# | Line 1 | Line 1 | |
---|---|---|
1 | < | /** |
2 | < | * @file ForceDecomposition.cpp |
3 | < | * @author Charles Vardeman <cvardema.at.nd.edu> |
4 | < | * @date 08/18/2010 |
5 | < | * @time 11:56am |
6 | < | * @version 1.0 |
1 | > | /* |
2 | > | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 | * | |
8 | – | * @section LICENSE |
9 | – | * Copyright (c) 2010 The University of Notre Dame. All Rights Reserved. |
10 | – | * |
4 | * The University of Notre Dame grants you ("Licensee") a | |
5 | * non-exclusive, royalty free, license to use, modify and | |
6 | * redistribute this software in source and binary code form, provided | |
# | Line 45 | Line 38 | |
38 | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | |
39 | * [4] Vardeman & Gezelter, in progress (2009). | |
40 | */ | |
41 | + | #include "parallel/ForceMatrixDecomposition.hpp" |
42 | + | #include "math/SquareMatrix3.hpp" |
43 | + | #include "nonbonded/NonBondedInteraction.hpp" |
44 | + | #include "brains/SnapshotManager.hpp" |
45 | ||
46 | + | using namespace std; |
47 | + | namespace OpenMD { |
48 | ||
49 | + | /** |
50 | + | * distributeInitialData is essentially a copy of the older fortran |
51 | + | * SimulationSetup |
52 | + | */ |
53 | + | |
54 | + | void ForceMatrixDecomposition::distributeInitialData() { |
55 | + | snap_ = sman_->getCurrentSnapshot(); |
56 | + | storageLayout_ = sman_->getStorageLayout(); |
57 | + | nLocal_ = snap_->getNumberOfAtoms(); |
58 | + | nGroups_ = snap_->getNumberOfCutoffGroups(); |
59 | ||
51 | – | /* -*- c++ -*- */ |
52 | – | #include "config.h" |
53 | – | #include <stdlib.h> |
60 | #ifdef IS_MPI | |
61 | < | #include <mpi.h> |
62 | < | #endif |
61 | > | |
62 | > | AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
63 | > | AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
64 | > | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
65 | > | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
66 | ||
67 | < | #include <iostream> |
68 | < | #include <vector> |
69 | < | #include <algorithm> |
70 | < | #include <cmath> |
62 | < | #include "parallel/ForceDecomposition.hpp" |
67 | > | AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
68 | > | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
69 | > | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
70 | > | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
71 | ||
72 | + | cgCommIntRow = new Communicator<Row,int>(nGroups_); |
73 | + | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
74 | + | cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
75 | + | cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
76 | ||
77 | < | using namespace std; |
78 | < | using namespace OpenMD; |
77 | > | nAtomsInRow_ = AtomCommIntRow->getSize(); |
78 | > | nAtomsInCol_ = AtomCommIntColumn->getSize(); |
79 | > | nGroupsInRow_ = cgCommIntRow->getSize(); |
80 | > | nGroupsInCol_ = cgCommIntColumn->getSize(); |
81 | ||
82 | < | //__static |
83 | < | #ifdef IS_MPI |
84 | < | static vector<MPI:Comm> communictors; |
85 | < | #endif |
82 | > | // Modify the data storage objects with the correct layouts and sizes: |
83 | > | atomRowData.resize(nAtomsInRow_); |
84 | > | atomRowData.setStorageLayout(storageLayout_); |
85 | > | atomColData.resize(nAtomsInCol_); |
86 | > | atomColData.setStorageLayout(storageLayout_); |
87 | > | cgRowData.resize(nGroupsInRow_); |
88 | > | cgRowData.setStorageLayout(DataStorage::dslPosition); |
89 | > | cgColData.resize(nGroupsInCol_); |
90 | > | cgColData.setStorageLayout(DataStorage::dslPosition); |
91 | > | |
92 | > | vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES, |
93 | > | vector<RealType> (nAtomsInRow_, 0.0)); |
94 | > | vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES, |
95 | > | vector<RealType> (nAtomsInCol_, 0.0)); |
96 | ||
73 | – | //____ MPITypeTraits |
74 | – | template<typename T> |
75 | – | struct MPITypeTraits; |
97 | ||
98 | < | #ifdef IS_MPI |
99 | < | template<> |
100 | < | struct MPITypeTraits<RealType> { |
101 | < | static const MPI::Datatype datatype; |
102 | < | }; |
103 | < | const MPI_Datatype MPITypeTraits<RealType>::datatype = MY_MPI_REAL; |
98 | > | vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0); |
99 | > | |
100 | > | // gather the information for atomtype IDs (atids): |
101 | > | vector<int> identsLocal = info_->getIdentArray(); |
102 | > | identsRow.reserve(nAtomsInRow_); |
103 | > | identsCol.reserve(nAtomsInCol_); |
104 | > | |
105 | > | AtomCommIntRow->gather(identsLocal, identsRow); |
106 | > | AtomCommIntColumn->gather(identsLocal, identsCol); |
107 | > | |
108 | > | AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
109 | > | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
110 | > | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
111 | > | |
112 | > | cgLocalToGlobal = info_->getGlobalGroupIndices(); |
113 | > | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
114 | > | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
115 | ||
116 | < | template<> |
117 | < | struct MPITypeTraits<int> { |
118 | < | static const MPI::Datatype datatype; |
87 | < | }; |
88 | < | const MPI::Datatype MPITypeTraits<int>::datatype = MPI_INT; |
116 | > | // still need: |
117 | > | // topoDist |
118 | > | // exclude |
119 | #endif | |
120 | + | } |
121 | + | |
122 | ||
91 | – | /** |
92 | – | * Constructor for ForceDecomposition Parallel Decomposition Method |
93 | – | * Will try to construct a symmetric grid of processors. Ideally, the |
94 | – | * number of processors will be a square ex: 4, 9, 16, 25. |
95 | – | * |
96 | – | */ |
123 | ||
124 | < | ForceDecomposition::ForceDecomposition() { |
125 | < | |
124 | > | void ForceMatrixDecomposition::distributeData() { |
125 | > | snap_ = sman_->getCurrentSnapshot(); |
126 | > | storageLayout_ = sman_->getStorageLayout(); |
127 | #ifdef IS_MPI | |
128 | < | int nProcs = MPI::COMM_WORLD.Get_size(); |
129 | < | int worldRank = MPI::COMM_WORLD.Get_rank(); |
128 | > | |
129 | > | // gather up the atomic positions |
130 | > | AtomCommVectorRow->gather(snap_->atomData.position, |
131 | > | atomRowData.position); |
132 | > | AtomCommVectorColumn->gather(snap_->atomData.position, |
133 | > | atomColData.position); |
134 | > | |
135 | > | // gather up the cutoff group positions |
136 | > | cgCommVectorRow->gather(snap_->cgData.position, |
137 | > | cgRowData.position); |
138 | > | cgCommVectorColumn->gather(snap_->cgData.position, |
139 | > | cgColData.position); |
140 | > | |
141 | > | // if needed, gather the atomic rotation matrices |
142 | > | if (storageLayout_ & DataStorage::dslAmat) { |
143 | > | AtomCommMatrixRow->gather(snap_->atomData.aMat, |
144 | > | atomRowData.aMat); |
145 | > | AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
146 | > | atomColData.aMat); |
147 | > | } |
148 | > | |
149 | > | // if needed, gather the atomic eletrostatic frames |
150 | > | if (storageLayout_ & DataStorage::dslElectroFrame) { |
151 | > | AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
152 | > | atomRowData.electroFrame); |
153 | > | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
154 | > | atomColData.electroFrame); |
155 | > | } |
156 | > | #endif |
157 | > | } |
158 | > | |
159 | > | void ForceMatrixDecomposition::collectIntermediateData() { |
160 | > | snap_ = sman_->getCurrentSnapshot(); |
161 | > | storageLayout_ = sman_->getStorageLayout(); |
162 | > | #ifdef IS_MPI |
163 | > | |
164 | > | if (storageLayout_ & DataStorage::dslDensity) { |
165 | > | |
166 | > | AtomCommRealRow->scatter(atomRowData.density, |
167 | > | snap_->atomData.density); |
168 | > | |
169 | > | int n = snap_->atomData.density.size(); |
170 | > | std::vector<RealType> rho_tmp(n, 0.0); |
171 | > | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
172 | > | for (int i = 0; i < n; i++) |
173 | > | snap_->atomData.density[i] += rho_tmp[i]; |
174 | > | } |
175 | #endif | |
176 | + | } |
177 | + | |
178 | + | void ForceMatrixDecomposition::distributeIntermediateData() { |
179 | + | snap_ = sman_->getCurrentSnapshot(); |
180 | + | storageLayout_ = sman_->getStorageLayout(); |
181 | + | #ifdef IS_MPI |
182 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
183 | + | AtomCommRealRow->gather(snap_->atomData.functional, |
184 | + | atomRowData.functional); |
185 | + | AtomCommRealColumn->gather(snap_->atomData.functional, |
186 | + | atomColData.functional); |
187 | + | } |
188 | + | |
189 | + | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
190 | + | AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
191 | + | atomRowData.functionalDerivative); |
192 | + | AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
193 | + | atomColData.functionalDerivative); |
194 | + | } |
195 | + | #endif |
196 | + | } |
197 | + | |
198 | + | |
199 | + | void ForceMatrixDecomposition::collectData() { |
200 | + | snap_ = sman_->getCurrentSnapshot(); |
201 | + | storageLayout_ = sman_->getStorageLayout(); |
202 | + | #ifdef IS_MPI |
203 | + | int n = snap_->atomData.force.size(); |
204 | + | vector<Vector3d> frc_tmp(n, V3Zero); |
205 | + | |
206 | + | AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
207 | + | for (int i = 0; i < n; i++) { |
208 | + | snap_->atomData.force[i] += frc_tmp[i]; |
209 | + | frc_tmp[i] = 0.0; |
210 | + | } |
211 | + | |
212 | + | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
213 | + | for (int i = 0; i < n; i++) |
214 | + | snap_->atomData.force[i] += frc_tmp[i]; |
215 | + | |
216 | + | |
217 | + | if (storageLayout_ & DataStorage::dslTorque) { |
218 | ||
219 | < | // First time through, construct column stride. |
220 | < | if (communicators.size() == 0) |
221 | < | { |
222 | < | int nColumnsMax = (int) round(sqrt((float) nProcs)); |
223 | < | for (int i = 0; i < nProcs; ++i) |
224 | < | { |
225 | < | if (nProcs%i==0) nColumns=i; |
219 | > | int nt = snap_->atomData.force.size(); |
220 | > | vector<Vector3d> trq_tmp(nt, V3Zero); |
221 | > | |
222 | > | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
223 | > | for (int i = 0; i < n; i++) { |
224 | > | snap_->atomData.torque[i] += trq_tmp[i]; |
225 | > | trq_tmp[i] = 0.0; |
226 | > | } |
227 | > | |
228 | > | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
229 | > | for (int i = 0; i < n; i++) |
230 | > | snap_->atomData.torque[i] += trq_tmp[i]; |
231 | } | |
232 | + | |
233 | + | nLocal_ = snap_->getNumberOfAtoms(); |
234 | ||
235 | < | int nRows = nProcs/nColumns; |
236 | < | myRank_ = (int) worldRank%nColumns; |
235 | > | vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES, |
236 | > | vector<RealType> (nLocal_, 0.0)); |
237 | > | |
238 | > | for (int i = 0; i < N_INTERACTION_FAMILIES; i++) { |
239 | > | AtomCommRealRow->scatter(pot_row[i], pot_temp[i]); |
240 | > | for (int ii = 0; ii < pot_temp[i].size(); ii++ ) { |
241 | > | pot_local[i] += pot_temp[i][ii]; |
242 | > | } |
243 | > | } |
244 | > | #endif |
245 | } | |
246 | < | else |
118 | < | { |
119 | < | myRank_ = myRank/nColumns; |
120 | < | } |
121 | < | MPI::Comm newComm = MPI:COMM_WORLD.Split(myRank_,0); |
246 | > | |
247 | ||
248 | < | isColumn_ = false; |
249 | < | |
250 | < | } |
248 | > | Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ |
249 | > | Vector3d d; |
250 | > | |
251 | > | #ifdef IS_MPI |
252 | > | d = cgColData.position[cg2] - cgRowData.position[cg1]; |
253 | > | #else |
254 | > | d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; |
255 | > | #endif |
256 | > | |
257 | > | snap_->wrapVector(d); |
258 | > | return d; |
259 | > | } |
260 | ||
127 | – | ForceDecomposition::gather(sendbuf, receivebuf){ |
128 | – | communicators(myIndex_).Allgatherv(); |
129 | – | } |
261 | ||
262 | + | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ |
263 | ||
264 | + | Vector3d d; |
265 | + | |
266 | + | #ifdef IS_MPI |
267 | + | d = cgRowData.position[cg1] - atomRowData.position[atom1]; |
268 | + | #else |
269 | + | d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; |
270 | + | #endif |
271 | ||
272 | < | ForceDecomposition::scatter(sbuffer, rbuffer){ |
273 | < | communicators(myIndex_).Reduce_scatter(sbuffer, recevbuf. recvcounts, MPI::DOUBLE, MPI::SUM); |
274 | < | } |
272 | > | snap_->wrapVector(d); |
273 | > | return d; |
274 | > | } |
275 | > | |
276 | > | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){ |
277 | > | Vector3d d; |
278 | > | |
279 | > | #ifdef IS_MPI |
280 | > | d = cgColData.position[cg2] - atomColData.position[atom2]; |
281 | > | #else |
282 | > | d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; |
283 | > | #endif |
284 | > | |
285 | > | snap_->wrapVector(d); |
286 | > | return d; |
287 | > | } |
288 | > | |
289 | > | Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ |
290 | > | Vector3d d; |
291 | > | |
292 | > | #ifdef IS_MPI |
293 | > | d = atomColData.position[atom2] - atomRowData.position[atom1]; |
294 | > | #else |
295 | > | d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; |
296 | > | #endif |
297 | ||
298 | + | snap_->wrapVector(d); |
299 | + | return d; |
300 | + | } |
301 | ||
302 | + | void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ |
303 | + | #ifdef IS_MPI |
304 | + | atomRowData.force[atom1] += fg; |
305 | + | #else |
306 | + | snap_->atomData.force[atom1] += fg; |
307 | + | #endif |
308 | + | } |
309 | + | |
310 | + | void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){ |
311 | + | #ifdef IS_MPI |
312 | + | atomColData.force[atom2] += fg; |
313 | + | #else |
314 | + | snap_->atomData.force[atom2] += fg; |
315 | + | #endif |
316 | + | } |
317 | + | |
318 | + | // filling interaction blocks with pointers |
319 | + | InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) { |
320 | + | InteractionData idat; |
321 | + | |
322 | + | #ifdef IS_MPI |
323 | + | if (storageLayout_ & DataStorage::dslAmat) { |
324 | + | idat.A1 = &(atomRowData.aMat[atom1]); |
325 | + | idat.A2 = &(atomColData.aMat[atom2]); |
326 | + | } |
327 | + | |
328 | + | if (storageLayout_ & DataStorage::dslElectroFrame) { |
329 | + | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
330 | + | idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
331 | + | } |
332 | + | |
333 | + | if (storageLayout_ & DataStorage::dslTorque) { |
334 | + | idat.t1 = &(atomRowData.torque[atom1]); |
335 | + | idat.t2 = &(atomColData.torque[atom2]); |
336 | + | } |
337 | + | |
338 | + | if (storageLayout_ & DataStorage::dslDensity) { |
339 | + | idat.rho1 = &(atomRowData.density[atom1]); |
340 | + | idat.rho2 = &(atomColData.density[atom2]); |
341 | + | } |
342 | + | |
343 | + | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
344 | + | idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); |
345 | + | idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); |
346 | + | } |
347 | + | #else |
348 | + | if (storageLayout_ & DataStorage::dslAmat) { |
349 | + | idat.A1 = &(snap_->atomData.aMat[atom1]); |
350 | + | idat.A2 = &(snap_->atomData.aMat[atom2]); |
351 | + | } |
352 | + | |
353 | + | if (storageLayout_ & DataStorage::dslElectroFrame) { |
354 | + | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
355 | + | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
356 | + | } |
357 | + | |
358 | + | if (storageLayout_ & DataStorage::dslTorque) { |
359 | + | idat.t1 = &(snap_->atomData.torque[atom1]); |
360 | + | idat.t2 = &(snap_->atomData.torque[atom2]); |
361 | + | } |
362 | + | |
363 | + | if (storageLayout_ & DataStorage::dslDensity) { |
364 | + | idat.rho1 = &(snap_->atomData.density[atom1]); |
365 | + | idat.rho2 = &(snap_->atomData.density[atom2]); |
366 | + | } |
367 | + | |
368 | + | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
369 | + | idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); |
370 | + | idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); |
371 | + | } |
372 | + | #endif |
373 | + | return idat; |
374 | + | } |
375 | + | |
376 | + | InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ |
377 | + | |
378 | + | InteractionData idat; |
379 | + | #ifdef IS_MPI |
380 | + | if (storageLayout_ & DataStorage::dslElectroFrame) { |
381 | + | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
382 | + | idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
383 | + | } |
384 | + | if (storageLayout_ & DataStorage::dslTorque) { |
385 | + | idat.t1 = &(atomRowData.torque[atom1]); |
386 | + | idat.t2 = &(atomColData.torque[atom2]); |
387 | + | } |
388 | + | if (storageLayout_ & DataStorage::dslForce) { |
389 | + | idat.t1 = &(atomRowData.force[atom1]); |
390 | + | idat.t2 = &(atomColData.force[atom2]); |
391 | + | } |
392 | + | #else |
393 | + | if (storageLayout_ & DataStorage::dslElectroFrame) { |
394 | + | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
395 | + | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
396 | + | } |
397 | + | if (storageLayout_ & DataStorage::dslTorque) { |
398 | + | idat.t1 = &(snap_->atomData.torque[atom1]); |
399 | + | idat.t2 = &(snap_->atomData.torque[atom2]); |
400 | + | } |
401 | + | if (storageLayout_ & DataStorage::dslForce) { |
402 | + | idat.t1 = &(snap_->atomData.force[atom1]); |
403 | + | idat.t2 = &(snap_->atomData.force[atom2]); |
404 | + | } |
405 | + | #endif |
406 | + | |
407 | + | } |
408 | + | |
409 | + | SelfData ForceMatrixDecomposition::fillSelfData(int atom1) { |
410 | + | SelfData sdat; |
411 | + | // Still Missing atype, skippedCharge, potVec pot, |
412 | + | if (storageLayout_ & DataStorage::dslElectroFrame) { |
413 | + | sdat.eFrame = &(snap_->atomData.electroFrame[atom1]); |
414 | + | } |
415 | + | |
416 | + | if (storageLayout_ & DataStorage::dslTorque) { |
417 | + | sdat.t = &(snap_->atomData.torque[atom1]); |
418 | + | } |
419 | + | |
420 | + | if (storageLayout_ & DataStorage::dslDensity) { |
421 | + | sdat.rho = &(snap_->atomData.density[atom1]); |
422 | + | } |
423 | + | |
424 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
425 | + | sdat.frho = &(snap_->atomData.functional[atom1]); |
426 | + | } |
427 | + | |
428 | + | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
429 | + | sdat.dfrhodrho = &(snap_->atomData.functionalDerivative[atom1]); |
430 | + | } |
431 | + | |
432 | + | return sdat; |
433 | + | } |
434 | + | |
435 | + | |
436 | + | |
437 | + | /* |
438 | + | * buildNeighborList |
439 | + | * |
440 | + | * first element of pair is row-indexed CutoffGroup |
441 | + | * second element of pair is column-indexed CutoffGroup |
442 | + | */ |
443 | + | vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { |
444 | + | |
445 | + | vector<pair<int, int> > neighborList; |
446 | + | #ifdef IS_MPI |
447 | + | CellListRow.clear(); |
448 | + | CellListCol.clear(); |
449 | + | #else |
450 | + | CellList.clear(); |
451 | + | #endif |
452 | + | |
453 | + | // dangerous to not do error checking. |
454 | + | RealType skinThickness_ = info_->getSimParams()->getSkinThickness(); |
455 | + | RealType rCut_; |
456 | + | |
457 | + | RealType rList_ = (rCut_ + skinThickness_); |
458 | + | RealType rl2 = rList_ * rList_; |
459 | + | Snapshot* snap_ = sman_->getCurrentSnapshot(); |
460 | + | Mat3x3d Hmat = snap_->getHmat(); |
461 | + | Vector3d Hx = Hmat.getColumn(0); |
462 | + | Vector3d Hy = Hmat.getColumn(1); |
463 | + | Vector3d Hz = Hmat.getColumn(2); |
464 | + | Vector3i nCells; |
465 | + | |
466 | + | nCells.x() = (int) ( Hx.length() )/ rList_; |
467 | + | nCells.y() = (int) ( Hy.length() )/ rList_; |
468 | + | nCells.z() = (int) ( Hz.length() )/ rList_; |
469 | + | |
470 | + | Mat3x3d invHmat = snap_->getInvHmat(); |
471 | + | Vector3d rs, scaled, dr; |
472 | + | Vector3i whichCell; |
473 | + | int cellIndex; |
474 | + | |
475 | + | #ifdef IS_MPI |
476 | + | for (int i = 0; i < nGroupsInRow_; i++) { |
477 | + | rs = cgRowData.position[i]; |
478 | + | // scaled positions relative to the box vectors |
479 | + | scaled = invHmat * rs; |
480 | + | // wrap the vector back into the unit box by subtracting integer box |
481 | + | // numbers |
482 | + | for (int j = 0; j < 3; j++) |
483 | + | scaled[j] -= roundMe(scaled[j]); |
484 | + | |
485 | + | // find xyz-indices of cell that cutoffGroup is in. |
486 | + | whichCell.x() = nCells.x() * scaled.x(); |
487 | + | whichCell.y() = nCells.y() * scaled.y(); |
488 | + | whichCell.z() = nCells.z() * scaled.z(); |
489 | + | |
490 | + | // find single index of this cell: |
491 | + | cellIndex = Vlinear(whichCell, nCells); |
492 | + | // add this cutoff group to the list of groups in this cell; |
493 | + | CellListRow[cellIndex].push_back(i); |
494 | + | } |
495 | + | |
496 | + | for (int i = 0; i < nGroupsInCol_; i++) { |
497 | + | rs = cgColData.position[i]; |
498 | + | // scaled positions relative to the box vectors |
499 | + | scaled = invHmat * rs; |
500 | + | // wrap the vector back into the unit box by subtracting integer box |
501 | + | // numbers |
502 | + | for (int j = 0; j < 3; j++) |
503 | + | scaled[j] -= roundMe(scaled[j]); |
504 | + | |
505 | + | // find xyz-indices of cell that cutoffGroup is in. |
506 | + | whichCell.x() = nCells.x() * scaled.x(); |
507 | + | whichCell.y() = nCells.y() * scaled.y(); |
508 | + | whichCell.z() = nCells.z() * scaled.z(); |
509 | + | |
510 | + | // find single index of this cell: |
511 | + | cellIndex = Vlinear(whichCell, nCells); |
512 | + | // add this cutoff group to the list of groups in this cell; |
513 | + | CellListCol[cellIndex].push_back(i); |
514 | + | } |
515 | + | #else |
516 | + | for (int i = 0; i < nGroups_; i++) { |
517 | + | rs = snap_->cgData.position[i]; |
518 | + | // scaled positions relative to the box vectors |
519 | + | scaled = invHmat * rs; |
520 | + | // wrap the vector back into the unit box by subtracting integer box |
521 | + | // numbers |
522 | + | for (int j = 0; j < 3; j++) |
523 | + | scaled[j] -= roundMe(scaled[j]); |
524 | + | |
525 | + | // find xyz-indices of cell that cutoffGroup is in. |
526 | + | whichCell.x() = nCells.x() * scaled.x(); |
527 | + | whichCell.y() = nCells.y() * scaled.y(); |
528 | + | whichCell.z() = nCells.z() * scaled.z(); |
529 | + | |
530 | + | // find single index of this cell: |
531 | + | cellIndex = Vlinear(whichCell, nCells); |
532 | + | // add this cutoff group to the list of groups in this cell; |
533 | + | CellList[cellIndex].push_back(i); |
534 | + | } |
535 | + | #endif |
536 | + | |
537 | + | |
538 | + | |
539 | + | for (int m1z = 0; m1z < nCells.z(); m1z++) { |
540 | + | for (int m1y = 0; m1y < nCells.y(); m1y++) { |
541 | + | for (int m1x = 0; m1x < nCells.x(); m1x++) { |
542 | + | Vector3i m1v(m1x, m1y, m1z); |
543 | + | int m1 = Vlinear(m1v, nCells); |
544 | + | for (int offset = 0; offset < nOffset_; offset++) { |
545 | + | Vector3i m2v = m1v + cellOffsets_[offset]; |
546 | + | |
547 | + | if (m2v.x() >= nCells.x()) { |
548 | + | m2v.x() = 0; |
549 | + | } else if (m2v.x() < 0) { |
550 | + | m2v.x() = nCells.x() - 1; |
551 | + | } |
552 | + | |
553 | + | if (m2v.y() >= nCells.y()) { |
554 | + | m2v.y() = 0; |
555 | + | } else if (m2v.y() < 0) { |
556 | + | m2v.y() = nCells.y() - 1; |
557 | + | } |
558 | + | |
559 | + | if (m2v.z() >= nCells.z()) { |
560 | + | m2v.z() = 0; |
561 | + | } else if (m2v.z() < 0) { |
562 | + | m2v.z() = nCells.z() - 1; |
563 | + | } |
564 | + | |
565 | + | int m2 = Vlinear (m2v, nCells); |
566 | + | |
567 | + | #ifdef IS_MPI |
568 | + | for (vector<int>::iterator j1 = CellListRow[m1].begin(); |
569 | + | j1 != CellListRow[m1].end(); ++j1) { |
570 | + | for (vector<int>::iterator j2 = CellListCol[m2].begin(); |
571 | + | j2 != CellListCol[m2].end(); ++j2) { |
572 | + | |
573 | + | // Always do this if we're in different cells or if |
574 | + | // we're in the same cell and the global index of the |
575 | + | // j2 cutoff group is less than the j1 cutoff group |
576 | + | |
577 | + | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
578 | + | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
579 | + | snap_->wrapVector(dr); |
580 | + | if (dr.lengthSquare() < rl2) { |
581 | + | neighborList.push_back(make_pair((*j1), (*j2))); |
582 | + | } |
583 | + | } |
584 | + | } |
585 | + | } |
586 | + | #else |
587 | + | for (vector<int>::iterator j1 = CellList[m1].begin(); |
588 | + | j1 != CellList[m1].end(); ++j1) { |
589 | + | for (vector<int>::iterator j2 = CellList[m2].begin(); |
590 | + | j2 != CellList[m2].end(); ++j2) { |
591 | + | |
592 | + | // Always do this if we're in different cells or if |
593 | + | // we're in the same cell and the global index of the |
594 | + | // j2 cutoff group is less than the j1 cutoff group |
595 | + | |
596 | + | if (m2 != m1 || (*j2) < (*j1)) { |
597 | + | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
598 | + | snap_->wrapVector(dr); |
599 | + | if (dr.lengthSquare() < rl2) { |
600 | + | neighborList.push_back(make_pair((*j1), (*j2))); |
601 | + | } |
602 | + | } |
603 | + | } |
604 | + | } |
605 | + | #endif |
606 | + | } |
607 | + | } |
608 | + | } |
609 | + | } |
610 | + | return neighborList; |
611 | + | } |
612 | + | } //end namespace OpenMD |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |