| 655 |  |  | d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; | 
| 656 |  |  | #endif | 
| 657 |  |  |  | 
| 658 |  |  | snap_->wrapVector(d); | 
| 659 |  |  | return d; | 
| 660 |  |  | } | 
| 661 |  |  |  | 
| 662 |  |  |  | 
| 663 |  |  | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ | 
| 664 |  |  |  | 
| 665 |  |  | Vector3d d; | 
| 666 |  |  |  | 
| 667 |  |  | #ifdef IS_MPI | 
| 668 |  |  | d = cgRowData.position[cg1] - atomRowData.position[atom1]; | 
| 669 |  |  | #else | 
| 670 |  |  | d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; | 
| 671 |  |  | #endif | 
| 672 |  |  |  | 
| 673 |  |  | snap_->wrapVector(d); | 
| 674 |  |  | return d; | 
| 675 |  |  | } | 
| 676 |  |  |  | 
| 677 |  |  | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){ | 
| 678 |  |  | Vector3d d; | 
| 679 |  |  |  | 
| 680 |  |  | #ifdef IS_MPI | 
| 681 |  |  | d = cgColData.position[cg2] - atomColData.position[atom2]; | 
| 682 |  |  | #else | 
| 683 |  |  | d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; | 
| 684 |  |  | #endif | 
| 685 |  |  |  | 
| 686 |  |  | snap_->wrapVector(d); | 
| 687 |  |  | return d; | 
| 688 |  |  | } | 
| 689 | gezelter | 1569 |  | 
| 690 |  |  | RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { | 
| 691 |  |  | #ifdef IS_MPI | 
| 692 |  |  | return massFactorsRow[atom1]; | 
| 693 |  |  | #else | 
| 694 |  |  | return massFactorsLocal[atom1]; | 
| 695 |  |  | #endif | 
| 696 |  |  | } | 
| 697 |  |  |  | 
| 698 |  |  | RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { | 
| 699 |  |  | #ifdef IS_MPI | 
| 700 |  |  | return massFactorsCol[atom2]; | 
| 701 |  |  | #else | 
| 702 |  |  | return massFactorsLocal[atom2]; | 
| 703 |  |  | #endif | 
| 704 |  |  |  | 
| 705 |  |  | } | 
| 706 | gezelter | 1551 |  | 
| 707 |  |  | Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ | 
| 708 |  |  | Vector3d d; | 
| 709 |  |  |  | 
| 710 |  |  | #ifdef IS_MPI | 
| 711 |  |  | d = atomColData.position[atom2] - atomRowData.position[atom1]; | 
| 712 |  |  | #else | 
| 713 |  |  | d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; | 
| 714 |  |  | #endif | 
| 715 |  |  |  | 
| 716 |  |  | snap_->wrapVector(d); | 
| 717 |  |  | return d; | 
| 718 |  |  | } | 
| 719 |  |  |  | 
| 720 | gezelter | 1579 | vector<int> ForceMatrixDecomposition::getSkipsForAtom(int atom1) { | 
| 721 |  |  | return skipsForAtom[atom1]; | 
| 722 | gezelter | 1570 | } | 
| 723 |  |  |  | 
| 724 |  |  | /** | 
| 725 | gezelter | 1575 | * There are a number of reasons to skip a pair or a | 
| 726 |  |  | * particle. Mostly we do this to exclude atoms who are involved in | 
| 727 |  |  | * short range interactions (bonds, bends, torsions), but we also | 
| 728 |  |  | * need to exclude some overcounted interactions that result from | 
| 729 |  |  | * the parallel decomposition. | 
| 730 | gezelter | 1570 | */ | 
| 731 |  |  | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { | 
| 732 |  |  | int unique_id_1, unique_id_2; | 
| 733 |  |  |  | 
| 734 |  |  | #ifdef IS_MPI | 
| 735 |  |  | // in MPI, we have to look up the unique IDs for each atom | 
| 736 |  |  | unique_id_1 = AtomRowToGlobal[atom1]; | 
| 737 |  |  | unique_id_2 = AtomColToGlobal[atom2]; | 
| 738 |  |  |  | 
| 739 |  |  | // this situation should only arise in MPI simulations | 
| 740 |  |  | if (unique_id_1 == unique_id_2) return true; | 
| 741 |  |  |  | 
| 742 |  |  | // this prevents us from doing the pair on multiple processors | 
| 743 |  |  | if (unique_id_1 < unique_id_2) { | 
| 744 |  |  | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; | 
| 745 |  |  | } else { | 
| 746 |  |  | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | 
| 747 |  |  | } | 
| 748 |  |  | #else | 
| 749 |  |  | // in the normal loop, the atom numbers are unique | 
| 750 |  |  | unique_id_1 = atom1; | 
| 751 |  |  | unique_id_2 = atom2; | 
| 752 |  |  | #endif | 
| 753 |  |  |  | 
| 754 | gezelter | 1579 | for (vector<int>::iterator i = skipsForAtom[atom1].begin(); | 
| 755 |  |  | i != skipsForAtom[atom1].end(); ++i) { | 
| 756 | gezelter | 1570 | if ( (*i) == unique_id_2 ) return true; | 
| 757 |  |  | } | 
| 758 | gezelter | 1579 |  | 
| 759 | gezelter | 1570 | } | 
| 760 |  |  |  | 
| 761 |  |  |  | 
| 762 | gezelter | 1551 | void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ | 
| 763 |  |  | #ifdef IS_MPI | 
| 764 |  |  | atomRowData.force[atom1] += fg; | 
| 765 |  |  | #else | 
| 766 |  |  | snap_->atomData.force[atom1] += fg; | 
| 767 |  |  | #endif | 
| 768 |  |  | } | 
| 769 |  |  |  | 
| 770 |  |  | void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){ | 
| 771 |  |  | #ifdef IS_MPI | 
| 772 |  |  | atomColData.force[atom2] += fg; | 
| 773 |  |  | #else | 
| 774 |  |  | snap_->atomData.force[atom2] += fg; | 
| 775 |  |  | #endif | 
| 776 |  |  | } | 
| 777 |  |  |  | 
| 778 |  |  | // filling interaction blocks with pointers | 
| 779 |  |  | InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) { | 
| 780 | gezelter | 1567 | InteractionData idat; | 
| 781 | gezelter | 1551 |  | 
| 782 |  |  | #ifdef IS_MPI | 
| 783 | gezelter | 1571 |  | 
| 784 |  |  | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), | 
| 785 |  |  | ff_->getAtomType(identsCol[atom2]) ); | 
| 786 |  |  |  | 
| 787 | gezelter | 1575 |  | 
| 788 | gezelter | 1551 | if (storageLayout_ & DataStorage::dslAmat) { | 
| 789 | gezelter | 1554 | idat.A1 = &(atomRowData.aMat[atom1]); | 
| 790 |  |  | idat.A2 = &(atomColData.aMat[atom2]); | 
| 791 | gezelter | 1551 | } | 
| 792 | gezelter | 1567 |  | 
| 793 | gezelter | 1551 | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 794 | gezelter | 1554 | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); | 
| 795 |  |  | idat.eFrame2 = &(atomColData.electroFrame[atom2]); | 
| 796 | gezelter | 1551 | } | 
| 797 |  |  |  | 
| 798 |  |  | if (storageLayout_ & DataStorage::dslTorque) { | 
| 799 | gezelter | 1554 | idat.t1 = &(atomRowData.torque[atom1]); | 
| 800 |  |  | idat.t2 = &(atomColData.torque[atom2]); | 
| 801 | gezelter | 1551 | } | 
| 802 |  |  |  | 
| 803 |  |  | if (storageLayout_ & DataStorage::dslDensity) { | 
| 804 | gezelter | 1554 | idat.rho1 = &(atomRowData.density[atom1]); | 
| 805 |  |  | idat.rho2 = &(atomColData.density[atom2]); | 
| 806 | gezelter | 1551 | } | 
| 807 |  |  |  | 
| 808 | gezelter | 1575 | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 809 |  |  | idat.frho1 = &(atomRowData.functional[atom1]); | 
| 810 |  |  | idat.frho2 = &(atomColData.functional[atom2]); | 
| 811 |  |  | } | 
| 812 |  |  |  | 
| 813 | gezelter | 1551 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 814 | gezelter | 1554 | idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); | 
| 815 |  |  | idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); | 
| 816 | gezelter | 1551 | } | 
| 817 | gezelter | 1570 |  | 
| 818 | gezelter | 1575 | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 819 |  |  | idat.particlePot1 = &(atomRowData.particlePot[atom1]); | 
| 820 |  |  | idat.particlePot2 = &(atomColData.particlePot[atom2]); | 
| 821 |  |  | } | 
| 822 |  |  |  | 
| 823 | gezelter | 1562 | #else | 
| 824 | gezelter | 1571 |  | 
| 825 |  |  | idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), | 
| 826 |  |  | ff_->getAtomType(identsLocal[atom2]) ); | 
| 827 |  |  |  | 
| 828 | gezelter | 1562 | if (storageLayout_ & DataStorage::dslAmat) { | 
| 829 |  |  | idat.A1 = &(snap_->atomData.aMat[atom1]); | 
| 830 |  |  | idat.A2 = &(snap_->atomData.aMat[atom2]); | 
| 831 |  |  | } | 
| 832 |  |  |  | 
| 833 |  |  | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 834 |  |  | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); | 
| 835 |  |  | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); | 
| 836 |  |  | } | 
| 837 |  |  |  | 
| 838 |  |  | if (storageLayout_ & DataStorage::dslTorque) { | 
| 839 |  |  | idat.t1 = &(snap_->atomData.torque[atom1]); | 
| 840 |  |  | idat.t2 = &(snap_->atomData.torque[atom2]); | 
| 841 |  |  | } | 
| 842 |  |  |  | 
| 843 |  |  | if (storageLayout_ & DataStorage::dslDensity) { | 
| 844 |  |  | idat.rho1 = &(snap_->atomData.density[atom1]); | 
| 845 |  |  | idat.rho2 = &(snap_->atomData.density[atom2]); | 
| 846 |  |  | } | 
| 847 |  |  |  | 
| 848 | gezelter | 1575 | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 849 |  |  | idat.frho1 = &(snap_->atomData.functional[atom1]); | 
| 850 |  |  | idat.frho2 = &(snap_->atomData.functional[atom2]); | 
| 851 |  |  | } | 
| 852 |  |  |  | 
| 853 | gezelter | 1562 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 854 |  |  | idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); | 
| 855 |  |  | idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); | 
| 856 |  |  | } | 
| 857 | gezelter | 1575 |  | 
| 858 |  |  | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 859 |  |  | idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); | 
| 860 |  |  | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); | 
| 861 |  |  | } | 
| 862 |  |  |  | 
| 863 | gezelter | 1551 | #endif | 
| 864 | gezelter | 1567 | return idat; | 
| 865 | gezelter | 1551 | } | 
| 866 | gezelter | 1567 |  | 
| 867 | gezelter | 1575 |  | 
| 868 |  |  | void ForceMatrixDecomposition::unpackInteractionData(InteractionData idat, int atom1, int atom2) { | 
| 869 |  |  | #ifdef IS_MPI | 
| 870 |  |  | pot_row[atom1] += 0.5 *  *(idat.pot); | 
| 871 |  |  | pot_col[atom2] += 0.5 *  *(idat.pot); | 
| 872 |  |  |  | 
| 873 |  |  | atomRowData.force[atom1] += *(idat.f1); | 
| 874 |  |  | atomColData.force[atom2] -= *(idat.f1); | 
| 875 |  |  | #else | 
| 876 |  |  | longRangePot_ += *(idat.pot); | 
| 877 |  |  |  | 
| 878 |  |  | snap_->atomData.force[atom1] += *(idat.f1); | 
| 879 |  |  | snap_->atomData.force[atom2] -= *(idat.f1); | 
| 880 |  |  | #endif | 
| 881 |  |  |  | 
| 882 |  |  | } | 
| 883 |  |  |  | 
| 884 |  |  |  | 
| 885 | gezelter | 1551 | InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ | 
| 886 | gezelter | 1567 |  | 
| 887 | gezelter | 1562 | InteractionData idat; | 
| 888 |  |  | #ifdef IS_MPI | 
| 889 | gezelter | 1571 | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), | 
| 890 |  |  | ff_->getAtomType(identsCol[atom2]) ); | 
| 891 |  |  |  | 
| 892 | gezelter | 1562 | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 893 |  |  | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); | 
| 894 |  |  | idat.eFrame2 = &(atomColData.electroFrame[atom2]); | 
| 895 |  |  | } | 
| 896 |  |  | if (storageLayout_ & DataStorage::dslTorque) { | 
| 897 |  |  | idat.t1 = &(atomRowData.torque[atom1]); | 
| 898 |  |  | idat.t2 = &(atomColData.torque[atom2]); | 
| 899 |  |  | } | 
| 900 | gezelter | 1567 | #else | 
| 901 | gezelter | 1571 | idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), | 
| 902 |  |  | ff_->getAtomType(identsLocal[atom2]) ); | 
| 903 |  |  |  | 
| 904 | gezelter | 1567 | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 905 |  |  | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); | 
| 906 |  |  | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); | 
| 907 |  |  | } | 
| 908 |  |  | if (storageLayout_ & DataStorage::dslTorque) { | 
| 909 |  |  | idat.t1 = &(snap_->atomData.torque[atom1]); | 
| 910 |  |  | idat.t2 = &(snap_->atomData.torque[atom2]); | 
| 911 |  |  | } | 
| 912 | gezelter | 1571 | #endif | 
| 913 | gezelter | 1551 | } | 
| 914 | gezelter | 1567 |  | 
| 915 | gezelter | 1562 | /* | 
| 916 |  |  | * buildNeighborList | 
| 917 |  |  | * | 
| 918 |  |  | * first element of pair is row-indexed CutoffGroup | 
| 919 |  |  | * second element of pair is column-indexed CutoffGroup | 
| 920 |  |  | */ | 
| 921 | gezelter | 1567 | vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { | 
| 922 |  |  |  | 
| 923 |  |  | vector<pair<int, int> > neighborList; | 
| 924 | gezelter | 1576 | groupCutoffs cuts; | 
| 925 | gezelter | 1567 | #ifdef IS_MPI | 
| 926 | gezelter | 1568 | cellListRow_.clear(); | 
| 927 |  |  | cellListCol_.clear(); | 
| 928 | gezelter | 1567 | #else | 
| 929 | gezelter | 1568 | cellList_.clear(); | 
| 930 | gezelter | 1567 | #endif | 
| 931 | gezelter | 1562 |  | 
| 932 | gezelter | 1576 | RealType rList_ = (largestRcut_ + skinThickness_); | 
| 933 | gezelter | 1567 | RealType rl2 = rList_ * rList_; | 
| 934 |  |  | Snapshot* snap_ = sman_->getCurrentSnapshot(); | 
| 935 | gezelter | 1562 | Mat3x3d Hmat = snap_->getHmat(); | 
| 936 |  |  | Vector3d Hx = Hmat.getColumn(0); | 
| 937 |  |  | Vector3d Hy = Hmat.getColumn(1); | 
| 938 |  |  | Vector3d Hz = Hmat.getColumn(2); | 
| 939 |  |  |  | 
| 940 | gezelter | 1568 | nCells_.x() = (int) ( Hx.length() )/ rList_; | 
| 941 |  |  | nCells_.y() = (int) ( Hy.length() )/ rList_; | 
| 942 |  |  | nCells_.z() = (int) ( Hz.length() )/ rList_; | 
| 943 | gezelter | 1562 |  | 
| 944 | gezelter | 1567 | Mat3x3d invHmat = snap_->getInvHmat(); | 
| 945 |  |  | Vector3d rs, scaled, dr; | 
| 946 |  |  | Vector3i whichCell; | 
| 947 |  |  | int cellIndex; | 
| 948 | gezelter | 1579 | int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); | 
| 949 | gezelter | 1567 |  | 
| 950 |  |  | #ifdef IS_MPI | 
| 951 | gezelter | 1579 | cellListRow_.resize(nCtot); | 
| 952 |  |  | cellListCol_.resize(nCtot); | 
| 953 |  |  | #else | 
| 954 |  |  | cellList_.resize(nCtot); | 
| 955 |  |  | #endif | 
| 956 |  |  |  | 
| 957 |  |  | #ifdef IS_MPI | 
| 958 | gezelter | 1567 | for (int i = 0; i < nGroupsInRow_; i++) { | 
| 959 | gezelter | 1562 | rs = cgRowData.position[i]; | 
| 960 | gezelter | 1567 | // scaled positions relative to the box vectors | 
| 961 |  |  | scaled = invHmat * rs; | 
| 962 |  |  | // wrap the vector back into the unit box by subtracting integer box | 
| 963 |  |  | // numbers | 
| 964 |  |  | for (int j = 0; j < 3; j++) | 
| 965 |  |  | scaled[j] -= roundMe(scaled[j]); | 
| 966 |  |  |  | 
| 967 |  |  | // find xyz-indices of cell that cutoffGroup is in. | 
| 968 | gezelter | 1568 | whichCell.x() = nCells_.x() * scaled.x(); | 
| 969 |  |  | whichCell.y() = nCells_.y() * scaled.y(); | 
| 970 |  |  | whichCell.z() = nCells_.z() * scaled.z(); | 
| 971 | gezelter | 1567 |  | 
| 972 |  |  | // find single index of this cell: | 
| 973 | gezelter | 1568 | cellIndex = Vlinear(whichCell, nCells_); | 
| 974 | gezelter | 1567 | // add this cutoff group to the list of groups in this cell; | 
| 975 | gezelter | 1568 | cellListRow_[cellIndex].push_back(i); | 
| 976 | gezelter | 1562 | } | 
| 977 |  |  |  | 
| 978 | gezelter | 1567 | for (int i = 0; i < nGroupsInCol_; i++) { | 
| 979 |  |  | rs = cgColData.position[i]; | 
| 980 |  |  | // scaled positions relative to the box vectors | 
| 981 |  |  | scaled = invHmat * rs; | 
| 982 |  |  | // wrap the vector back into the unit box by subtracting integer box | 
| 983 |  |  | // numbers | 
| 984 |  |  | for (int j = 0; j < 3; j++) | 
| 985 |  |  | scaled[j] -= roundMe(scaled[j]); | 
| 986 |  |  |  | 
| 987 |  |  | // find xyz-indices of cell that cutoffGroup is in. | 
| 988 | gezelter | 1568 | whichCell.x() = nCells_.x() * scaled.x(); | 
| 989 |  |  | whichCell.y() = nCells_.y() * scaled.y(); | 
| 990 |  |  | whichCell.z() = nCells_.z() * scaled.z(); | 
| 991 | gezelter | 1567 |  | 
| 992 |  |  | // find single index of this cell: | 
| 993 | gezelter | 1568 | cellIndex = Vlinear(whichCell, nCells_); | 
| 994 | gezelter | 1567 | // add this cutoff group to the list of groups in this cell; | 
| 995 | gezelter | 1568 | cellListCol_[cellIndex].push_back(i); | 
| 996 | gezelter | 1562 | } | 
| 997 | gezelter | 1567 | #else | 
| 998 |  |  | for (int i = 0; i < nGroups_; i++) { | 
| 999 |  |  | rs = snap_->cgData.position[i]; | 
| 1000 |  |  | // scaled positions relative to the box vectors | 
| 1001 |  |  | scaled = invHmat * rs; | 
| 1002 |  |  | // wrap the vector back into the unit box by subtracting integer box | 
| 1003 |  |  | // numbers | 
| 1004 |  |  | for (int j = 0; j < 3; j++) | 
| 1005 |  |  | scaled[j] -= roundMe(scaled[j]); | 
| 1006 |  |  |  | 
| 1007 |  |  | // find xyz-indices of cell that cutoffGroup is in. | 
| 1008 | gezelter | 1568 | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1009 |  |  | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1010 |  |  | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1011 | gezelter | 1567 |  | 
| 1012 |  |  | // find single index of this cell: | 
| 1013 | gezelter | 1568 | cellIndex = Vlinear(whichCell, nCells_); | 
| 1014 | gezelter | 1567 | // add this cutoff group to the list of groups in this cell; | 
| 1015 | gezelter | 1568 | cellList_[cellIndex].push_back(i); | 
| 1016 | gezelter | 1567 | } | 
| 1017 |  |  | #endif | 
| 1018 |  |  |  | 
| 1019 | gezelter | 1568 | for (int m1z = 0; m1z < nCells_.z(); m1z++) { | 
| 1020 |  |  | for (int m1y = 0; m1y < nCells_.y(); m1y++) { | 
| 1021 |  |  | for (int m1x = 0; m1x < nCells_.x(); m1x++) { | 
| 1022 | gezelter | 1562 | Vector3i m1v(m1x, m1y, m1z); | 
| 1023 | gezelter | 1568 | int m1 = Vlinear(m1v, nCells_); | 
| 1024 | gezelter | 1562 |  | 
| 1025 | gezelter | 1568 | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); | 
| 1026 |  |  | os != cellOffsets_.end(); ++os) { | 
| 1027 |  |  |  | 
| 1028 |  |  | Vector3i m2v = m1v + (*os); | 
| 1029 |  |  |  | 
| 1030 |  |  | if (m2v.x() >= nCells_.x()) { | 
| 1031 | gezelter | 1562 | m2v.x() = 0; | 
| 1032 |  |  | } else if (m2v.x() < 0) { | 
| 1033 | gezelter | 1568 | m2v.x() = nCells_.x() - 1; | 
| 1034 | gezelter | 1562 | } | 
| 1035 | gezelter | 1568 |  | 
| 1036 |  |  | if (m2v.y() >= nCells_.y()) { | 
| 1037 | gezelter | 1562 | m2v.y() = 0; | 
| 1038 |  |  | } else if (m2v.y() < 0) { | 
| 1039 | gezelter | 1568 | m2v.y() = nCells_.y() - 1; | 
| 1040 | gezelter | 1562 | } | 
| 1041 | gezelter | 1568 |  | 
| 1042 |  |  | if (m2v.z() >= nCells_.z()) { | 
| 1043 | gezelter | 1567 | m2v.z() = 0; | 
| 1044 |  |  | } else if (m2v.z() < 0) { | 
| 1045 | gezelter | 1568 | m2v.z() = nCells_.z() - 1; | 
| 1046 | gezelter | 1567 | } | 
| 1047 | gezelter | 1568 |  | 
| 1048 |  |  | int m2 = Vlinear (m2v, nCells_); | 
| 1049 | gezelter | 1567 |  | 
| 1050 |  |  | #ifdef IS_MPI | 
| 1051 | gezelter | 1568 | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); | 
| 1052 |  |  | j1 != cellListRow_[m1].end(); ++j1) { | 
| 1053 |  |  | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); | 
| 1054 |  |  | j2 != cellListCol_[m2].end(); ++j2) { | 
| 1055 | gezelter | 1567 |  | 
| 1056 |  |  | // Always do this if we're in different cells or if | 
| 1057 |  |  | // we're in the same cell and the global index of the | 
| 1058 |  |  | // j2 cutoff group is less than the j1 cutoff group | 
| 1059 |  |  |  | 
| 1060 |  |  | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { | 
| 1061 |  |  | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | 
| 1062 |  |  | snap_->wrapVector(dr); | 
| 1063 | gezelter | 1576 | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1064 |  |  | if (dr.lengthSquare() < cuts.third) { | 
| 1065 | gezelter | 1567 | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1066 | gezelter | 1562 | } | 
| 1067 |  |  | } | 
| 1068 |  |  | } | 
| 1069 |  |  | } | 
| 1070 | gezelter | 1567 | #else | 
| 1071 | gezelter | 1568 | for (vector<int>::iterator j1 = cellList_[m1].begin(); | 
| 1072 |  |  | j1 != cellList_[m1].end(); ++j1) { | 
| 1073 |  |  | for (vector<int>::iterator j2 = cellList_[m2].begin(); | 
| 1074 |  |  | j2 != cellList_[m2].end(); ++j2) { | 
| 1075 | gezelter | 1567 |  | 
| 1076 |  |  | // Always do this if we're in different cells or if | 
| 1077 |  |  | // we're in the same cell and the global index of the | 
| 1078 |  |  | // j2 cutoff group is less than the j1 cutoff group | 
| 1079 |  |  |  | 
| 1080 |  |  | if (m2 != m1 || (*j2) < (*j1)) { | 
| 1081 |  |  | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | 
| 1082 |  |  | snap_->wrapVector(dr); | 
| 1083 | gezelter | 1576 | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1084 |  |  | if (dr.lengthSquare() < cuts.third) { | 
| 1085 | gezelter | 1567 | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1086 |  |  | } | 
| 1087 |  |  | } | 
| 1088 |  |  | } | 
| 1089 |  |  | } | 
| 1090 |  |  | #endif | 
| 1091 | gezelter | 1562 | } | 
| 1092 |  |  | } | 
| 1093 |  |  | } | 
| 1094 |  |  | } | 
| 1095 | gezelter | 1568 |  | 
| 1096 |  |  | // save the local cutoff group positions for the check that is | 
| 1097 |  |  | // done on each loop: | 
| 1098 |  |  | saved_CG_positions_.clear(); | 
| 1099 |  |  | for (int i = 0; i < nGroups_; i++) | 
| 1100 |  |  | saved_CG_positions_.push_back(snap_->cgData.position[i]); | 
| 1101 |  |  |  | 
| 1102 | gezelter | 1567 | return neighborList; | 
| 1103 | gezelter | 1562 | } | 
| 1104 | gezelter | 1539 | } //end namespace OpenMD |