# | Line 38 | Line 38 | |
---|---|---|
38 | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | |
39 | * [4] Vardeman & Gezelter, in progress (2009). | |
40 | */ | |
41 | < | #include "parallel/ForceDecomposition.hpp" |
42 | < | #include "parallel/Communicator.hpp" |
41 | > | #include "parallel/ForceMatrixDecomposition.hpp" |
42 | #include "math/SquareMatrix3.hpp" | |
43 | + | #include "nonbonded/NonBondedInteraction.hpp" |
44 | + | #include "brains/SnapshotManager.hpp" |
45 | + | #include "brains/PairList.hpp" |
46 | ||
47 | + | using namespace std; |
48 | namespace OpenMD { | |
49 | ||
50 | < | void ForceDecomposition::distributeInitialData() { |
50 | > | /** |
51 | > | * distributeInitialData is essentially a copy of the older fortran |
52 | > | * SimulationSetup |
53 | > | */ |
54 | > | |
55 | > | void ForceMatrixDecomposition::distributeInitialData() { |
56 | > | snap_ = sman_->getCurrentSnapshot(); |
57 | > | storageLayout_ = sman_->getStorageLayout(); |
58 | > | nLocal_ = snap_->getNumberOfAtoms(); |
59 | > | nGroups_ = snap_->getNumberOfCutoffGroups(); |
60 | > | |
61 | > | // gather the information for atomtype IDs (atids): |
62 | > | vector<int> identsLocal = info_->getIdentArray(); |
63 | > | AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
64 | > | cgLocalToGlobal = info_->getGlobalGroupIndices(); |
65 | > | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
66 | > | vector<RealType> massFactorsLocal = info_->getMassFactors(); |
67 | > | PairList excludes = info_->getExcludedInteractions(); |
68 | > | PairList oneTwo = info_->getOneTwoInteractions(); |
69 | > | PairList oneThree = info_->getOneThreeInteractions(); |
70 | > | PairList oneFour = info_->getOneFourInteractions(); |
71 | > | vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0); |
72 | > | |
73 | #ifdef IS_MPI | |
74 | + | |
75 | + | AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
76 | + | AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
77 | + | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
78 | + | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
79 | ||
80 | < | int nAtoms; |
81 | < | int nGroups; |
80 | > | AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
81 | > | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
82 | > | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
83 | > | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
84 | ||
85 | < | AtomCommRealI = new Comm<I,RealType>(nAtoms); |
86 | < | AtomCommVectorI = new Comm<I,Vector3d>(nAtoms); |
87 | < | AtomCommMatrixI = new Comm<I,Mat3x3d>(nAtoms); |
85 | > | cgCommIntRow = new Communicator<Row,int>(nGroups_); |
86 | > | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
87 | > | cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
88 | > | cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
89 | ||
90 | < | AtomCommRealJ = new Comm<J,RealType>(nAtoms); |
91 | < | AtomCommVectorJ = new Comm<J,Vector3d>(nAtoms); |
92 | < | AtomCommMatrixJ = new Comm<J,Mat3x3d>(nAtoms); |
90 | > | nAtomsInRow_ = AtomCommIntRow->getSize(); |
91 | > | nAtomsInCol_ = AtomCommIntColumn->getSize(); |
92 | > | nGroupsInRow_ = cgCommIntRow->getSize(); |
93 | > | nGroupsInCol_ = cgCommIntColumn->getSize(); |
94 | ||
95 | < | cgCommVectorI = new Comm<I,Vector3d>(nGroups); |
96 | < | cgCommVectorJ = new Comm<J,Vector3d>(nGroups); |
97 | < | // more to come |
98 | < | #endif |
99 | < | } |
95 | > | // Modify the data storage objects with the correct layouts and sizes: |
96 | > | atomRowData.resize(nAtomsInRow_); |
97 | > | atomRowData.setStorageLayout(storageLayout_); |
98 | > | atomColData.resize(nAtomsInCol_); |
99 | > | atomColData.setStorageLayout(storageLayout_); |
100 | > | cgRowData.resize(nGroupsInRow_); |
101 | > | cgRowData.setStorageLayout(DataStorage::dslPosition); |
102 | > | cgColData.resize(nGroupsInCol_); |
103 | > | cgColData.setStorageLayout(DataStorage::dslPosition); |
104 | ||
105 | + | vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES, |
106 | + | vector<RealType> (nAtomsInRow_, 0.0)); |
107 | + | vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES, |
108 | + | vector<RealType> (nAtomsInCol_, 0.0)); |
109 | + | |
110 | + | identsRow.reserve(nAtomsInRow_); |
111 | + | identsCol.reserve(nAtomsInCol_); |
112 | + | |
113 | + | AtomCommIntRow->gather(identsLocal, identsRow); |
114 | + | AtomCommIntColumn->gather(identsLocal, identsCol); |
115 | + | |
116 | + | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
117 | + | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
118 | + | |
119 | + | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
120 | + | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
121 | ||
122 | + | AtomCommRealRow->gather(massFactorsLocal, massFactorsRow); |
123 | + | AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol); |
124 | ||
125 | < | void ForceDecomposition::distributeData() { |
126 | < | #ifdef IS_MPI |
127 | < | Snapshot* snap = sman_->getCurrentSnapshot(); |
125 | > | groupListRow_.clear(); |
126 | > | groupListRow_.reserve(nGroupsInRow_); |
127 | > | for (int i = 0; i < nGroupsInRow_; i++) { |
128 | > | int gid = cgRowToGlobal[i]; |
129 | > | for (int j = 0; j < nAtomsInRow_; j++) { |
130 | > | int aid = AtomRowToGlobal[j]; |
131 | > | if (globalGroupMembership[aid] == gid) |
132 | > | groupListRow_[i].push_back(j); |
133 | > | } |
134 | > | } |
135 | ||
136 | < | // gather up the atomic positions |
137 | < | AtomCommVectorI->gather(snap->atomData.position, |
138 | < | snap->atomIData.position); |
139 | < | AtomCommVectorJ->gather(snap->atomData.position, |
140 | < | snap->atomJData.position); |
141 | < | |
142 | < | // gather up the cutoff group positions |
143 | < | cgCommVectorI->gather(snap->cgData.position, |
144 | < | snap->cgIData.position); |
82 | < | cgCommVectorJ->gather(snap->cgData.position, |
83 | < | snap->cgJData.position); |
84 | < | |
85 | < | // if needed, gather the atomic rotation matrices |
86 | < | if (snap->atomData.getStorageLayout() & DataStorage::dslAmat) { |
87 | < | AtomCommMatrixI->gather(snap->atomData.aMat, |
88 | < | snap->atomIData.aMat); |
89 | < | AtomCommMatrixJ->gather(snap->atomData.aMat, |
90 | < | snap->atomJData.aMat); |
136 | > | groupListCol_.clear(); |
137 | > | groupListCol_.reserve(nGroupsInCol_); |
138 | > | for (int i = 0; i < nGroupsInCol_; i++) { |
139 | > | int gid = cgColToGlobal[i]; |
140 | > | for (int j = 0; j < nAtomsInCol_; j++) { |
141 | > | int aid = AtomColToGlobal[j]; |
142 | > | if (globalGroupMembership[aid] == gid) |
143 | > | groupListCol_[i].push_back(j); |
144 | > | } |
145 | } | |
146 | < | |
147 | < | // if needed, gather the atomic eletrostatic frames |
148 | < | if (snap->atomData.getStorageLayout() & DataStorage::dslElectroFrame) { |
149 | < | AtomCommMatrixI->gather(snap->atomData.electroFrame, |
150 | < | snap->atomIData.electroFrame); |
151 | < | AtomCommMatrixJ->gather(snap->atomData.electroFrame, |
152 | < | snap->atomJData.electroFrame); |
146 | > | |
147 | > | skipsForRowAtom.clear(); |
148 | > | skipsForRowAtom.reserve(nAtomsInRow_); |
149 | > | for (int i = 0; i < nAtomsInRow_; i++) { |
150 | > | int iglob = AtomColToGlobal[i]; |
151 | > | for (int j = 0; j < nAtomsInCol_; j++) { |
152 | > | int jglob = AtomRowToGlobal[j]; |
153 | > | if (excludes.hasPair(iglob, jglob)) |
154 | > | skipsForRowAtom[i].push_back(j); |
155 | > | } |
156 | } | |
157 | < | #endif |
158 | < | } |
159 | < | |
160 | < | void ForceDecomposition::collectIntermediateData() { |
157 | > | |
158 | > | toposForRowAtom.clear(); |
159 | > | toposForRowAtom.reserve(nAtomsInRow_); |
160 | > | for (int i = 0; i < nAtomsInRow_; i++) { |
161 | > | int iglob = AtomColToGlobal[i]; |
162 | > | int nTopos = 0; |
163 | > | for (int j = 0; j < nAtomsInCol_; j++) { |
164 | > | int jglob = AtomRowToGlobal[j]; |
165 | > | if (oneTwo.hasPair(iglob, jglob)) { |
166 | > | toposForRowAtom[i].push_back(j); |
167 | > | topoDistRow[i][nTopos] = 1; |
168 | > | nTopos++; |
169 | > | } |
170 | > | if (oneThree.hasPair(iglob, jglob)) { |
171 | > | toposForRowAtom[i].push_back(j); |
172 | > | topoDistRow[i][nTopos] = 2; |
173 | > | nTopos++; |
174 | > | } |
175 | > | if (oneFour.hasPair(iglob, jglob)) { |
176 | > | toposForRowAtom[i].push_back(j); |
177 | > | topoDistRow[i][nTopos] = 3; |
178 | > | nTopos++; |
179 | > | } |
180 | > | } |
181 | > | } |
182 | > | |
183 | > | #endif |
184 | > | |
185 | > | groupList_.clear(); |
186 | > | groupList_.reserve(nGroups_); |
187 | > | for (int i = 0; i < nGroups_; i++) { |
188 | > | int gid = cgLocalToGlobal[i]; |
189 | > | for (int j = 0; j < nLocal_; j++) { |
190 | > | int aid = AtomLocalToGlobal[j]; |
191 | > | if (globalGroupMembership[aid] == gid) |
192 | > | groupList_[i].push_back(j); |
193 | > | } |
194 | > | } |
195 | > | |
196 | > | skipsForLocalAtom.clear(); |
197 | > | skipsForLocalAtom.reserve(nLocal_); |
198 | > | |
199 | > | for (int i = 0; i < nLocal_; i++) { |
200 | > | int iglob = AtomLocalToGlobal[i]; |
201 | > | for (int j = 0; j < nLocal_; j++) { |
202 | > | int jglob = AtomLocalToGlobal[j]; |
203 | > | if (excludes.hasPair(iglob, jglob)) |
204 | > | skipsForLocalAtom[i].push_back(j); |
205 | > | } |
206 | > | } |
207 | > | |
208 | > | toposForLocalAtom.clear(); |
209 | > | toposForLocalAtom.reserve(nLocal_); |
210 | > | for (int i = 0; i < nLocal_; i++) { |
211 | > | int iglob = AtomLocalToGlobal[i]; |
212 | > | int nTopos = 0; |
213 | > | for (int j = 0; j < nLocal_; j++) { |
214 | > | int jglob = AtomLocalToGlobal[j]; |
215 | > | if (oneTwo.hasPair(iglob, jglob)) { |
216 | > | toposForLocalAtom[i].push_back(j); |
217 | > | topoDistLocal[i][nTopos] = 1; |
218 | > | nTopos++; |
219 | > | } |
220 | > | if (oneThree.hasPair(iglob, jglob)) { |
221 | > | toposForLocalAtom[i].push_back(j); |
222 | > | topoDistLocal[i][nTopos] = 2; |
223 | > | nTopos++; |
224 | > | } |
225 | > | if (oneFour.hasPair(iglob, jglob)) { |
226 | > | toposForLocalAtom[i].push_back(j); |
227 | > | topoDistLocal[i][nTopos] = 3; |
228 | > | nTopos++; |
229 | > | } |
230 | > | } |
231 | > | } |
232 | > | } |
233 | > | |
234 | > | void ForceMatrixDecomposition::distributeData() { |
235 | > | snap_ = sman_->getCurrentSnapshot(); |
236 | > | storageLayout_ = sman_->getStorageLayout(); |
237 | #ifdef IS_MPI | |
238 | < | Snapshot* snap = sman_->getCurrentSnapshot(); |
238 | > | |
239 | // gather up the atomic positions | |
240 | + | AtomCommVectorRow->gather(snap_->atomData.position, |
241 | + | atomRowData.position); |
242 | + | AtomCommVectorColumn->gather(snap_->atomData.position, |
243 | + | atomColData.position); |
244 | ||
245 | < | if (snap->atomData.getStorageLayout() & DataStorage::dslDensity) { |
246 | < | AtomCommRealI->scatter(snap->atomIData.density, |
247 | < | snap->atomData.density); |
248 | < | std::vector<RealType> rho_tmp; |
249 | < | int n = snap->getNumberOfAtoms(); |
250 | < | rho_tmp.reserve( n ); |
251 | < | AtomCommRealJ->scatter(snap->atomJData.density, rho_tmp); |
245 | > | // gather up the cutoff group positions |
246 | > | cgCommVectorRow->gather(snap_->cgData.position, |
247 | > | cgRowData.position); |
248 | > | cgCommVectorColumn->gather(snap_->cgData.position, |
249 | > | cgColData.position); |
250 | > | |
251 | > | // if needed, gather the atomic rotation matrices |
252 | > | if (storageLayout_ & DataStorage::dslAmat) { |
253 | > | AtomCommMatrixRow->gather(snap_->atomData.aMat, |
254 | > | atomRowData.aMat); |
255 | > | AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
256 | > | atomColData.aMat); |
257 | > | } |
258 | > | |
259 | > | // if needed, gather the atomic eletrostatic frames |
260 | > | if (storageLayout_ & DataStorage::dslElectroFrame) { |
261 | > | AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
262 | > | atomRowData.electroFrame); |
263 | > | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
264 | > | atomColData.electroFrame); |
265 | > | } |
266 | > | #endif |
267 | > | } |
268 | > | |
269 | > | void ForceMatrixDecomposition::collectIntermediateData() { |
270 | > | snap_ = sman_->getCurrentSnapshot(); |
271 | > | storageLayout_ = sman_->getStorageLayout(); |
272 | > | #ifdef IS_MPI |
273 | > | |
274 | > | if (storageLayout_ & DataStorage::dslDensity) { |
275 | > | |
276 | > | AtomCommRealRow->scatter(atomRowData.density, |
277 | > | snap_->atomData.density); |
278 | > | |
279 | > | int n = snap_->atomData.density.size(); |
280 | > | std::vector<RealType> rho_tmp(n, 0.0); |
281 | > | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
282 | for (int i = 0; i < n; i++) | |
283 | < | snap->atomData.density[i] += rho_tmp[i]; |
283 | > | snap_->atomData.density[i] += rho_tmp[i]; |
284 | } | |
285 | #endif | |
286 | } | |
287 | ||
288 | < | void ForceDecomposition::distributeIntermediateData() { |
288 | > | void ForceMatrixDecomposition::distributeIntermediateData() { |
289 | > | snap_ = sman_->getCurrentSnapshot(); |
290 | > | storageLayout_ = sman_->getStorageLayout(); |
291 | #ifdef IS_MPI | |
292 | < | Snapshot* snap = sman_->getCurrentSnapshot(); |
293 | < | if (snap->atomData.getStorageLayout() & DataStorage::dslFunctional) { |
294 | < | AtomCommRealI->gather(snap->atomData.functional, |
295 | < | snap->atomIData.functional); |
296 | < | AtomCommRealJ->gather(snap->atomData.functional, |
128 | < | snap->atomJData.functional); |
292 | > | if (storageLayout_ & DataStorage::dslFunctional) { |
293 | > | AtomCommRealRow->gather(snap_->atomData.functional, |
294 | > | atomRowData.functional); |
295 | > | AtomCommRealColumn->gather(snap_->atomData.functional, |
296 | > | atomColData.functional); |
297 | } | |
298 | ||
299 | < | if (snap->atomData.getStorageLayout() & DataStorage::dslFunctionalDerivative) { |
300 | < | AtomCommRealI->gather(snap->atomData.functionalDerivative, |
301 | < | snap->atomIData.functionalDerivative); |
302 | < | AtomCommRealJ->gather(snap->atomData.functionalDerivative, |
303 | < | snap->atomJData.functionalDerivative); |
299 | > | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
300 | > | AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
301 | > | atomRowData.functionalDerivative); |
302 | > | AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
303 | > | atomColData.functionalDerivative); |
304 | } | |
305 | #endif | |
306 | } | |
307 | ||
308 | ||
309 | < | void ForceDecomposition::collectData() { |
309 | > | void ForceMatrixDecomposition::collectData() { |
310 | > | snap_ = sman_->getCurrentSnapshot(); |
311 | > | storageLayout_ = sman_->getStorageLayout(); |
312 | > | #ifdef IS_MPI |
313 | > | int n = snap_->atomData.force.size(); |
314 | > | vector<Vector3d> frc_tmp(n, V3Zero); |
315 | > | |
316 | > | AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
317 | > | for (int i = 0; i < n; i++) { |
318 | > | snap_->atomData.force[i] += frc_tmp[i]; |
319 | > | frc_tmp[i] = 0.0; |
320 | > | } |
321 | > | |
322 | > | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
323 | > | for (int i = 0; i < n; i++) |
324 | > | snap_->atomData.force[i] += frc_tmp[i]; |
325 | > | |
326 | > | |
327 | > | if (storageLayout_ & DataStorage::dslTorque) { |
328 | > | |
329 | > | int nt = snap_->atomData.force.size(); |
330 | > | vector<Vector3d> trq_tmp(nt, V3Zero); |
331 | > | |
332 | > | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
333 | > | for (int i = 0; i < n; i++) { |
334 | > | snap_->atomData.torque[i] += trq_tmp[i]; |
335 | > | trq_tmp[i] = 0.0; |
336 | > | } |
337 | > | |
338 | > | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
339 | > | for (int i = 0; i < n; i++) |
340 | > | snap_->atomData.torque[i] += trq_tmp[i]; |
341 | > | } |
342 | > | |
343 | > | nLocal_ = snap_->getNumberOfAtoms(); |
344 | > | |
345 | > | vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES, |
346 | > | vector<RealType> (nLocal_, 0.0)); |
347 | > | |
348 | > | for (int i = 0; i < N_INTERACTION_FAMILIES; i++) { |
349 | > | AtomCommRealRow->scatter(pot_row[i], pot_temp[i]); |
350 | > | for (int ii = 0; ii < pot_temp[i].size(); ii++ ) { |
351 | > | pot_local[i] += pot_temp[i][ii]; |
352 | > | } |
353 | > | } |
354 | > | #endif |
355 | > | } |
356 | > | |
357 | > | int ForceMatrixDecomposition::getNAtomsInRow() { |
358 | #ifdef IS_MPI | |
359 | + | return nAtomsInRow_; |
360 | + | #else |
361 | + | return nLocal_; |
362 | #endif | |
363 | } | |
364 | + | |
365 | + | /** |
366 | + | * returns the list of atoms belonging to this group. |
367 | + | */ |
368 | + | vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
369 | + | #ifdef IS_MPI |
370 | + | return groupListRow_[cg1]; |
371 | + | #else |
372 | + | return groupList_[cg1]; |
373 | + | #endif |
374 | + | } |
375 | + | |
376 | + | vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
377 | + | #ifdef IS_MPI |
378 | + | return groupListCol_[cg2]; |
379 | + | #else |
380 | + | return groupList_[cg2]; |
381 | + | #endif |
382 | + | } |
383 | ||
384 | + | Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ |
385 | + | Vector3d d; |
386 | + | |
387 | + | #ifdef IS_MPI |
388 | + | d = cgColData.position[cg2] - cgRowData.position[cg1]; |
389 | + | #else |
390 | + | d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; |
391 | + | #endif |
392 | + | |
393 | + | snap_->wrapVector(d); |
394 | + | return d; |
395 | + | } |
396 | + | |
397 | + | |
398 | + | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ |
399 | + | |
400 | + | Vector3d d; |
401 | + | |
402 | + | #ifdef IS_MPI |
403 | + | d = cgRowData.position[cg1] - atomRowData.position[atom1]; |
404 | + | #else |
405 | + | d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; |
406 | + | #endif |
407 | + | |
408 | + | snap_->wrapVector(d); |
409 | + | return d; |
410 | + | } |
411 | + | |
412 | + | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){ |
413 | + | Vector3d d; |
414 | + | |
415 | + | #ifdef IS_MPI |
416 | + | d = cgColData.position[cg2] - atomColData.position[atom2]; |
417 | + | #else |
418 | + | d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; |
419 | + | #endif |
420 | + | |
421 | + | snap_->wrapVector(d); |
422 | + | return d; |
423 | + | } |
424 | + | |
425 | + | RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
426 | + | #ifdef IS_MPI |
427 | + | return massFactorsRow[atom1]; |
428 | + | #else |
429 | + | return massFactorsLocal[atom1]; |
430 | + | #endif |
431 | + | } |
432 | + | |
433 | + | RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
434 | + | #ifdef IS_MPI |
435 | + | return massFactorsCol[atom2]; |
436 | + | #else |
437 | + | return massFactorsLocal[atom2]; |
438 | + | #endif |
439 | + | |
440 | + | } |
441 | + | |
442 | + | Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ |
443 | + | Vector3d d; |
444 | + | |
445 | + | #ifdef IS_MPI |
446 | + | d = atomColData.position[atom2] - atomRowData.position[atom1]; |
447 | + | #else |
448 | + | d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; |
449 | + | #endif |
450 | + | |
451 | + | snap_->wrapVector(d); |
452 | + | return d; |
453 | + | } |
454 | + | |
455 | + | vector<int> ForceMatrixDecomposition::getSkipsForRowAtom(int atom1) { |
456 | + | #ifdef IS_MPI |
457 | + | return skipsForRowAtom[atom1]; |
458 | + | #else |
459 | + | return skipsForLocalAtom[atom1]; |
460 | + | #endif |
461 | + | } |
462 | + | |
463 | + | /** |
464 | + | * there are a number of reasons to skip a pair or a particle mostly |
465 | + | * we do this to exclude atoms who are involved in short range |
466 | + | * interactions (bonds, bends, torsions), but we also need to |
467 | + | * exclude some overcounted interactions that result from the |
468 | + | * parallel decomposition. |
469 | + | */ |
470 | + | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
471 | + | int unique_id_1, unique_id_2; |
472 | + | |
473 | + | #ifdef IS_MPI |
474 | + | // in MPI, we have to look up the unique IDs for each atom |
475 | + | unique_id_1 = AtomRowToGlobal[atom1]; |
476 | + | unique_id_2 = AtomColToGlobal[atom2]; |
477 | + | |
478 | + | // this situation should only arise in MPI simulations |
479 | + | if (unique_id_1 == unique_id_2) return true; |
480 | + | |
481 | + | // this prevents us from doing the pair on multiple processors |
482 | + | if (unique_id_1 < unique_id_2) { |
483 | + | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
484 | + | } else { |
485 | + | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
486 | + | } |
487 | + | #else |
488 | + | // in the normal loop, the atom numbers are unique |
489 | + | unique_id_1 = atom1; |
490 | + | unique_id_2 = atom2; |
491 | + | #endif |
492 | + | |
493 | + | #ifdef IS_MPI |
494 | + | for (vector<int>::iterator i = skipsForRowAtom[atom1].begin(); |
495 | + | i != skipsForRowAtom[atom1].end(); ++i) { |
496 | + | if ( (*i) == unique_id_2 ) return true; |
497 | + | } |
498 | + | #else |
499 | + | for (vector<int>::iterator i = skipsForLocalAtom[atom1].begin(); |
500 | + | i != skipsForLocalAtom[atom1].end(); ++i) { |
501 | + | if ( (*i) == unique_id_2 ) return true; |
502 | + | } |
503 | + | #endif |
504 | + | } |
505 | + | |
506 | + | int ForceMatrixDecomposition::getTopoDistance(int atom1, int atom2) { |
507 | + | |
508 | + | #ifdef IS_MPI |
509 | + | for (int i = 0; i < toposForRowAtom[atom1].size(); i++) { |
510 | + | if ( toposForRowAtom[atom1][i] == atom2 ) return topoDistRow[atom1][i]; |
511 | + | } |
512 | + | #else |
513 | + | for (int i = 0; i < toposForLocalAtom[atom1].size(); i++) { |
514 | + | if ( toposForLocalAtom[atom1][i] == atom2 ) return topoDistLocal[atom1][i]; |
515 | + | } |
516 | + | #endif |
517 | + | |
518 | + | // zero is default for unconnected (i.e. normal) pair interactions |
519 | + | return 0; |
520 | + | } |
521 | + | |
522 | + | void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ |
523 | + | #ifdef IS_MPI |
524 | + | atomRowData.force[atom1] += fg; |
525 | + | #else |
526 | + | snap_->atomData.force[atom1] += fg; |
527 | + | #endif |
528 | + | } |
529 | + | |
530 | + | void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){ |
531 | + | #ifdef IS_MPI |
532 | + | atomColData.force[atom2] += fg; |
533 | + | #else |
534 | + | snap_->atomData.force[atom2] += fg; |
535 | + | #endif |
536 | + | } |
537 | + | |
538 | + | // filling interaction blocks with pointers |
539 | + | InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) { |
540 | + | InteractionData idat; |
541 | + | |
542 | + | #ifdef IS_MPI |
543 | + | if (storageLayout_ & DataStorage::dslAmat) { |
544 | + | idat.A1 = &(atomRowData.aMat[atom1]); |
545 | + | idat.A2 = &(atomColData.aMat[atom2]); |
546 | + | } |
547 | + | |
548 | + | if (storageLayout_ & DataStorage::dslElectroFrame) { |
549 | + | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
550 | + | idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
551 | + | } |
552 | + | |
553 | + | if (storageLayout_ & DataStorage::dslTorque) { |
554 | + | idat.t1 = &(atomRowData.torque[atom1]); |
555 | + | idat.t2 = &(atomColData.torque[atom2]); |
556 | + | } |
557 | + | |
558 | + | if (storageLayout_ & DataStorage::dslDensity) { |
559 | + | idat.rho1 = &(atomRowData.density[atom1]); |
560 | + | idat.rho2 = &(atomColData.density[atom2]); |
561 | + | } |
562 | + | |
563 | + | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
564 | + | idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); |
565 | + | idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); |
566 | + | } |
567 | + | |
568 | + | #else |
569 | + | if (storageLayout_ & DataStorage::dslAmat) { |
570 | + | idat.A1 = &(snap_->atomData.aMat[atom1]); |
571 | + | idat.A2 = &(snap_->atomData.aMat[atom2]); |
572 | + | } |
573 | + | |
574 | + | if (storageLayout_ & DataStorage::dslElectroFrame) { |
575 | + | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
576 | + | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
577 | + | } |
578 | + | |
579 | + | if (storageLayout_ & DataStorage::dslTorque) { |
580 | + | idat.t1 = &(snap_->atomData.torque[atom1]); |
581 | + | idat.t2 = &(snap_->atomData.torque[atom2]); |
582 | + | } |
583 | + | |
584 | + | if (storageLayout_ & DataStorage::dslDensity) { |
585 | + | idat.rho1 = &(snap_->atomData.density[atom1]); |
586 | + | idat.rho2 = &(snap_->atomData.density[atom2]); |
587 | + | } |
588 | + | |
589 | + | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
590 | + | idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); |
591 | + | idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); |
592 | + | } |
593 | + | #endif |
594 | + | return idat; |
595 | + | } |
596 | + | |
597 | + | InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ |
598 | + | |
599 | + | InteractionData idat; |
600 | + | #ifdef IS_MPI |
601 | + | if (storageLayout_ & DataStorage::dslElectroFrame) { |
602 | + | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
603 | + | idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
604 | + | } |
605 | + | if (storageLayout_ & DataStorage::dslTorque) { |
606 | + | idat.t1 = &(atomRowData.torque[atom1]); |
607 | + | idat.t2 = &(atomColData.torque[atom2]); |
608 | + | } |
609 | + | if (storageLayout_ & DataStorage::dslForce) { |
610 | + | idat.t1 = &(atomRowData.force[atom1]); |
611 | + | idat.t2 = &(atomColData.force[atom2]); |
612 | + | } |
613 | + | #else |
614 | + | if (storageLayout_ & DataStorage::dslElectroFrame) { |
615 | + | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
616 | + | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
617 | + | } |
618 | + | if (storageLayout_ & DataStorage::dslTorque) { |
619 | + | idat.t1 = &(snap_->atomData.torque[atom1]); |
620 | + | idat.t2 = &(snap_->atomData.torque[atom2]); |
621 | + | } |
622 | + | if (storageLayout_ & DataStorage::dslForce) { |
623 | + | idat.t1 = &(snap_->atomData.force[atom1]); |
624 | + | idat.t2 = &(snap_->atomData.force[atom2]); |
625 | + | } |
626 | + | #endif |
627 | + | |
628 | + | } |
629 | + | |
630 | + | |
631 | + | |
632 | + | |
633 | + | /* |
634 | + | * buildNeighborList |
635 | + | * |
636 | + | * first element of pair is row-indexed CutoffGroup |
637 | + | * second element of pair is column-indexed CutoffGroup |
638 | + | */ |
639 | + | vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { |
640 | + | |
641 | + | vector<pair<int, int> > neighborList; |
642 | + | #ifdef IS_MPI |
643 | + | cellListRow_.clear(); |
644 | + | cellListCol_.clear(); |
645 | + | #else |
646 | + | cellList_.clear(); |
647 | + | #endif |
648 | + | |
649 | + | // dangerous to not do error checking. |
650 | + | RealType rCut_; |
651 | + | |
652 | + | RealType rList_ = (rCut_ + skinThickness_); |
653 | + | RealType rl2 = rList_ * rList_; |
654 | + | Snapshot* snap_ = sman_->getCurrentSnapshot(); |
655 | + | Mat3x3d Hmat = snap_->getHmat(); |
656 | + | Vector3d Hx = Hmat.getColumn(0); |
657 | + | Vector3d Hy = Hmat.getColumn(1); |
658 | + | Vector3d Hz = Hmat.getColumn(2); |
659 | + | |
660 | + | nCells_.x() = (int) ( Hx.length() )/ rList_; |
661 | + | nCells_.y() = (int) ( Hy.length() )/ rList_; |
662 | + | nCells_.z() = (int) ( Hz.length() )/ rList_; |
663 | + | |
664 | + | Mat3x3d invHmat = snap_->getInvHmat(); |
665 | + | Vector3d rs, scaled, dr; |
666 | + | Vector3i whichCell; |
667 | + | int cellIndex; |
668 | + | |
669 | + | #ifdef IS_MPI |
670 | + | for (int i = 0; i < nGroupsInRow_; i++) { |
671 | + | rs = cgRowData.position[i]; |
672 | + | // scaled positions relative to the box vectors |
673 | + | scaled = invHmat * rs; |
674 | + | // wrap the vector back into the unit box by subtracting integer box |
675 | + | // numbers |
676 | + | for (int j = 0; j < 3; j++) |
677 | + | scaled[j] -= roundMe(scaled[j]); |
678 | + | |
679 | + | // find xyz-indices of cell that cutoffGroup is in. |
680 | + | whichCell.x() = nCells_.x() * scaled.x(); |
681 | + | whichCell.y() = nCells_.y() * scaled.y(); |
682 | + | whichCell.z() = nCells_.z() * scaled.z(); |
683 | + | |
684 | + | // find single index of this cell: |
685 | + | cellIndex = Vlinear(whichCell, nCells_); |
686 | + | // add this cutoff group to the list of groups in this cell; |
687 | + | cellListRow_[cellIndex].push_back(i); |
688 | + | } |
689 | + | |
690 | + | for (int i = 0; i < nGroupsInCol_; i++) { |
691 | + | rs = cgColData.position[i]; |
692 | + | // scaled positions relative to the box vectors |
693 | + | scaled = invHmat * rs; |
694 | + | // wrap the vector back into the unit box by subtracting integer box |
695 | + | // numbers |
696 | + | for (int j = 0; j < 3; j++) |
697 | + | scaled[j] -= roundMe(scaled[j]); |
698 | + | |
699 | + | // find xyz-indices of cell that cutoffGroup is in. |
700 | + | whichCell.x() = nCells_.x() * scaled.x(); |
701 | + | whichCell.y() = nCells_.y() * scaled.y(); |
702 | + | whichCell.z() = nCells_.z() * scaled.z(); |
703 | + | |
704 | + | // find single index of this cell: |
705 | + | cellIndex = Vlinear(whichCell, nCells_); |
706 | + | // add this cutoff group to the list of groups in this cell; |
707 | + | cellListCol_[cellIndex].push_back(i); |
708 | + | } |
709 | + | #else |
710 | + | for (int i = 0; i < nGroups_; i++) { |
711 | + | rs = snap_->cgData.position[i]; |
712 | + | // scaled positions relative to the box vectors |
713 | + | scaled = invHmat * rs; |
714 | + | // wrap the vector back into the unit box by subtracting integer box |
715 | + | // numbers |
716 | + | for (int j = 0; j < 3; j++) |
717 | + | scaled[j] -= roundMe(scaled[j]); |
718 | + | |
719 | + | // find xyz-indices of cell that cutoffGroup is in. |
720 | + | whichCell.x() = nCells_.x() * scaled.x(); |
721 | + | whichCell.y() = nCells_.y() * scaled.y(); |
722 | + | whichCell.z() = nCells_.z() * scaled.z(); |
723 | + | |
724 | + | // find single index of this cell: |
725 | + | cellIndex = Vlinear(whichCell, nCells_); |
726 | + | // add this cutoff group to the list of groups in this cell; |
727 | + | cellList_[cellIndex].push_back(i); |
728 | + | } |
729 | + | #endif |
730 | + | |
731 | + | |
732 | + | |
733 | + | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
734 | + | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
735 | + | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
736 | + | Vector3i m1v(m1x, m1y, m1z); |
737 | + | int m1 = Vlinear(m1v, nCells_); |
738 | + | |
739 | + | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
740 | + | os != cellOffsets_.end(); ++os) { |
741 | + | |
742 | + | Vector3i m2v = m1v + (*os); |
743 | + | |
744 | + | if (m2v.x() >= nCells_.x()) { |
745 | + | m2v.x() = 0; |
746 | + | } else if (m2v.x() < 0) { |
747 | + | m2v.x() = nCells_.x() - 1; |
748 | + | } |
749 | + | |
750 | + | if (m2v.y() >= nCells_.y()) { |
751 | + | m2v.y() = 0; |
752 | + | } else if (m2v.y() < 0) { |
753 | + | m2v.y() = nCells_.y() - 1; |
754 | + | } |
755 | + | |
756 | + | if (m2v.z() >= nCells_.z()) { |
757 | + | m2v.z() = 0; |
758 | + | } else if (m2v.z() < 0) { |
759 | + | m2v.z() = nCells_.z() - 1; |
760 | + | } |
761 | + | |
762 | + | int m2 = Vlinear (m2v, nCells_); |
763 | + | |
764 | + | #ifdef IS_MPI |
765 | + | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
766 | + | j1 != cellListRow_[m1].end(); ++j1) { |
767 | + | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
768 | + | j2 != cellListCol_[m2].end(); ++j2) { |
769 | + | |
770 | + | // Always do this if we're in different cells or if |
771 | + | // we're in the same cell and the global index of the |
772 | + | // j2 cutoff group is less than the j1 cutoff group |
773 | + | |
774 | + | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
775 | + | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
776 | + | snap_->wrapVector(dr); |
777 | + | if (dr.lengthSquare() < rl2) { |
778 | + | neighborList.push_back(make_pair((*j1), (*j2))); |
779 | + | } |
780 | + | } |
781 | + | } |
782 | + | } |
783 | + | #else |
784 | + | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
785 | + | j1 != cellList_[m1].end(); ++j1) { |
786 | + | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
787 | + | j2 != cellList_[m2].end(); ++j2) { |
788 | + | |
789 | + | // Always do this if we're in different cells or if |
790 | + | // we're in the same cell and the global index of the |
791 | + | // j2 cutoff group is less than the j1 cutoff group |
792 | + | |
793 | + | if (m2 != m1 || (*j2) < (*j1)) { |
794 | + | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
795 | + | snap_->wrapVector(dr); |
796 | + | if (dr.lengthSquare() < rl2) { |
797 | + | neighborList.push_back(make_pair((*j1), (*j2))); |
798 | + | } |
799 | + | } |
800 | + | } |
801 | + | } |
802 | + | #endif |
803 | + | } |
804 | + | } |
805 | + | } |
806 | + | } |
807 | + | |
808 | + | // save the local cutoff group positions for the check that is |
809 | + | // done on each loop: |
810 | + | saved_CG_positions_.clear(); |
811 | + | for (int i = 0; i < nGroups_; i++) |
812 | + | saved_CG_positions_.push_back(snap_->cgData.position[i]); |
813 | + | |
814 | + | return neighborList; |
815 | + | } |
816 | } //end namespace OpenMD |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |