# | Line 1 | Line 1 | |
---|---|---|
1 | < | /** |
2 | < | * @file ForceDecomposition.cpp |
3 | < | * @author Charles Vardeman <cvardema.at.nd.edu> |
4 | < | * @date 08/18/2010 |
5 | < | * @time 11:56am |
6 | < | * @version 1.0 |
1 | > | /* |
2 | > | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 | * | |
8 | – | * @section LICENSE |
9 | – | * Copyright (c) 2010 The University of Notre Dame. All Rights Reserved. |
10 | – | * |
4 | * The University of Notre Dame grants you ("Licensee") a | |
5 | * non-exclusive, royalty free, license to use, modify and | |
6 | * redistribute this software in source and binary code form, provided | |
# | Line 45 | Line 38 | |
38 | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | |
39 | * [4] Vardeman & Gezelter, in progress (2009). | |
40 | */ | |
41 | + | #include "parallel/ForceDecomposition.hpp" |
42 | + | #include "parallel/Communicator.hpp" |
43 | + | #include "math/SquareMatrix3.hpp" |
44 | ||
45 | + | using namespace std; |
46 | + | namespace OpenMD { |
47 | ||
48 | < | |
51 | < | /* -*- c++ -*- */ |
52 | < | #include "config.h" |
53 | < | #include <stdlib.h> |
48 | > | void ForceDecomposition::distributeInitialData() { |
49 | #ifdef IS_MPI | |
50 | < | #include <mpi.h> |
51 | < | #endif |
50 | > | Snapshot* snap = sman_->getCurrentSnapshot(); |
51 | > | int nAtoms = snap->getNumberOfAtoms(); |
52 | > | int nGroups = snap->getNumberOfCutoffGroups(); |
53 | ||
54 | < | #include <iostream> |
55 | < | #include <vector> |
56 | < | #include <algorithm> |
61 | < | #include <cmath> |
62 | < | #include "parallel/ForceDecomposition.hpp" |
54 | > | AtomCommRealI = new Communicator<Row,RealType>(nAtoms); |
55 | > | AtomCommVectorI = new Communicator<Row,Vector3d>(nAtoms); |
56 | > | AtomCommMatrixI = new Communicator<Row,Mat3x3d>(nAtoms); |
57 | ||
58 | + | AtomCommRealJ = new Communicator<Column,RealType>(nAtoms); |
59 | + | AtomCommVectorJ = new Communicator<Column,Vector3d>(nAtoms); |
60 | + | AtomCommMatrixJ = new Communicator<Column,Mat3x3d>(nAtoms); |
61 | ||
62 | < | using namespace std; |
63 | < | using namespace OpenMD; |
62 | > | cgCommVectorI = new Communicator<Row,Vector3d>(nGroups); |
63 | > | cgCommVectorJ = new Communicator<Column,Vector3d>(nGroups); |
64 | ||
65 | < | //__static |
66 | < | #ifdef IS_MPI |
70 | < | static vector<MPI:Comm> communictors; |
71 | < | #endif |
65 | > | int nInRow = AtomCommRealI.getSize(); |
66 | > | int nInCol = AtomCommRealJ.getSize(); |
67 | ||
68 | < | //____ MPITypeTraits |
69 | < | template<typename T> |
70 | < | struct MPITypeTraits; |
68 | > | vector<vector<RealType> > pot_row(LR_POT_TYPES, |
69 | > | vector<RealType> (nInRow, 0.0)); |
70 | > | vector<vector<RealType> > pot_col(LR_POT_TYPES, |
71 | > | vector<RealType> (nInCol, 0.0)); |
72 | ||
73 | < | #ifdef IS_MPI |
74 | < | template<> |
79 | < | struct MPITypeTraits<RealType> { |
80 | < | static const MPI::Datatype datatype; |
81 | < | }; |
82 | < | const MPI_Datatype MPITypeTraits<RealType>::datatype = MY_MPI_REAL; |
73 | > | vector<vector<RealType> > pot_local(LR_POT_TYPES, |
74 | > | vector<RealType> (nAtoms, 0.0)); |
75 | ||
84 | – | template<> |
85 | – | struct MPITypeTraits<int> { |
86 | – | static const MPI::Datatype datatype; |
87 | – | }; |
88 | – | const MPI::Datatype MPITypeTraits<int>::datatype = MPI_INT; |
76 | #endif | |
77 | + | } |
78 | + | |
79 | ||
91 | – | /** |
92 | – | * Constructor for ForceDecomposition Parallel Decomposition Method |
93 | – | * Will try to construct a symmetric grid of processors. Ideally, the |
94 | – | * number of processors will be a square ex: 4, 9, 16, 25. |
95 | – | * |
96 | – | */ |
80 | ||
81 | < | ForceDecomposition::ForceDecomposition() { |
99 | < | |
81 | > | void ForceDecomposition::distributeData() { |
82 | #ifdef IS_MPI | |
83 | < | int nProcs = MPI::COMM_WORLD.Get_size(); |
84 | < | int worldRank = MPI::COMM_WORLD.Get_rank(); |
85 | < | #endif |
86 | < | |
87 | < | // First time through, construct column stride. |
88 | < | if (communicators.size() == 0) |
89 | < | { |
90 | < | int nColumnsMax = (int) round(sqrt((float) nProcs)); |
91 | < | for (int i = 0; i < nProcs; ++i) |
92 | < | { |
93 | < | if (nProcs%i==0) nColumns=i; |
83 | > | Snapshot* snap = sman_->getCurrentSnapshot(); |
84 | > | |
85 | > | // gather up the atomic positions |
86 | > | AtomCommVectorI->gather(snap->atomData.position, |
87 | > | snap->atomIData.position); |
88 | > | AtomCommVectorJ->gather(snap->atomData.position, |
89 | > | snap->atomJData.position); |
90 | > | |
91 | > | // gather up the cutoff group positions |
92 | > | cgCommVectorI->gather(snap->cgData.position, |
93 | > | snap->cgIData.position); |
94 | > | cgCommVectorJ->gather(snap->cgData.position, |
95 | > | snap->cgJData.position); |
96 | > | |
97 | > | // if needed, gather the atomic rotation matrices |
98 | > | if (snap->atomData.getStorageLayout() & DataStorage::dslAmat) { |
99 | > | AtomCommMatrixI->gather(snap->atomData.aMat, |
100 | > | snap->atomIData.aMat); |
101 | > | AtomCommMatrixJ->gather(snap->atomData.aMat, |
102 | > | snap->atomJData.aMat); |
103 | } | |
104 | + | |
105 | + | // if needed, gather the atomic eletrostatic frames |
106 | + | if (snap->atomData.getStorageLayout() & DataStorage::dslElectroFrame) { |
107 | + | AtomCommMatrixI->gather(snap->atomData.electroFrame, |
108 | + | snap->atomIData.electroFrame); |
109 | + | AtomCommMatrixJ->gather(snap->atomData.electroFrame, |
110 | + | snap->atomJData.electroFrame); |
111 | + | } |
112 | + | #endif |
113 | + | } |
114 | + | |
115 | + | void ForceDecomposition::collectIntermediateData() { |
116 | + | #ifdef IS_MPI |
117 | + | Snapshot* snap = sman_->getCurrentSnapshot(); |
118 | + | |
119 | + | if (snap->atomData.getStorageLayout() & DataStorage::dslDensity) { |
120 | ||
121 | < | int nRows = nProcs/nColumns; |
122 | < | myRank_ = (int) worldRank%nColumns; |
121 | > | AtomCommRealI->scatter(snap->atomIData.density, |
122 | > | snap->atomData.density); |
123 | > | |
124 | > | int n = snap->atomData.density.size(); |
125 | > | std::vector<RealType> rho_tmp(n, 0.0); |
126 | > | AtomCommRealJ->scatter(snap->atomJData.density, rho_tmp); |
127 | > | for (int i = 0; i < n; i++) |
128 | > | snap->atomData.density[i] += rho_tmp[i]; |
129 | > | } |
130 | > | #endif |
131 | } | |
132 | < | else |
133 | < | { |
134 | < | myRank_ = myRank/nColumns; |
132 | > | |
133 | > | void ForceDecomposition::distributeIntermediateData() { |
134 | > | #ifdef IS_MPI |
135 | > | Snapshot* snap = sman_->getCurrentSnapshot(); |
136 | > | if (snap->atomData.getStorageLayout() & DataStorage::dslFunctional) { |
137 | > | AtomCommRealI->gather(snap->atomData.functional, |
138 | > | snap->atomIData.functional); |
139 | > | AtomCommRealJ->gather(snap->atomData.functional, |
140 | > | snap->atomJData.functional); |
141 | > | } |
142 | > | |
143 | > | if (snap->atomData.getStorageLayout() & DataStorage::dslFunctionalDerivative) { |
144 | > | AtomCommRealI->gather(snap->atomData.functionalDerivative, |
145 | > | snap->atomIData.functionalDerivative); |
146 | > | AtomCommRealJ->gather(snap->atomData.functionalDerivative, |
147 | > | snap->atomJData.functionalDerivative); |
148 | > | } |
149 | > | #endif |
150 | } | |
121 | – | MPI::Comm newComm = MPI:COMM_WORLD.Split(myRank_,0); |
151 | ||
123 | – | isColumn_ = false; |
152 | ||
153 | < | } |
153 | > | void ForceDecomposition::collectData() { |
154 | > | #ifdef IS_MPI |
155 | > | Snapshot* snap = sman_->getCurrentSnapshot(); |
156 | > | |
157 | > | int n = snap->atomData.force.size(); |
158 | > | std::vector<Vector3d> frc_tmp(n, 0.0); |
159 | > | |
160 | > | AtomCommVectorI->scatter(snap->atomIData.force, frc_tmp); |
161 | > | for (int i = 0; i < n; i++) { |
162 | > | snap->atomData.force[i] += frc_tmp[i]; |
163 | > | frc_tmp[i] = 0.0; |
164 | > | } |
165 | > | |
166 | > | AtomCommVectorJ->scatter(snap->atomJData.force, frc_tmp); |
167 | > | for (int i = 0; i < n; i++) |
168 | > | snap->atomData.force[i] += frc_tmp[i]; |
169 | > | |
170 | > | |
171 | > | if (snap->atomData.getStorageLayout() & DataStorage::dslTorque) { |
172 | ||
173 | < | ForceDecomposition::gather(sendbuf, receivebuf){ |
174 | < | communicators(myIndex_).Allgatherv(); |
129 | < | } |
173 | > | int nt = snap->atomData.force.size(); |
174 | > | std::vector<Vector3d> trq_tmp(nt, 0.0); |
175 | ||
176 | + | AtomCommVectorI->scatter(snap->atomIData.torque, trq_tmp); |
177 | + | for (int i = 0; i < n; i++) { |
178 | + | snap->atomData.torque[i] += trq_tmp[i]; |
179 | + | trq_tmp[i] = 0.0; |
180 | + | } |
181 | + | |
182 | + | AtomCommVectorJ->scatter(snap->atomJData.torque, trq_tmp); |
183 | + | for (int i = 0; i < n; i++) |
184 | + | snap->atomData.torque[i] += trq_tmp[i]; |
185 | + | } |
186 | + | |
187 | + | |
188 | + | vector<vector<RealType> > pot_temp(LR_POT_TYPES, |
189 | + | vector<RealType> (nAtoms, 0.0)); |
190 | + | |
191 | + | for (int i = 0; i < LR_POT_TYPES; i++) { |
192 | + | AtomCommRealI->scatter(pot_row[i], pot_temp[i]); |
193 | + | for (int ii = 0; ii < pot_temp[i].size(); ii++ ) { |
194 | + | pot_local[i] += pot_temp[i][ii]; |
195 | + | } |
196 | + | } |
197 | + | |
198 | ||
199 | ||
200 | < | ForceDecomposition::scatter(sbuffer, rbuffer){ |
201 | < | communicators(myIndex_).Reduce_scatter(sbuffer, recevbuf. recvcounts, MPI::DOUBLE, MPI::SUM); |
202 | < | } |
203 | < | |
137 | < | |
200 | > | #endif |
201 | > | } |
202 | > | |
203 | > | } //end namespace OpenMD |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |