# | Line 36 | Line 36 | |
---|---|---|
36 | * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | |
37 | * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | |
38 | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | |
39 | < | * [4] Vardeman & Gezelter, in progress (2009). |
39 | > | * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 | > | * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 | */ | |
42 | #include "parallel/ForceMatrixDecomposition.hpp" | |
43 | #include "math/SquareMatrix3.hpp" | |
# | Line 53 | Line 54 | namespace OpenMD { | |
54 | // surrounding cells (not just the 14 upper triangular blocks that | |
55 | // are used when the processor can see all pairs) | |
56 | #ifdef IS_MPI | |
57 | < | cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
57 | < | cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
58 | < | cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
59 | < | cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
60 | < | cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
61 | < | cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
57 | > | cellOffsets_.clear(); |
58 | cellOffsets_.push_back( Vector3i(-1,-1,-1) ); | |
59 | cellOffsets_.push_back( Vector3i( 0,-1,-1) ); | |
60 | < | cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
60 | > | cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
61 | > | cellOffsets_.push_back( Vector3i(-1, 0,-1) ); |
62 | > | cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
63 | cellOffsets_.push_back( Vector3i( 1, 0,-1) ); | |
66 | – | cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
67 | – | cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
64 | cellOffsets_.push_back( Vector3i(-1, 1,-1) ); | |
65 | + | cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
66 | + | cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
67 | + | cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
68 | + | cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
69 | + | cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
70 | + | cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
71 | + | cellOffsets_.push_back( Vector3i( 0, 0, 0) ); |
72 | + | cellOffsets_.push_back( Vector3i( 1, 0, 0) ); |
73 | + | cellOffsets_.push_back( Vector3i(-1, 1, 0) ); |
74 | + | cellOffsets_.push_back( Vector3i( 0, 1, 0) ); |
75 | + | cellOffsets_.push_back( Vector3i( 1, 1, 0) ); |
76 | + | cellOffsets_.push_back( Vector3i(-1,-1, 1) ); |
77 | + | cellOffsets_.push_back( Vector3i( 0,-1, 1) ); |
78 | + | cellOffsets_.push_back( Vector3i( 1,-1, 1) ); |
79 | + | cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
80 | + | cellOffsets_.push_back( Vector3i( 0, 0, 1) ); |
81 | + | cellOffsets_.push_back( Vector3i( 1, 0, 1) ); |
82 | + | cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
83 | + | cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
84 | + | cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
85 | #endif | |
86 | } | |
87 | ||
# | Line 153 | Line 169 | namespace OpenMD { | |
169 | AtomColToGlobal.resize(nAtomsInCol_); | |
170 | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | |
171 | AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); | |
156 | – | |
157 | – | cerr << "Atoms in Local:\n"; |
158 | – | for (int i = 0; i < AtomLocalToGlobal.size(); i++) { |
159 | – | cerr << "i =\t" << i << "\t localAt =\t" << AtomLocalToGlobal[i] << "\n"; |
160 | – | } |
161 | – | cerr << "Atoms in Row:\n"; |
162 | – | for (int i = 0; i < AtomRowToGlobal.size(); i++) { |
163 | – | cerr << "i =\t" << i << "\t rowAt =\t" << AtomRowToGlobal[i] << "\n"; |
164 | – | } |
165 | – | cerr << "Atoms in Col:\n"; |
166 | – | for (int i = 0; i < AtomColToGlobal.size(); i++) { |
167 | – | cerr << "i =\t" << i << "\t colAt =\t" << AtomColToGlobal[i] << "\n"; |
168 | – | } |
172 | ||
173 | cgRowToGlobal.resize(nGroupsInRow_); | |
174 | cgColToGlobal.resize(nGroupsInCol_); | |
175 | cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); | |
176 | cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); | |
177 | ||
175 | – | cerr << "Gruops in Local:\n"; |
176 | – | for (int i = 0; i < cgLocalToGlobal.size(); i++) { |
177 | – | cerr << "i =\t" << i << "\t localCG =\t" << cgLocalToGlobal[i] << "\n"; |
178 | – | } |
179 | – | cerr << "Groups in Row:\n"; |
180 | – | for (int i = 0; i < cgRowToGlobal.size(); i++) { |
181 | – | cerr << "i =\t" << i << "\t rowCG =\t" << cgRowToGlobal[i] << "\n"; |
182 | – | } |
183 | – | cerr << "Groups in Col:\n"; |
184 | – | for (int i = 0; i < cgColToGlobal.size(); i++) { |
185 | – | cerr << "i =\t" << i << "\t colCG =\t" << cgColToGlobal[i] << "\n"; |
186 | – | } |
187 | – | |
188 | – | |
178 | massFactorsRow.resize(nAtomsInRow_); | |
179 | massFactorsCol.resize(nAtomsInCol_); | |
180 | AtomPlanRealRow->gather(massFactors, massFactorsRow); | |
# | Line 245 | Line 234 | namespace OpenMD { | |
234 | } | |
235 | } | |
236 | ||
237 | < | #endif |
249 | < | |
250 | < | // allocate memory for the parallel objects |
251 | < | atypesLocal.resize(nLocal_); |
252 | < | |
253 | < | for (int i = 0; i < nLocal_; i++) |
254 | < | atypesLocal[i] = ff_->getAtomType(idents[i]); |
255 | < | |
256 | < | groupList_.clear(); |
257 | < | groupList_.resize(nGroups_); |
258 | < | for (int i = 0; i < nGroups_; i++) { |
259 | < | int gid = cgLocalToGlobal[i]; |
260 | < | for (int j = 0; j < nLocal_; j++) { |
261 | < | int aid = AtomLocalToGlobal[j]; |
262 | < | if (globalGroupMembership[aid] == gid) { |
263 | < | groupList_[i].push_back(j); |
264 | < | } |
265 | < | } |
266 | < | } |
267 | < | |
237 | > | #else |
238 | excludesForAtom.clear(); | |
239 | excludesForAtom.resize(nLocal_); | |
240 | toposForAtom.clear(); | |
# | Line 297 | Line 267 | namespace OpenMD { | |
267 | } | |
268 | } | |
269 | } | |
270 | < | |
270 | > | #endif |
271 | > | |
272 | > | // allocate memory for the parallel objects |
273 | > | atypesLocal.resize(nLocal_); |
274 | > | |
275 | > | for (int i = 0; i < nLocal_; i++) |
276 | > | atypesLocal[i] = ff_->getAtomType(idents[i]); |
277 | > | |
278 | > | groupList_.clear(); |
279 | > | groupList_.resize(nGroups_); |
280 | > | for (int i = 0; i < nGroups_; i++) { |
281 | > | int gid = cgLocalToGlobal[i]; |
282 | > | for (int j = 0; j < nLocal_; j++) { |
283 | > | int aid = AtomLocalToGlobal[j]; |
284 | > | if (globalGroupMembership[aid] == gid) { |
285 | > | groupList_[i].push_back(j); |
286 | > | } |
287 | > | } |
288 | > | } |
289 | > | |
290 | > | |
291 | createGtypeCutoffMap(); | |
292 | ||
293 | } | |
# | Line 533 | Line 523 | namespace OpenMD { | |
523 | atomRowData.skippedCharge.end(), 0.0); | |
524 | fill(atomColData.skippedCharge.begin(), | |
525 | atomColData.skippedCharge.end(), 0.0); | |
526 | + | } |
527 | + | |
528 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
529 | + | fill(atomRowData.flucQFrc.begin(), |
530 | + | atomRowData.flucQFrc.end(), 0.0); |
531 | + | fill(atomColData.flucQFrc.begin(), |
532 | + | atomColData.flucQFrc.end(), 0.0); |
533 | + | } |
534 | + | |
535 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
536 | + | fill(atomRowData.electricField.begin(), |
537 | + | atomRowData.electricField.end(), V3Zero); |
538 | + | fill(atomColData.electricField.begin(), |
539 | + | atomColData.electricField.end(), V3Zero); |
540 | + | } |
541 | + | |
542 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
543 | + | fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), |
544 | + | 0.0); |
545 | + | fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), |
546 | + | 0.0); |
547 | } | |
548 | ||
549 | #endif | |
# | Line 547 | Line 558 | namespace OpenMD { | |
558 | fill(snap_->atomData.density.begin(), | |
559 | snap_->atomData.density.end(), 0.0); | |
560 | } | |
561 | + | |
562 | if (storageLayout_ & DataStorage::dslFunctional) { | |
563 | fill(snap_->atomData.functional.begin(), | |
564 | snap_->atomData.functional.end(), 0.0); | |
565 | } | |
566 | + | |
567 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
568 | fill(snap_->atomData.functionalDerivative.begin(), | |
569 | snap_->atomData.functionalDerivative.end(), 0.0); | |
570 | } | |
571 | + | |
572 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | |
573 | fill(snap_->atomData.skippedCharge.begin(), | |
574 | snap_->atomData.skippedCharge.end(), 0.0); | |
575 | } | |
576 | < | |
576 | > | |
577 | > | if (storageLayout_ & DataStorage::dslElectricField) { |
578 | > | fill(snap_->atomData.electricField.begin(), |
579 | > | snap_->atomData.electricField.end(), V3Zero); |
580 | > | } |
581 | } | |
582 | ||
583 | ||
# | Line 576 | Line 594 | namespace OpenMD { | |
594 | ||
595 | // gather up the cutoff group positions | |
596 | ||
579 | – | cerr << "before gather\n"; |
580 | – | for (int i = 0; i < snap_->cgData.position.size(); i++) { |
581 | – | cerr << "cgpos = " << snap_->cgData.position[i] << "\n"; |
582 | – | } |
583 | – | |
597 | cgPlanVectorRow->gather(snap_->cgData.position, | |
598 | cgRowData.position); | |
599 | ||
587 | – | cerr << "after gather\n"; |
588 | – | for (int i = 0; i < cgRowData.position.size(); i++) { |
589 | – | cerr << "cgRpos = " << cgRowData.position[i] << "\n"; |
590 | – | } |
591 | – | |
600 | cgPlanVectorColumn->gather(snap_->cgData.position, | |
601 | cgColData.position); | |
594 | – | for (int i = 0; i < cgColData.position.size(); i++) { |
595 | – | cerr << "cgCpos = " << cgColData.position[i] << "\n"; |
596 | – | } |
602 | ||
603 | ||
604 | // if needed, gather the atomic rotation matrices | |
# | Line 612 | Line 617 | namespace OpenMD { | |
617 | atomColData.electroFrame); | |
618 | } | |
619 | ||
620 | + | // if needed, gather the atomic fluctuating charge values |
621 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
622 | + | AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
623 | + | atomRowData.flucQPos); |
624 | + | AtomPlanRealColumn->gather(snap_->atomData.flucQPos, |
625 | + | atomColData.flucQPos); |
626 | + | } |
627 | + | |
628 | #endif | |
629 | } | |
630 | ||
# | Line 634 | Line 647 | namespace OpenMD { | |
647 | for (int i = 0; i < n; i++) | |
648 | snap_->atomData.density[i] += rho_tmp[i]; | |
649 | } | |
650 | + | |
651 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
652 | + | |
653 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, |
654 | + | snap_->atomData.electricField); |
655 | + | |
656 | + | int n = snap_->atomData.electricField.size(); |
657 | + | vector<Vector3d> field_tmp(n, V3Zero); |
658 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); |
659 | + | for (int i = 0; i < n; i++) |
660 | + | snap_->atomData.electricField[i] += field_tmp[i]; |
661 | + | } |
662 | #endif | |
663 | } | |
664 | ||
# | Line 708 | Line 733 | namespace OpenMD { | |
733 | } | |
734 | ||
735 | AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); | |
736 | < | for (int i = 0; i < ns; i++) |
736 | > | for (int i = 0; i < ns; i++) |
737 | snap_->atomData.skippedCharge[i] += skch_tmp[i]; | |
738 | + | |
739 | } | |
740 | ||
741 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
742 | + | |
743 | + | int nq = snap_->atomData.flucQFrc.size(); |
744 | + | vector<RealType> fqfrc_tmp(nq, 0.0); |
745 | + | |
746 | + | AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); |
747 | + | for (int i = 0; i < nq; i++) { |
748 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
749 | + | fqfrc_tmp[i] = 0.0; |
750 | + | } |
751 | + | |
752 | + | AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); |
753 | + | for (int i = 0; i < nq; i++) |
754 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
755 | + | |
756 | + | } |
757 | + | |
758 | nLocal_ = snap_->getNumberOfAtoms(); | |
759 | ||
760 | vector<potVec> pot_temp(nLocal_, | |
# | Line 731 | Line 774 | namespace OpenMD { | |
774 | ||
775 | for (int ii = 0; ii < pot_temp.size(); ii++ ) | |
776 | pairwisePot += pot_temp[ii]; | |
777 | + | |
778 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
779 | + | RealType ploc1 = pairwisePot[ii]; |
780 | + | RealType ploc2 = 0.0; |
781 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
782 | + | pairwisePot[ii] = ploc2; |
783 | + | } |
784 | + | |
785 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
786 | + | RealType ploc1 = embeddingPot[ii]; |
787 | + | RealType ploc2 = 0.0; |
788 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
789 | + | embeddingPot[ii] = ploc2; |
790 | + | } |
791 | + | |
792 | #endif | |
793 | ||
736 | – | cerr << "pairwisePot = " << pairwisePot << "\n"; |
794 | } | |
795 | ||
796 | int ForceMatrixDecomposition::getNAtomsInRow() { | |
# | Line 768 | Line 825 | namespace OpenMD { | |
825 | ||
826 | #ifdef IS_MPI | |
827 | d = cgColData.position[cg2] - cgRowData.position[cg1]; | |
771 | – | cerr << "cg1 = " << cg1 << "\tcg1p = " << cgRowData.position[cg1] << "\n"; |
772 | – | cerr << "cg2 = " << cg2 << "\tcg2p = " << cgColData.position[cg2] << "\n"; |
828 | #else | |
829 | d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; | |
775 | – | cerr << "cg1 = " << cg1 << "\tcg1p = " << snap_->cgData.position[cg1] << "\n"; |
776 | – | cerr << "cg2 = " << cg2 << "\tcg2p = " << snap_->cgData.position[cg2] << "\n"; |
830 | #endif | |
831 | ||
832 | snap_->wrapVector(d); | |
# | Line 848 | Line 901 | namespace OpenMD { | |
901 | */ | |
902 | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { | |
903 | int unique_id_1, unique_id_2; | |
904 | < | |
852 | < | |
853 | < | cerr << "sap with atom1, atom2 =\t" << atom1 << "\t" << atom2 << "\n"; |
904 | > | |
905 | #ifdef IS_MPI | |
906 | // in MPI, we have to look up the unique IDs for each atom | |
907 | unique_id_1 = AtomRowToGlobal[atom1]; | |
908 | unique_id_2 = AtomColToGlobal[atom2]; | |
909 | + | #else |
910 | + | unique_id_1 = AtomLocalToGlobal[atom1]; |
911 | + | unique_id_2 = AtomLocalToGlobal[atom2]; |
912 | + | #endif |
913 | ||
859 | – | cerr << "sap with uid1, uid2 =\t" << unique_id_1 << "\t" << unique_id_2 << "\n"; |
860 | – | // this situation should only arise in MPI simulations |
914 | if (unique_id_1 == unique_id_2) return true; | |
915 | < | |
915 | > | |
916 | > | #ifdef IS_MPI |
917 | // this prevents us from doing the pair on multiple processors | |
918 | if (unique_id_1 < unique_id_2) { | |
919 | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; | |
920 | } else { | |
921 | < | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
921 | > | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
922 | } | |
923 | #endif | |
924 | + | |
925 | return false; | |
926 | } | |
927 | ||
# | Line 880 | Line 935 | namespace OpenMD { | |
935 | * field) must still be handled for these pairs. | |
936 | */ | |
937 | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { | |
938 | < | int unique_id_2; |
939 | < | #ifdef IS_MPI |
940 | < | // in MPI, we have to look up the unique IDs for the row atom. |
886 | < | unique_id_2 = AtomColToGlobal[atom2]; |
887 | < | #else |
888 | < | // in the normal loop, the atom numbers are unique |
889 | < | unique_id_2 = atom2; |
890 | < | #endif |
938 | > | |
939 | > | // excludesForAtom was constructed to use row/column indices in the MPI |
940 | > | // version, and to use local IDs in the non-MPI version: |
941 | ||
942 | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); | |
943 | i != excludesForAtom[atom1].end(); ++i) { | |
944 | < | if ( (*i) == unique_id_2 ) return true; |
944 | > | if ( (*i) == atom2 ) return true; |
945 | } | |
946 | ||
947 | return false; | |
# | Line 965 | Line 1015 | namespace OpenMD { | |
1015 | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); | |
1016 | } | |
1017 | ||
1018 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1019 | + | idat.flucQ1 = &(atomRowData.flucQPos[atom1]); |
1020 | + | idat.flucQ2 = &(atomColData.flucQPos[atom2]); |
1021 | + | } |
1022 | + | |
1023 | #else | |
1024 | + | |
1025 | ||
1026 | + | // cerr << "atoms = " << atom1 << " " << atom2 << "\n"; |
1027 | + | // cerr << "pos1 = " << snap_->atomData.position[atom1] << "\n"; |
1028 | + | // cerr << "pos2 = " << snap_->atomData.position[atom2] << "\n"; |
1029 | + | |
1030 | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); | |
1031 | //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), | |
1032 | // ff_->getAtomType(idents[atom2]) ); | |
# | Line 1009 | Line 1069 | namespace OpenMD { | |
1069 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | |
1070 | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); | |
1071 | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); | |
1072 | + | } |
1073 | + | |
1074 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1075 | + | idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); |
1076 | + | idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); |
1077 | } | |
1078 | + | |
1079 | #endif | |
1080 | } | |
1081 | ||
1082 | ||
1083 | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { | |
1084 | #ifdef IS_MPI | |
1085 | < | pot_row[atom1] += 0.5 * *(idat.pot); |
1086 | < | pot_col[atom2] += 0.5 * *(idat.pot); |
1085 | > | pot_row[atom1] += RealType(0.5) * *(idat.pot); |
1086 | > | pot_col[atom2] += RealType(0.5) * *(idat.pot); |
1087 | ||
1088 | atomRowData.force[atom1] += *(idat.f1); | |
1089 | atomColData.force[atom2] -= *(idat.f1); | |
1090 | + | |
1091 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
1092 | + | atomRowData.flucQFrc[atom1] += *(idat.dVdFQ1); |
1093 | + | atomColData.flucQFrc[atom2] += *(idat.dVdFQ2); |
1094 | + | } |
1095 | + | |
1096 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
1097 | + | atomRowData.electricField[atom1] += *(idat.eField1); |
1098 | + | atomColData.electricField[atom2] += *(idat.eField2); |
1099 | + | } |
1100 | + | |
1101 | + | // should particle pot be done here also? |
1102 | #else | |
1103 | pairwisePot += *(idat.pot); | |
1104 | ||
1105 | snap_->atomData.force[atom1] += *(idat.f1); | |
1106 | snap_->atomData.force[atom2] -= *(idat.f1); | |
1107 | + | |
1108 | + | if (idat.doParticlePot) { |
1109 | + | snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); |
1110 | + | snap_->atomData.particlePot[atom2] -= *(idat.vpair) * *(idat.sw); |
1111 | + | } |
1112 | + | |
1113 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
1114 | + | snap_->atomData.flucQFrc[atom1] += *(idat.dVdFQ1); |
1115 | + | snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1116 | + | } |
1117 | + | |
1118 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
1119 | + | snap_->atomData.electricField[atom1] += *(idat.eField1); |
1120 | + | snap_->atomData.electricField[atom2] += *(idat.eField2); |
1121 | + | } |
1122 | + | |
1123 | #endif | |
1124 | ||
1125 | } | |
# | Line 1131 | Line 1225 | namespace OpenMD { | |
1225 | // add this cutoff group to the list of groups in this cell; | |
1226 | cellListCol_[cellIndex].push_back(i); | |
1227 | } | |
1228 | + | |
1229 | #else | |
1230 | for (int i = 0; i < nGroups_; i++) { | |
1231 | rs = snap_->cgData.position[i]; | |
# | Line 1156 | Line 1251 | namespace OpenMD { | |
1251 | // add this cutoff group to the list of groups in this cell; | |
1252 | cellList_[cellIndex].push_back(i); | |
1253 | } | |
1254 | + | |
1255 | #endif | |
1256 | ||
1257 | for (int m1z = 0; m1z < nCells_.z(); m1z++) { | |
# | Line 1168 | Line 1264 | namespace OpenMD { | |
1264 | os != cellOffsets_.end(); ++os) { | |
1265 | ||
1266 | Vector3i m2v = m1v + (*os); | |
1267 | < | |
1267 | > | |
1268 | > | |
1269 | if (m2v.x() >= nCells_.x()) { | |
1270 | m2v.x() = 0; | |
1271 | } else if (m2v.x() < 0) { | |
# | Line 1186 | Line 1283 | namespace OpenMD { | |
1283 | } else if (m2v.z() < 0) { | |
1284 | m2v.z() = nCells_.z() - 1; | |
1285 | } | |
1286 | < | |
1286 | > | |
1287 | int m2 = Vlinear (m2v, nCells_); | |
1288 | ||
1289 | #ifdef IS_MPI | |
# | Line 1195 | Line 1292 | namespace OpenMD { | |
1292 | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); | |
1293 | j2 != cellListCol_[m2].end(); ++j2) { | |
1294 | ||
1295 | < | // In parallel, we need to visit *all* pairs of row & |
1296 | < | // column indicies and will truncate later on. |
1295 | > | // In parallel, we need to visit *all* pairs of row |
1296 | > | // & column indicies and will divide labor in the |
1297 | > | // force evaluation later. |
1298 | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | |
1299 | snap_->wrapVector(dr); | |
1300 | cuts = getGroupCutoffs( (*j1), (*j2) ); | |
# | Line 1206 | Line 1304 | namespace OpenMD { | |
1304 | } | |
1305 | } | |
1306 | #else | |
1209 | – | |
1307 | for (vector<int>::iterator j1 = cellList_[m1].begin(); | |
1308 | j1 != cellList_[m1].end(); ++j1) { | |
1309 | for (vector<int>::iterator j2 = cellList_[m2].begin(); | |
1310 | j2 != cellList_[m2].end(); ++j2) { | |
1311 | < | |
1311 | > | |
1312 | // Always do this if we're in different cells or if | |
1313 | < | // we're in the same cell and the global index of the |
1314 | < | // j2 cutoff group is less than the j1 cutoff group |
1315 | < | |
1316 | < | if (m2 != m1 || (*j2) < (*j1)) { |
1313 | > | // we're in the same cell and the global index of |
1314 | > | // the j2 cutoff group is greater than or equal to |
1315 | > | // the j1 cutoff group. Note that Rappaport's code |
1316 | > | // has a "less than" conditional here, but that |
1317 | > | // deals with atom-by-atom computation. OpenMD |
1318 | > | // allows atoms within a single cutoff group to |
1319 | > | // interact with each other. |
1320 | > | |
1321 | > | |
1322 | > | |
1323 | > | if (m2 != m1 || (*j2) >= (*j1) ) { |
1324 | > | |
1325 | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | |
1326 | snap_->wrapVector(dr); | |
1327 | cuts = getGroupCutoffs( (*j1), (*j2) ); | |
# | Line 1235 | Line 1340 | namespace OpenMD { | |
1340 | // branch to do all cutoff group pairs | |
1341 | #ifdef IS_MPI | |
1342 | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { | |
1343 | < | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1343 | > | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1344 | dr = cgColData.position[j2] - cgRowData.position[j1]; | |
1345 | snap_->wrapVector(dr); | |
1346 | cuts = getGroupCutoffs( j1, j2 ); | |
# | Line 1243 | Line 1348 | namespace OpenMD { | |
1348 | neighborList.push_back(make_pair(j1, j2)); | |
1349 | } | |
1350 | } | |
1351 | < | } |
1351 | > | } |
1352 | #else | |
1353 | < | for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1354 | < | for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1353 | > | // include all groups here. |
1354 | > | for (int j1 = 0; j1 < nGroups_; j1++) { |
1355 | > | // include self group interactions j2 == j1 |
1356 | > | for (int j2 = j1; j2 < nGroups_; j2++) { |
1357 | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; | |
1358 | snap_->wrapVector(dr); | |
1359 | cuts = getGroupCutoffs( j1, j2 ); | |
1360 | if (dr.lengthSquare() < cuts.third) { | |
1361 | neighborList.push_back(make_pair(j1, j2)); | |
1362 | } | |
1363 | < | } |
1364 | < | } |
1363 | > | } |
1364 | > | } |
1365 | #endif | |
1366 | } | |
1367 |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |