| 36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
| 39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
| 39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
| 40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
| 41 |
|
*/ |
| 42 |
|
#include "parallel/ForceMatrixDecomposition.hpp" |
| 43 |
|
#include "math/SquareMatrix3.hpp" |
| 48 |
|
using namespace std; |
| 49 |
|
namespace OpenMD { |
| 50 |
|
|
| 51 |
+ |
ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { |
| 52 |
+ |
|
| 53 |
+ |
// In a parallel computation, row and colum scans must visit all |
| 54 |
+ |
// surrounding cells (not just the 14 upper triangular blocks that |
| 55 |
+ |
// are used when the processor can see all pairs) |
| 56 |
+ |
#ifdef IS_MPI |
| 57 |
+ |
cellOffsets_.clear(); |
| 58 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
| 59 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
| 60 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
| 61 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0,-1) ); |
| 62 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
| 63 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
| 64 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
| 65 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
| 66 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
| 67 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
| 68 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
| 69 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
| 70 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
| 71 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0, 0) ); |
| 72 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0, 0) ); |
| 73 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1, 0) ); |
| 74 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1, 0) ); |
| 75 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1, 0) ); |
| 76 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1, 1) ); |
| 77 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1, 1) ); |
| 78 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1, 1) ); |
| 79 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
| 80 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0, 1) ); |
| 81 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0, 1) ); |
| 82 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
| 83 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
| 84 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
| 85 |
+ |
#endif |
| 86 |
+ |
} |
| 87 |
+ |
|
| 88 |
+ |
|
| 89 |
|
/** |
| 90 |
|
* distributeInitialData is essentially a copy of the older fortran |
| 91 |
|
* SimulationSetup |
| 92 |
|
*/ |
| 54 |
– |
|
| 93 |
|
void ForceMatrixDecomposition::distributeInitialData() { |
| 94 |
|
snap_ = sman_->getCurrentSnapshot(); |
| 95 |
|
storageLayout_ = sman_->getStorageLayout(); |
| 112 |
|
|
| 113 |
|
#ifdef IS_MPI |
| 114 |
|
|
| 115 |
< |
AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
| 116 |
< |
AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
| 79 |
< |
AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
| 80 |
< |
AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
| 81 |
< |
AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
| 115 |
> |
MPI::Intracomm row = rowComm.getComm(); |
| 116 |
> |
MPI::Intracomm col = colComm.getComm(); |
| 117 |
|
|
| 118 |
< |
AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
| 119 |
< |
AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
| 120 |
< |
AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
| 121 |
< |
AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
| 122 |
< |
AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
| 118 |
> |
AtomPlanIntRow = new Plan<int>(row, nLocal_); |
| 119 |
> |
AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
| 120 |
> |
AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); |
| 121 |
> |
AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); |
| 122 |
> |
AtomPlanPotRow = new Plan<potVec>(row, nLocal_); |
| 123 |
|
|
| 124 |
< |
cgCommIntRow = new Communicator<Row,int>(nGroups_); |
| 125 |
< |
cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
| 126 |
< |
cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
| 127 |
< |
cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
| 124 |
> |
AtomPlanIntColumn = new Plan<int>(col, nLocal_); |
| 125 |
> |
AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); |
| 126 |
> |
AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); |
| 127 |
> |
AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); |
| 128 |
> |
AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); |
| 129 |
|
|
| 130 |
< |
nAtomsInRow_ = AtomCommIntRow->getSize(); |
| 131 |
< |
nAtomsInCol_ = AtomCommIntColumn->getSize(); |
| 132 |
< |
nGroupsInRow_ = cgCommIntRow->getSize(); |
| 133 |
< |
nGroupsInCol_ = cgCommIntColumn->getSize(); |
| 130 |
> |
cgPlanIntRow = new Plan<int>(row, nGroups_); |
| 131 |
> |
cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); |
| 132 |
> |
cgPlanIntColumn = new Plan<int>(col, nGroups_); |
| 133 |
> |
cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); |
| 134 |
|
|
| 135 |
+ |
nAtomsInRow_ = AtomPlanIntRow->getSize(); |
| 136 |
+ |
nAtomsInCol_ = AtomPlanIntColumn->getSize(); |
| 137 |
+ |
nGroupsInRow_ = cgPlanIntRow->getSize(); |
| 138 |
+ |
nGroupsInCol_ = cgPlanIntColumn->getSize(); |
| 139 |
+ |
|
| 140 |
|
// Modify the data storage objects with the correct layouts and sizes: |
| 141 |
|
atomRowData.resize(nAtomsInRow_); |
| 142 |
|
atomRowData.setStorageLayout(storageLayout_); |
| 150 |
|
identsRow.resize(nAtomsInRow_); |
| 151 |
|
identsCol.resize(nAtomsInCol_); |
| 152 |
|
|
| 153 |
< |
AtomCommIntRow->gather(idents, identsRow); |
| 154 |
< |
AtomCommIntColumn->gather(idents, identsCol); |
| 153 |
> |
AtomPlanIntRow->gather(idents, identsRow); |
| 154 |
> |
AtomPlanIntColumn->gather(idents, identsCol); |
| 155 |
|
|
| 156 |
|
// allocate memory for the parallel objects |
| 157 |
|
atypesRow.resize(nAtomsInRow_); |
| 167 |
|
|
| 168 |
|
AtomRowToGlobal.resize(nAtomsInRow_); |
| 169 |
|
AtomColToGlobal.resize(nAtomsInCol_); |
| 170 |
< |
AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
| 171 |
< |
AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
| 172 |
< |
|
| 170 |
> |
AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
| 171 |
> |
AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
| 172 |
> |
|
| 173 |
|
cgRowToGlobal.resize(nGroupsInRow_); |
| 174 |
|
cgColToGlobal.resize(nGroupsInCol_); |
| 175 |
< |
cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
| 176 |
< |
cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
| 175 |
> |
cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
| 176 |
> |
cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
| 177 |
|
|
| 178 |
|
massFactorsRow.resize(nAtomsInRow_); |
| 179 |
|
massFactorsCol.resize(nAtomsInCol_); |
| 180 |
< |
AtomCommRealRow->gather(massFactors, massFactorsRow); |
| 181 |
< |
AtomCommRealColumn->gather(massFactors, massFactorsCol); |
| 180 |
> |
AtomPlanRealRow->gather(massFactors, massFactorsRow); |
| 181 |
> |
AtomPlanRealColumn->gather(massFactors, massFactorsCol); |
| 182 |
|
|
| 183 |
|
groupListRow_.clear(); |
| 184 |
|
groupListRow_.resize(nGroupsInRow_); |
| 234 |
|
} |
| 235 |
|
} |
| 236 |
|
|
| 237 |
< |
#endif |
| 197 |
< |
|
| 198 |
< |
// allocate memory for the parallel objects |
| 199 |
< |
atypesLocal.resize(nLocal_); |
| 200 |
< |
|
| 201 |
< |
for (int i = 0; i < nLocal_; i++) |
| 202 |
< |
atypesLocal[i] = ff_->getAtomType(idents[i]); |
| 203 |
< |
|
| 204 |
< |
groupList_.clear(); |
| 205 |
< |
groupList_.resize(nGroups_); |
| 206 |
< |
for (int i = 0; i < nGroups_; i++) { |
| 207 |
< |
int gid = cgLocalToGlobal[i]; |
| 208 |
< |
for (int j = 0; j < nLocal_; j++) { |
| 209 |
< |
int aid = AtomLocalToGlobal[j]; |
| 210 |
< |
if (globalGroupMembership[aid] == gid) { |
| 211 |
< |
groupList_[i].push_back(j); |
| 212 |
< |
} |
| 213 |
< |
} |
| 214 |
< |
} |
| 215 |
< |
|
| 237 |
> |
#else |
| 238 |
|
excludesForAtom.clear(); |
| 239 |
|
excludesForAtom.resize(nLocal_); |
| 240 |
|
toposForAtom.clear(); |
| 267 |
|
} |
| 268 |
|
} |
| 269 |
|
} |
| 270 |
< |
|
| 270 |
> |
#endif |
| 271 |
> |
|
| 272 |
> |
// allocate memory for the parallel objects |
| 273 |
> |
atypesLocal.resize(nLocal_); |
| 274 |
> |
|
| 275 |
> |
for (int i = 0; i < nLocal_; i++) |
| 276 |
> |
atypesLocal[i] = ff_->getAtomType(idents[i]); |
| 277 |
> |
|
| 278 |
> |
groupList_.clear(); |
| 279 |
> |
groupList_.resize(nGroups_); |
| 280 |
> |
for (int i = 0; i < nGroups_; i++) { |
| 281 |
> |
int gid = cgLocalToGlobal[i]; |
| 282 |
> |
for (int j = 0; j < nLocal_; j++) { |
| 283 |
> |
int aid = AtomLocalToGlobal[j]; |
| 284 |
> |
if (globalGroupMembership[aid] == gid) { |
| 285 |
> |
groupList_[i].push_back(j); |
| 286 |
> |
} |
| 287 |
> |
} |
| 288 |
> |
} |
| 289 |
> |
|
| 290 |
> |
|
| 291 |
|
createGtypeCutoffMap(); |
| 292 |
|
|
| 293 |
|
} |
| 559 |
|
#ifdef IS_MPI |
| 560 |
|
|
| 561 |
|
// gather up the atomic positions |
| 562 |
< |
AtomCommVectorRow->gather(snap_->atomData.position, |
| 562 |
> |
AtomPlanVectorRow->gather(snap_->atomData.position, |
| 563 |
|
atomRowData.position); |
| 564 |
< |
AtomCommVectorColumn->gather(snap_->atomData.position, |
| 564 |
> |
AtomPlanVectorColumn->gather(snap_->atomData.position, |
| 565 |
|
atomColData.position); |
| 566 |
|
|
| 567 |
|
// gather up the cutoff group positions |
| 568 |
< |
cgCommVectorRow->gather(snap_->cgData.position, |
| 568 |
> |
|
| 569 |
> |
cgPlanVectorRow->gather(snap_->cgData.position, |
| 570 |
|
cgRowData.position); |
| 571 |
< |
cgCommVectorColumn->gather(snap_->cgData.position, |
| 571 |
> |
|
| 572 |
> |
cgPlanVectorColumn->gather(snap_->cgData.position, |
| 573 |
|
cgColData.position); |
| 574 |
+ |
|
| 575 |
|
|
| 576 |
|
// if needed, gather the atomic rotation matrices |
| 577 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
| 578 |
< |
AtomCommMatrixRow->gather(snap_->atomData.aMat, |
| 578 |
> |
AtomPlanMatrixRow->gather(snap_->atomData.aMat, |
| 579 |
|
atomRowData.aMat); |
| 580 |
< |
AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
| 580 |
> |
AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
| 581 |
|
atomColData.aMat); |
| 582 |
|
} |
| 583 |
|
|
| 584 |
|
// if needed, gather the atomic eletrostatic frames |
| 585 |
|
if (storageLayout_ & DataStorage::dslElectroFrame) { |
| 586 |
< |
AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
| 586 |
> |
AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
| 587 |
|
atomRowData.electroFrame); |
| 588 |
< |
AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
| 588 |
> |
AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
| 589 |
|
atomColData.electroFrame); |
| 590 |
|
} |
| 591 |
|
|
| 602 |
|
|
| 603 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
| 604 |
|
|
| 605 |
< |
AtomCommRealRow->scatter(atomRowData.density, |
| 605 |
> |
AtomPlanRealRow->scatter(atomRowData.density, |
| 606 |
|
snap_->atomData.density); |
| 607 |
|
|
| 608 |
|
int n = snap_->atomData.density.size(); |
| 609 |
|
vector<RealType> rho_tmp(n, 0.0); |
| 610 |
< |
AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
| 610 |
> |
AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); |
| 611 |
|
for (int i = 0; i < n; i++) |
| 612 |
|
snap_->atomData.density[i] += rho_tmp[i]; |
| 613 |
|
} |
| 623 |
|
storageLayout_ = sman_->getStorageLayout(); |
| 624 |
|
#ifdef IS_MPI |
| 625 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
| 626 |
< |
AtomCommRealRow->gather(snap_->atomData.functional, |
| 626 |
> |
AtomPlanRealRow->gather(snap_->atomData.functional, |
| 627 |
|
atomRowData.functional); |
| 628 |
< |
AtomCommRealColumn->gather(snap_->atomData.functional, |
| 628 |
> |
AtomPlanRealColumn->gather(snap_->atomData.functional, |
| 629 |
|
atomColData.functional); |
| 630 |
|
} |
| 631 |
|
|
| 632 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
| 633 |
< |
AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
| 633 |
> |
AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, |
| 634 |
|
atomRowData.functionalDerivative); |
| 635 |
< |
AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
| 635 |
> |
AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, |
| 636 |
|
atomColData.functionalDerivative); |
| 637 |
|
} |
| 638 |
|
#endif |
| 646 |
|
int n = snap_->atomData.force.size(); |
| 647 |
|
vector<Vector3d> frc_tmp(n, V3Zero); |
| 648 |
|
|
| 649 |
< |
AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
| 649 |
> |
AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); |
| 650 |
|
for (int i = 0; i < n; i++) { |
| 651 |
|
snap_->atomData.force[i] += frc_tmp[i]; |
| 652 |
|
frc_tmp[i] = 0.0; |
| 653 |
|
} |
| 654 |
|
|
| 655 |
< |
AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
| 656 |
< |
for (int i = 0; i < n; i++) |
| 655 |
> |
AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); |
| 656 |
> |
for (int i = 0; i < n; i++) { |
| 657 |
|
snap_->atomData.force[i] += frc_tmp[i]; |
| 658 |
+ |
} |
| 659 |
|
|
| 660 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
| 661 |
|
|
| 662 |
|
int nt = snap_->atomData.torque.size(); |
| 663 |
|
vector<Vector3d> trq_tmp(nt, V3Zero); |
| 664 |
|
|
| 665 |
< |
AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
| 665 |
> |
AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); |
| 666 |
|
for (int i = 0; i < nt; i++) { |
| 667 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
| 668 |
|
trq_tmp[i] = 0.0; |
| 669 |
|
} |
| 670 |
|
|
| 671 |
< |
AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
| 671 |
> |
AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); |
| 672 |
|
for (int i = 0; i < nt; i++) |
| 673 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
| 674 |
|
} |
| 678 |
|
int ns = snap_->atomData.skippedCharge.size(); |
| 679 |
|
vector<RealType> skch_tmp(ns, 0.0); |
| 680 |
|
|
| 681 |
< |
AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
| 681 |
> |
AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
| 682 |
|
for (int i = 0; i < ns; i++) { |
| 683 |
|
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
| 684 |
|
skch_tmp[i] = 0.0; |
| 685 |
|
} |
| 686 |
|
|
| 687 |
< |
AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
| 688 |
< |
for (int i = 0; i < ns; i++) |
| 687 |
> |
AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
| 688 |
> |
for (int i = 0; i < ns; i++) |
| 689 |
|
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
| 690 |
+ |
|
| 691 |
|
} |
| 692 |
|
|
| 693 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
| 697 |
|
|
| 698 |
|
// scatter/gather pot_row into the members of my column |
| 699 |
|
|
| 700 |
< |
AtomCommPotRow->scatter(pot_row, pot_temp); |
| 700 |
> |
AtomPlanPotRow->scatter(pot_row, pot_temp); |
| 701 |
|
|
| 702 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
| 703 |
|
pairwisePot += pot_temp[ii]; |
| 705 |
|
fill(pot_temp.begin(), pot_temp.end(), |
| 706 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
| 707 |
|
|
| 708 |
< |
AtomCommPotColumn->scatter(pot_col, pot_temp); |
| 708 |
> |
AtomPlanPotColumn->scatter(pot_col, pot_temp); |
| 709 |
|
|
| 710 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
| 711 |
|
pairwisePot += pot_temp[ii]; |
| 712 |
+ |
|
| 713 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
| 714 |
+ |
RealType ploc1 = pairwisePot[ii]; |
| 715 |
+ |
RealType ploc2 = 0.0; |
| 716 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
| 717 |
+ |
pairwisePot[ii] = ploc2; |
| 718 |
+ |
} |
| 719 |
+ |
|
| 720 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
| 721 |
+ |
RealType ploc1 = embeddingPot[ii]; |
| 722 |
+ |
RealType ploc2 = 0.0; |
| 723 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
| 724 |
+ |
embeddingPot[ii] = ploc2; |
| 725 |
+ |
} |
| 726 |
+ |
|
| 727 |
|
#endif |
| 728 |
|
|
| 729 |
|
} |
| 836 |
|
*/ |
| 837 |
|
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
| 838 |
|
int unique_id_1, unique_id_2; |
| 839 |
< |
|
| 839 |
> |
|
| 840 |
|
#ifdef IS_MPI |
| 841 |
|
// in MPI, we have to look up the unique IDs for each atom |
| 842 |
|
unique_id_1 = AtomRowToGlobal[atom1]; |
| 843 |
|
unique_id_2 = AtomColToGlobal[atom2]; |
| 844 |
+ |
#else |
| 845 |
+ |
unique_id_1 = AtomLocalToGlobal[atom1]; |
| 846 |
+ |
unique_id_2 = AtomLocalToGlobal[atom2]; |
| 847 |
+ |
#endif |
| 848 |
|
|
| 783 |
– |
// this situation should only arise in MPI simulations |
| 849 |
|
if (unique_id_1 == unique_id_2) return true; |
| 850 |
< |
|
| 850 |
> |
|
| 851 |
> |
#ifdef IS_MPI |
| 852 |
|
// this prevents us from doing the pair on multiple processors |
| 853 |
|
if (unique_id_1 < unique_id_2) { |
| 854 |
|
if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
| 855 |
|
} else { |
| 856 |
< |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
| 856 |
> |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
| 857 |
|
} |
| 858 |
|
#endif |
| 859 |
+ |
|
| 860 |
|
return false; |
| 861 |
|
} |
| 862 |
|
|
| 870 |
|
* field) must still be handled for these pairs. |
| 871 |
|
*/ |
| 872 |
|
bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
| 873 |
< |
int unique_id_2; |
| 873 |
> |
|
| 874 |
> |
// excludesForAtom was constructed to use row/column indices in the MPI |
| 875 |
> |
// version, and to use local IDs in the non-MPI version: |
| 876 |
|
|
| 808 |
– |
#ifdef IS_MPI |
| 809 |
– |
// in MPI, we have to look up the unique IDs for the row atom. |
| 810 |
– |
unique_id_2 = AtomColToGlobal[atom2]; |
| 811 |
– |
#else |
| 812 |
– |
// in the normal loop, the atom numbers are unique |
| 813 |
– |
unique_id_2 = atom2; |
| 814 |
– |
#endif |
| 815 |
– |
|
| 877 |
|
for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
| 878 |
|
i != excludesForAtom[atom1].end(); ++i) { |
| 879 |
< |
if ( (*i) == unique_id_2 ) return true; |
| 879 |
> |
if ( (*i) == atom2 ) return true; |
| 880 |
|
} |
| 881 |
|
|
| 882 |
|
return false; |
| 1001 |
|
|
| 1002 |
|
void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
| 1003 |
|
#ifdef IS_MPI |
| 1004 |
< |
pot_row[atom1] += 0.5 * *(idat.pot); |
| 1005 |
< |
pot_col[atom2] += 0.5 * *(idat.pot); |
| 1004 |
> |
pot_row[atom1] += RealType(0.5) * *(idat.pot); |
| 1005 |
> |
pot_col[atom2] += RealType(0.5) * *(idat.pot); |
| 1006 |
|
|
| 1007 |
|
atomRowData.force[atom1] += *(idat.f1); |
| 1008 |
|
atomColData.force[atom2] -= *(idat.f1); |
| 1092 |
|
// add this cutoff group to the list of groups in this cell; |
| 1093 |
|
cellListRow_[cellIndex].push_back(i); |
| 1094 |
|
} |
| 1034 |
– |
|
| 1095 |
|
for (int i = 0; i < nGroupsInCol_; i++) { |
| 1096 |
|
rs = cgColData.position[i]; |
| 1097 |
|
|
| 1116 |
|
// add this cutoff group to the list of groups in this cell; |
| 1117 |
|
cellListCol_[cellIndex].push_back(i); |
| 1118 |
|
} |
| 1119 |
+ |
|
| 1120 |
|
#else |
| 1121 |
|
for (int i = 0; i < nGroups_; i++) { |
| 1122 |
|
rs = snap_->cgData.position[i]; |
| 1137 |
|
whichCell.z() = nCells_.z() * scaled.z(); |
| 1138 |
|
|
| 1139 |
|
// find single index of this cell: |
| 1140 |
< |
cellIndex = Vlinear(whichCell, nCells_); |
| 1140 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
| 1141 |
|
|
| 1142 |
|
// add this cutoff group to the list of groups in this cell; |
| 1143 |
|
cellList_[cellIndex].push_back(i); |
| 1144 |
|
} |
| 1145 |
+ |
|
| 1146 |
|
#endif |
| 1147 |
|
|
| 1148 |
|
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
| 1155 |
|
os != cellOffsets_.end(); ++os) { |
| 1156 |
|
|
| 1157 |
|
Vector3i m2v = m1v + (*os); |
| 1158 |
< |
|
| 1158 |
> |
|
| 1159 |
> |
|
| 1160 |
|
if (m2v.x() >= nCells_.x()) { |
| 1161 |
|
m2v.x() = 0; |
| 1162 |
|
} else if (m2v.x() < 0) { |
| 1174 |
|
} else if (m2v.z() < 0) { |
| 1175 |
|
m2v.z() = nCells_.z() - 1; |
| 1176 |
|
} |
| 1177 |
< |
|
| 1177 |
> |
|
| 1178 |
|
int m2 = Vlinear (m2v, nCells_); |
| 1179 |
|
|
| 1180 |
|
#ifdef IS_MPI |
| 1183 |
|
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
| 1184 |
|
j2 != cellListCol_[m2].end(); ++j2) { |
| 1185 |
|
|
| 1186 |
< |
// Always do this if we're in different cells or if |
| 1187 |
< |
// we're in the same cell and the global index of the |
| 1188 |
< |
// j2 cutoff group is less than the j1 cutoff group |
| 1189 |
< |
|
| 1190 |
< |
if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
| 1191 |
< |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
| 1192 |
< |
snap_->wrapVector(dr); |
| 1193 |
< |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
| 1194 |
< |
if (dr.lengthSquare() < cuts.third) { |
| 1132 |
< |
neighborList.push_back(make_pair((*j1), (*j2))); |
| 1133 |
< |
} |
| 1134 |
< |
} |
| 1186 |
> |
// In parallel, we need to visit *all* pairs of row |
| 1187 |
> |
// & column indicies and will divide labor in the |
| 1188 |
> |
// force evaluation later. |
| 1189 |
> |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
| 1190 |
> |
snap_->wrapVector(dr); |
| 1191 |
> |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
| 1192 |
> |
if (dr.lengthSquare() < cuts.third) { |
| 1193 |
> |
neighborList.push_back(make_pair((*j1), (*j2))); |
| 1194 |
> |
} |
| 1195 |
|
} |
| 1196 |
|
} |
| 1197 |
|
#else |
| 1138 |
– |
|
| 1198 |
|
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
| 1199 |
|
j1 != cellList_[m1].end(); ++j1) { |
| 1200 |
|
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
| 1201 |
|
j2 != cellList_[m2].end(); ++j2) { |
| 1202 |
< |
|
| 1202 |
> |
|
| 1203 |
|
// Always do this if we're in different cells or if |
| 1204 |
< |
// we're in the same cell and the global index of the |
| 1205 |
< |
// j2 cutoff group is less than the j1 cutoff group |
| 1206 |
< |
|
| 1207 |
< |
if (m2 != m1 || (*j2) < (*j1)) { |
| 1204 |
> |
// we're in the same cell and the global index of |
| 1205 |
> |
// the j2 cutoff group is greater than or equal to |
| 1206 |
> |
// the j1 cutoff group. Note that Rappaport's code |
| 1207 |
> |
// has a "less than" conditional here, but that |
| 1208 |
> |
// deals with atom-by-atom computation. OpenMD |
| 1209 |
> |
// allows atoms within a single cutoff group to |
| 1210 |
> |
// interact with each other. |
| 1211 |
> |
|
| 1212 |
> |
|
| 1213 |
> |
|
| 1214 |
> |
if (m2 != m1 || (*j2) >= (*j1) ) { |
| 1215 |
> |
|
| 1216 |
|
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
| 1217 |
|
snap_->wrapVector(dr); |
| 1218 |
|
cuts = getGroupCutoffs( (*j1), (*j2) ); |
| 1231 |
|
// branch to do all cutoff group pairs |
| 1232 |
|
#ifdef IS_MPI |
| 1233 |
|
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
| 1234 |
< |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
| 1234 |
> |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
| 1235 |
|
dr = cgColData.position[j2] - cgRowData.position[j1]; |
| 1236 |
|
snap_->wrapVector(dr); |
| 1237 |
|
cuts = getGroupCutoffs( j1, j2 ); |
| 1239 |
|
neighborList.push_back(make_pair(j1, j2)); |
| 1240 |
|
} |
| 1241 |
|
} |
| 1242 |
< |
} |
| 1242 |
> |
} |
| 1243 |
|
#else |
| 1244 |
< |
for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
| 1245 |
< |
for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
| 1244 |
> |
// include all groups here. |
| 1245 |
> |
for (int j1 = 0; j1 < nGroups_; j1++) { |
| 1246 |
> |
// include self group interactions j2 == j1 |
| 1247 |
> |
for (int j2 = j1; j2 < nGroups_; j2++) { |
| 1248 |
|
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
| 1249 |
|
snap_->wrapVector(dr); |
| 1250 |
|
cuts = getGroupCutoffs( j1, j2 ); |
| 1251 |
|
if (dr.lengthSquare() < cuts.third) { |
| 1252 |
|
neighborList.push_back(make_pair(j1, j2)); |
| 1253 |
|
} |
| 1254 |
< |
} |
| 1255 |
< |
} |
| 1254 |
> |
} |
| 1255 |
> |
} |
| 1256 |
|
#endif |
| 1257 |
|
} |
| 1258 |
|
|