# | Line 38 | Line 38 | |
---|---|---|
38 | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | |
39 | * [4] Vardeman & Gezelter, in progress (2009). | |
40 | */ | |
41 | < | #include "parallel/ForceDecomposition.hpp" |
42 | < | #include "parallel/Communicator.hpp" |
41 | > | #include "parallel/ForceMatrixDecomposition.hpp" |
42 | #include "math/SquareMatrix3.hpp" | |
43 | + | #include "nonbonded/NonBondedInteraction.hpp" |
44 | + | #include "brains/SnapshotManager.hpp" |
45 | + | #include "brains/PairList.hpp" |
46 | ||
47 | + | using namespace std; |
48 | namespace OpenMD { | |
49 | ||
50 | < | void ForceDecomposition::distributeInitialData() { |
50 | > | /** |
51 | > | * distributeInitialData is essentially a copy of the older fortran |
52 | > | * SimulationSetup |
53 | > | */ |
54 | > | |
55 | > | void ForceMatrixDecomposition::distributeInitialData() { |
56 | > | snap_ = sman_->getCurrentSnapshot(); |
57 | > | storageLayout_ = sman_->getStorageLayout(); |
58 | > | ff_ = info_->getForceField(); |
59 | > | nLocal_ = snap_->getNumberOfAtoms(); |
60 | > | |
61 | > | nGroups_ = info_->getNLocalCutoffGroups(); |
62 | > | // gather the information for atomtype IDs (atids): |
63 | > | idents = info_->getIdentArray(); |
64 | > | AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
65 | > | cgLocalToGlobal = info_->getGlobalGroupIndices(); |
66 | > | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
67 | > | |
68 | > | massFactors = info_->getMassFactors(); |
69 | > | |
70 | > | PairList* excludes = info_->getExcludedInteractions(); |
71 | > | PairList* oneTwo = info_->getOneTwoInteractions(); |
72 | > | PairList* oneThree = info_->getOneThreeInteractions(); |
73 | > | PairList* oneFour = info_->getOneFourInteractions(); |
74 | > | |
75 | #ifdef IS_MPI | |
76 | + | |
77 | + | AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
78 | + | AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
79 | + | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
80 | + | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
81 | + | AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
82 | ||
83 | < | int nAtoms; |
84 | < | int nGroups; |
83 | > | AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
84 | > | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
85 | > | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
86 | > | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
87 | > | AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
88 | ||
89 | < | AtomCommRealI = new Comm<I,RealType>(nAtoms); |
90 | < | AtomCommVectorI = new Comm<I,Vector3d>(nAtoms); |
91 | < | AtomCommMatrixI = new Comm<I,Mat3x3d>(nAtoms); |
89 | > | cgCommIntRow = new Communicator<Row,int>(nGroups_); |
90 | > | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
91 | > | cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
92 | > | cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
93 | ||
94 | < | AtomCommRealJ = new Comm<J,RealType>(nAtoms); |
95 | < | AtomCommVectorJ = new Comm<J,Vector3d>(nAtoms); |
96 | < | AtomCommMatrixJ = new Comm<J,Mat3x3d>(nAtoms); |
94 | > | nAtomsInRow_ = AtomCommIntRow->getSize(); |
95 | > | nAtomsInCol_ = AtomCommIntColumn->getSize(); |
96 | > | nGroupsInRow_ = cgCommIntRow->getSize(); |
97 | > | nGroupsInCol_ = cgCommIntColumn->getSize(); |
98 | ||
99 | < | cgCommVectorI = new Comm<I,Vector3d>(nGroups); |
100 | < | cgCommVectorJ = new Comm<J,Vector3d>(nGroups); |
101 | < | // more to come |
99 | > | // Modify the data storage objects with the correct layouts and sizes: |
100 | > | atomRowData.resize(nAtomsInRow_); |
101 | > | atomRowData.setStorageLayout(storageLayout_); |
102 | > | atomColData.resize(nAtomsInCol_); |
103 | > | atomColData.setStorageLayout(storageLayout_); |
104 | > | cgRowData.resize(nGroupsInRow_); |
105 | > | cgRowData.setStorageLayout(DataStorage::dslPosition); |
106 | > | cgColData.resize(nGroupsInCol_); |
107 | > | cgColData.setStorageLayout(DataStorage::dslPosition); |
108 | > | |
109 | > | identsRow.resize(nAtomsInRow_); |
110 | > | identsCol.resize(nAtomsInCol_); |
111 | > | |
112 | > | AtomCommIntRow->gather(idents, identsRow); |
113 | > | AtomCommIntColumn->gather(idents, identsCol); |
114 | > | |
115 | > | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
116 | > | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
117 | > | |
118 | > | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
119 | > | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
120 | > | |
121 | > | AtomCommRealRow->gather(massFactors, massFactorsRow); |
122 | > | AtomCommRealColumn->gather(massFactors, massFactorsCol); |
123 | > | |
124 | > | groupListRow_.clear(); |
125 | > | groupListRow_.resize(nGroupsInRow_); |
126 | > | for (int i = 0; i < nGroupsInRow_; i++) { |
127 | > | int gid = cgRowToGlobal[i]; |
128 | > | for (int j = 0; j < nAtomsInRow_; j++) { |
129 | > | int aid = AtomRowToGlobal[j]; |
130 | > | if (globalGroupMembership[aid] == gid) |
131 | > | groupListRow_[i].push_back(j); |
132 | > | } |
133 | > | } |
134 | > | |
135 | > | groupListCol_.clear(); |
136 | > | groupListCol_.resize(nGroupsInCol_); |
137 | > | for (int i = 0; i < nGroupsInCol_; i++) { |
138 | > | int gid = cgColToGlobal[i]; |
139 | > | for (int j = 0; j < nAtomsInCol_; j++) { |
140 | > | int aid = AtomColToGlobal[j]; |
141 | > | if (globalGroupMembership[aid] == gid) |
142 | > | groupListCol_[i].push_back(j); |
143 | > | } |
144 | > | } |
145 | > | |
146 | > | excludesForAtom.clear(); |
147 | > | excludesForAtom.resize(nAtomsInRow_); |
148 | > | toposForAtom.clear(); |
149 | > | toposForAtom.resize(nAtomsInRow_); |
150 | > | topoDist.clear(); |
151 | > | topoDist.resize(nAtomsInRow_); |
152 | > | for (int i = 0; i < nAtomsInRow_; i++) { |
153 | > | int iglob = AtomRowToGlobal[i]; |
154 | > | |
155 | > | for (int j = 0; j < nAtomsInCol_; j++) { |
156 | > | int jglob = AtomColToGlobal[j]; |
157 | > | |
158 | > | if (excludes->hasPair(iglob, jglob)) |
159 | > | excludesForAtom[i].push_back(j); |
160 | > | |
161 | > | if (oneTwo->hasPair(iglob, jglob)) { |
162 | > | toposForAtom[i].push_back(j); |
163 | > | topoDist[i].push_back(1); |
164 | > | } else { |
165 | > | if (oneThree->hasPair(iglob, jglob)) { |
166 | > | toposForAtom[i].push_back(j); |
167 | > | topoDist[i].push_back(2); |
168 | > | } else { |
169 | > | if (oneFour->hasPair(iglob, jglob)) { |
170 | > | toposForAtom[i].push_back(j); |
171 | > | topoDist[i].push_back(3); |
172 | > | } |
173 | > | } |
174 | > | } |
175 | > | } |
176 | > | } |
177 | > | |
178 | #endif | |
179 | + | |
180 | + | groupList_.clear(); |
181 | + | groupList_.resize(nGroups_); |
182 | + | for (int i = 0; i < nGroups_; i++) { |
183 | + | int gid = cgLocalToGlobal[i]; |
184 | + | for (int j = 0; j < nLocal_; j++) { |
185 | + | int aid = AtomLocalToGlobal[j]; |
186 | + | if (globalGroupMembership[aid] == gid) { |
187 | + | groupList_[i].push_back(j); |
188 | + | } |
189 | + | } |
190 | + | } |
191 | + | |
192 | + | excludesForAtom.clear(); |
193 | + | excludesForAtom.resize(nLocal_); |
194 | + | toposForAtom.clear(); |
195 | + | toposForAtom.resize(nLocal_); |
196 | + | topoDist.clear(); |
197 | + | topoDist.resize(nLocal_); |
198 | + | |
199 | + | for (int i = 0; i < nLocal_; i++) { |
200 | + | int iglob = AtomLocalToGlobal[i]; |
201 | + | |
202 | + | for (int j = 0; j < nLocal_; j++) { |
203 | + | int jglob = AtomLocalToGlobal[j]; |
204 | + | |
205 | + | if (excludes->hasPair(iglob, jglob)) |
206 | + | excludesForAtom[i].push_back(j); |
207 | + | |
208 | + | if (oneTwo->hasPair(iglob, jglob)) { |
209 | + | toposForAtom[i].push_back(j); |
210 | + | topoDist[i].push_back(1); |
211 | + | } else { |
212 | + | if (oneThree->hasPair(iglob, jglob)) { |
213 | + | toposForAtom[i].push_back(j); |
214 | + | topoDist[i].push_back(2); |
215 | + | } else { |
216 | + | if (oneFour->hasPair(iglob, jglob)) { |
217 | + | toposForAtom[i].push_back(j); |
218 | + | topoDist[i].push_back(3); |
219 | + | } |
220 | + | } |
221 | + | } |
222 | + | } |
223 | + | } |
224 | + | |
225 | + | createGtypeCutoffMap(); |
226 | + | |
227 | } | |
228 | + | |
229 | + | void ForceMatrixDecomposition::createGtypeCutoffMap() { |
230 | ||
231 | + | RealType tol = 1e-6; |
232 | + | RealType rc; |
233 | + | int atid; |
234 | + | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
235 | + | map<int, RealType> atypeCutoff; |
236 | + | |
237 | + | for (set<AtomType*>::iterator at = atypes.begin(); |
238 | + | at != atypes.end(); ++at){ |
239 | + | atid = (*at)->getIdent(); |
240 | + | if (userChoseCutoff_) |
241 | + | atypeCutoff[atid] = userCutoff_; |
242 | + | else |
243 | + | atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
244 | + | } |
245 | ||
246 | + | vector<RealType> gTypeCutoffs; |
247 | + | // first we do a single loop over the cutoff groups to find the |
248 | + | // largest cutoff for any atypes present in this group. |
249 | + | #ifdef IS_MPI |
250 | + | vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); |
251 | + | groupRowToGtype.resize(nGroupsInRow_); |
252 | + | for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { |
253 | + | vector<int> atomListRow = getAtomsInGroupRow(cg1); |
254 | + | for (vector<int>::iterator ia = atomListRow.begin(); |
255 | + | ia != atomListRow.end(); ++ia) { |
256 | + | int atom1 = (*ia); |
257 | + | atid = identsRow[atom1]; |
258 | + | if (atypeCutoff[atid] > groupCutoffRow[cg1]) { |
259 | + | groupCutoffRow[cg1] = atypeCutoff[atid]; |
260 | + | } |
261 | + | } |
262 | ||
263 | < | void ForceDecomposition::distributeData() { |
263 | > | bool gTypeFound = false; |
264 | > | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
265 | > | if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) { |
266 | > | groupRowToGtype[cg1] = gt; |
267 | > | gTypeFound = true; |
268 | > | } |
269 | > | } |
270 | > | if (!gTypeFound) { |
271 | > | gTypeCutoffs.push_back( groupCutoffRow[cg1] ); |
272 | > | groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; |
273 | > | } |
274 | > | |
275 | > | } |
276 | > | vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); |
277 | > | groupColToGtype.resize(nGroupsInCol_); |
278 | > | for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { |
279 | > | vector<int> atomListCol = getAtomsInGroupColumn(cg2); |
280 | > | for (vector<int>::iterator jb = atomListCol.begin(); |
281 | > | jb != atomListCol.end(); ++jb) { |
282 | > | int atom2 = (*jb); |
283 | > | atid = identsCol[atom2]; |
284 | > | if (atypeCutoff[atid] > groupCutoffCol[cg2]) { |
285 | > | groupCutoffCol[cg2] = atypeCutoff[atid]; |
286 | > | } |
287 | > | } |
288 | > | bool gTypeFound = false; |
289 | > | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
290 | > | if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) { |
291 | > | groupColToGtype[cg2] = gt; |
292 | > | gTypeFound = true; |
293 | > | } |
294 | > | } |
295 | > | if (!gTypeFound) { |
296 | > | gTypeCutoffs.push_back( groupCutoffCol[cg2] ); |
297 | > | groupColToGtype[cg2] = gTypeCutoffs.size() - 1; |
298 | > | } |
299 | > | } |
300 | > | #else |
301 | > | |
302 | > | vector<RealType> groupCutoff(nGroups_, 0.0); |
303 | > | groupToGtype.resize(nGroups_); |
304 | > | for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
305 | > | |
306 | > | groupCutoff[cg1] = 0.0; |
307 | > | vector<int> atomList = getAtomsInGroupRow(cg1); |
308 | > | |
309 | > | for (vector<int>::iterator ia = atomList.begin(); |
310 | > | ia != atomList.end(); ++ia) { |
311 | > | int atom1 = (*ia); |
312 | > | atid = idents[atom1]; |
313 | > | if (atypeCutoff[atid] > groupCutoff[cg1]) { |
314 | > | groupCutoff[cg1] = atypeCutoff[atid]; |
315 | > | } |
316 | > | } |
317 | > | |
318 | > | bool gTypeFound = false; |
319 | > | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
320 | > | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
321 | > | groupToGtype[cg1] = gt; |
322 | > | gTypeFound = true; |
323 | > | } |
324 | > | } |
325 | > | if (!gTypeFound) { |
326 | > | gTypeCutoffs.push_back( groupCutoff[cg1] ); |
327 | > | groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
328 | > | } |
329 | > | } |
330 | > | #endif |
331 | > | |
332 | > | // Now we find the maximum group cutoff value present in the simulation |
333 | > | |
334 | > | RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); |
335 | > | |
336 | #ifdef IS_MPI | |
337 | < | Snapshot* snap = sman_->getCurrentSnapshot(); |
337 | > | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); |
338 | > | #endif |
339 | > | |
340 | > | RealType tradRcut = groupMax; |
341 | ||
342 | + | for (int i = 0; i < gTypeCutoffs.size(); i++) { |
343 | + | for (int j = 0; j < gTypeCutoffs.size(); j++) { |
344 | + | RealType thisRcut; |
345 | + | switch(cutoffPolicy_) { |
346 | + | case TRADITIONAL: |
347 | + | thisRcut = tradRcut; |
348 | + | break; |
349 | + | case MIX: |
350 | + | thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); |
351 | + | break; |
352 | + | case MAX: |
353 | + | thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); |
354 | + | break; |
355 | + | default: |
356 | + | sprintf(painCave.errMsg, |
357 | + | "ForceMatrixDecomposition::createGtypeCutoffMap " |
358 | + | "hit an unknown cutoff policy!\n"); |
359 | + | painCave.severity = OPENMD_ERROR; |
360 | + | painCave.isFatal = 1; |
361 | + | simError(); |
362 | + | break; |
363 | + | } |
364 | + | |
365 | + | pair<int,int> key = make_pair(i,j); |
366 | + | gTypeCutoffMap[key].first = thisRcut; |
367 | + | |
368 | + | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
369 | + | |
370 | + | gTypeCutoffMap[key].second = thisRcut*thisRcut; |
371 | + | |
372 | + | gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
373 | + | |
374 | + | // sanity check |
375 | + | |
376 | + | if (userChoseCutoff_) { |
377 | + | if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
378 | + | sprintf(painCave.errMsg, |
379 | + | "ForceMatrixDecomposition::createGtypeCutoffMap " |
380 | + | "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
381 | + | painCave.severity = OPENMD_ERROR; |
382 | + | painCave.isFatal = 1; |
383 | + | simError(); |
384 | + | } |
385 | + | } |
386 | + | } |
387 | + | } |
388 | + | } |
389 | + | |
390 | + | |
391 | + | groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
392 | + | int i, j; |
393 | + | #ifdef IS_MPI |
394 | + | i = groupRowToGtype[cg1]; |
395 | + | j = groupColToGtype[cg2]; |
396 | + | #else |
397 | + | i = groupToGtype[cg1]; |
398 | + | j = groupToGtype[cg2]; |
399 | + | #endif |
400 | + | return gTypeCutoffMap[make_pair(i,j)]; |
401 | + | } |
402 | + | |
403 | + | int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
404 | + | for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
405 | + | if (toposForAtom[atom1][j] == atom2) |
406 | + | return topoDist[atom1][j]; |
407 | + | } |
408 | + | return 0; |
409 | + | } |
410 | + | |
411 | + | void ForceMatrixDecomposition::zeroWorkArrays() { |
412 | + | pairwisePot = 0.0; |
413 | + | embeddingPot = 0.0; |
414 | + | |
415 | + | #ifdef IS_MPI |
416 | + | if (storageLayout_ & DataStorage::dslForce) { |
417 | + | fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); |
418 | + | fill(atomColData.force.begin(), atomColData.force.end(), V3Zero); |
419 | + | } |
420 | + | |
421 | + | if (storageLayout_ & DataStorage::dslTorque) { |
422 | + | fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero); |
423 | + | fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero); |
424 | + | } |
425 | + | |
426 | + | fill(pot_row.begin(), pot_row.end(), |
427 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
428 | + | |
429 | + | fill(pot_col.begin(), pot_col.end(), |
430 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
431 | + | |
432 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
433 | + | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); |
434 | + | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); |
435 | + | } |
436 | + | |
437 | + | if (storageLayout_ & DataStorage::dslDensity) { |
438 | + | fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0); |
439 | + | fill(atomColData.density.begin(), atomColData.density.end(), 0.0); |
440 | + | } |
441 | + | |
442 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
443 | + | fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); |
444 | + | fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); |
445 | + | } |
446 | + | |
447 | + | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
448 | + | fill(atomRowData.functionalDerivative.begin(), |
449 | + | atomRowData.functionalDerivative.end(), 0.0); |
450 | + | fill(atomColData.functionalDerivative.begin(), |
451 | + | atomColData.functionalDerivative.end(), 0.0); |
452 | + | } |
453 | + | |
454 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
455 | + | fill(atomRowData.skippedCharge.begin(), |
456 | + | atomRowData.skippedCharge.end(), 0.0); |
457 | + | fill(atomColData.skippedCharge.begin(), |
458 | + | atomColData.skippedCharge.end(), 0.0); |
459 | + | } |
460 | + | |
461 | + | #else |
462 | + | |
463 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
464 | + | fill(snap_->atomData.particlePot.begin(), |
465 | + | snap_->atomData.particlePot.end(), 0.0); |
466 | + | } |
467 | + | |
468 | + | if (storageLayout_ & DataStorage::dslDensity) { |
469 | + | fill(snap_->atomData.density.begin(), |
470 | + | snap_->atomData.density.end(), 0.0); |
471 | + | } |
472 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
473 | + | fill(snap_->atomData.functional.begin(), |
474 | + | snap_->atomData.functional.end(), 0.0); |
475 | + | } |
476 | + | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
477 | + | fill(snap_->atomData.functionalDerivative.begin(), |
478 | + | snap_->atomData.functionalDerivative.end(), 0.0); |
479 | + | } |
480 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
481 | + | fill(snap_->atomData.skippedCharge.begin(), |
482 | + | snap_->atomData.skippedCharge.end(), 0.0); |
483 | + | } |
484 | + | #endif |
485 | + | |
486 | + | } |
487 | + | |
488 | + | |
489 | + | void ForceMatrixDecomposition::distributeData() { |
490 | + | snap_ = sman_->getCurrentSnapshot(); |
491 | + | storageLayout_ = sman_->getStorageLayout(); |
492 | + | #ifdef IS_MPI |
493 | + | |
494 | // gather up the atomic positions | |
495 | < | AtomCommVectorI->gather(snap->atomData.position, |
496 | < | snap->atomIData.position); |
497 | < | AtomCommVectorJ->gather(snap->atomData.position, |
498 | < | snap->atomJData.position); |
495 | > | AtomCommVectorRow->gather(snap_->atomData.position, |
496 | > | atomRowData.position); |
497 | > | AtomCommVectorColumn->gather(snap_->atomData.position, |
498 | > | atomColData.position); |
499 | ||
500 | // gather up the cutoff group positions | |
501 | < | cgCommVectorI->gather(snap->cgData.position, |
502 | < | snap->cgIData.position); |
503 | < | cgCommVectorJ->gather(snap->cgData.position, |
504 | < | snap->cgJData.position); |
501 | > | cgCommVectorRow->gather(snap_->cgData.position, |
502 | > | cgRowData.position); |
503 | > | cgCommVectorColumn->gather(snap_->cgData.position, |
504 | > | cgColData.position); |
505 | ||
506 | // if needed, gather the atomic rotation matrices | |
507 | < | if (snap->atomData.getStorageLayout() & DataStorage::dslAmat) { |
508 | < | AtomCommMatrixI->gather(snap->atomData.aMat, |
509 | < | snap->atomIData.aMat); |
510 | < | AtomCommMatrixJ->gather(snap->atomData.aMat, |
511 | < | snap->atomJData.aMat); |
507 | > | if (storageLayout_ & DataStorage::dslAmat) { |
508 | > | AtomCommMatrixRow->gather(snap_->atomData.aMat, |
509 | > | atomRowData.aMat); |
510 | > | AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
511 | > | atomColData.aMat); |
512 | } | |
513 | ||
514 | // if needed, gather the atomic eletrostatic frames | |
515 | < | if (snap->atomData.getStorageLayout() & DataStorage::dslElectroFrame) { |
516 | < | AtomCommMatrixI->gather(snap->atomData.electroFrame, |
517 | < | snap->atomIData.electroFrame); |
518 | < | AtomCommMatrixJ->gather(snap->atomData.electroFrame, |
519 | < | snap->atomJData.electroFrame); |
515 | > | if (storageLayout_ & DataStorage::dslElectroFrame) { |
516 | > | AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
517 | > | atomRowData.electroFrame); |
518 | > | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
519 | > | atomColData.electroFrame); |
520 | } | |
521 | #endif | |
522 | } | |
523 | ||
524 | < | void ForceDecomposition::collectIntermediateData() { |
524 | > | /* collects information obtained during the pre-pair loop onto local |
525 | > | * data structures. |
526 | > | */ |
527 | > | void ForceMatrixDecomposition::collectIntermediateData() { |
528 | > | snap_ = sman_->getCurrentSnapshot(); |
529 | > | storageLayout_ = sman_->getStorageLayout(); |
530 | #ifdef IS_MPI | |
105 | – | Snapshot* snap = sman_->getCurrentSnapshot(); |
106 | – | // gather up the atomic positions |
531 | ||
532 | < | if (snap->atomData.getStorageLayout() & DataStorage::dslDensity) { |
533 | < | AtomCommRealI->scatter(snap->atomIData.density, |
534 | < | snap->atomData.density); |
535 | < | std::vector<RealType> rho_tmp; |
536 | < | int n = snap->getNumberOfAtoms(); |
537 | < | rho_tmp.reserve( n ); |
538 | < | AtomCommRealJ->scatter(snap->atomJData.density, rho_tmp); |
532 | > | if (storageLayout_ & DataStorage::dslDensity) { |
533 | > | |
534 | > | AtomCommRealRow->scatter(atomRowData.density, |
535 | > | snap_->atomData.density); |
536 | > | |
537 | > | int n = snap_->atomData.density.size(); |
538 | > | vector<RealType> rho_tmp(n, 0.0); |
539 | > | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
540 | for (int i = 0; i < n; i++) | |
541 | < | snap->atomData.density[i] += rho_tmp[i]; |
541 | > | snap_->atomData.density[i] += rho_tmp[i]; |
542 | } | |
543 | #endif | |
544 | } | |
545 | < | |
546 | < | void ForceDecomposition::distributeIntermediateData() { |
545 | > | |
546 | > | /* |
547 | > | * redistributes information obtained during the pre-pair loop out to |
548 | > | * row and column-indexed data structures |
549 | > | */ |
550 | > | void ForceMatrixDecomposition::distributeIntermediateData() { |
551 | > | snap_ = sman_->getCurrentSnapshot(); |
552 | > | storageLayout_ = sman_->getStorageLayout(); |
553 | #ifdef IS_MPI | |
554 | < | Snapshot* snap = sman_->getCurrentSnapshot(); |
555 | < | if (snap->atomData.getStorageLayout() & DataStorage::dslFunctional) { |
556 | < | AtomCommRealI->gather(snap->atomData.functional, |
557 | < | snap->atomIData.functional); |
558 | < | AtomCommRealJ->gather(snap->atomData.functional, |
128 | < | snap->atomJData.functional); |
554 | > | if (storageLayout_ & DataStorage::dslFunctional) { |
555 | > | AtomCommRealRow->gather(snap_->atomData.functional, |
556 | > | atomRowData.functional); |
557 | > | AtomCommRealColumn->gather(snap_->atomData.functional, |
558 | > | atomColData.functional); |
559 | } | |
560 | ||
561 | < | if (snap->atomData.getStorageLayout() & DataStorage::dslFunctionalDerivative) { |
562 | < | AtomCommRealI->gather(snap->atomData.functionalDerivative, |
563 | < | snap->atomIData.functionalDerivative); |
564 | < | AtomCommRealJ->gather(snap->atomData.functionalDerivative, |
565 | < | snap->atomJData.functionalDerivative); |
561 | > | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
562 | > | AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
563 | > | atomRowData.functionalDerivative); |
564 | > | AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
565 | > | atomColData.functionalDerivative); |
566 | } | |
567 | #endif | |
568 | } | |
569 | ||
570 | ||
571 | < | void ForceDecomposition::collectData() { |
571 | > | void ForceMatrixDecomposition::collectData() { |
572 | > | snap_ = sman_->getCurrentSnapshot(); |
573 | > | storageLayout_ = sman_->getStorageLayout(); |
574 | > | #ifdef IS_MPI |
575 | > | int n = snap_->atomData.force.size(); |
576 | > | vector<Vector3d> frc_tmp(n, V3Zero); |
577 | > | |
578 | > | AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
579 | > | for (int i = 0; i < n; i++) { |
580 | > | snap_->atomData.force[i] += frc_tmp[i]; |
581 | > | frc_tmp[i] = 0.0; |
582 | > | } |
583 | > | |
584 | > | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
585 | > | for (int i = 0; i < n; i++) |
586 | > | snap_->atomData.force[i] += frc_tmp[i]; |
587 | > | |
588 | > | |
589 | > | if (storageLayout_ & DataStorage::dslTorque) { |
590 | > | |
591 | > | int nt = snap_->atomData.torque.size(); |
592 | > | vector<Vector3d> trq_tmp(nt, V3Zero); |
593 | > | |
594 | > | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
595 | > | for (int i = 0; i < nt; i++) { |
596 | > | snap_->atomData.torque[i] += trq_tmp[i]; |
597 | > | trq_tmp[i] = 0.0; |
598 | > | } |
599 | > | |
600 | > | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
601 | > | for (int i = 0; i < nt; i++) |
602 | > | snap_->atomData.torque[i] += trq_tmp[i]; |
603 | > | } |
604 | > | |
605 | > | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
606 | > | |
607 | > | int ns = snap_->atomData.skippedCharge.size(); |
608 | > | vector<RealType> skch_tmp(ns, 0.0); |
609 | > | |
610 | > | AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
611 | > | for (int i = 0; i < ns; i++) { |
612 | > | snap_->atomData.skippedCharge[i] = skch_tmp[i]; |
613 | > | skch_tmp[i] = 0.0; |
614 | > | } |
615 | > | |
616 | > | AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
617 | > | for (int i = 0; i < ns; i++) |
618 | > | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
619 | > | } |
620 | > | |
621 | > | nLocal_ = snap_->getNumberOfAtoms(); |
622 | > | |
623 | > | vector<potVec> pot_temp(nLocal_, |
624 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
625 | > | |
626 | > | // scatter/gather pot_row into the members of my column |
627 | > | |
628 | > | AtomCommPotRow->scatter(pot_row, pot_temp); |
629 | > | |
630 | > | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
631 | > | pairwisePot += pot_temp[ii]; |
632 | > | |
633 | > | fill(pot_temp.begin(), pot_temp.end(), |
634 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
635 | > | |
636 | > | AtomCommPotColumn->scatter(pot_col, pot_temp); |
637 | > | |
638 | > | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
639 | > | pairwisePot += pot_temp[ii]; |
640 | > | #endif |
641 | > | |
642 | > | } |
643 | > | |
644 | > | int ForceMatrixDecomposition::getNAtomsInRow() { |
645 | #ifdef IS_MPI | |
646 | + | return nAtomsInRow_; |
647 | + | #else |
648 | + | return nLocal_; |
649 | #endif | |
650 | } | |
651 | + | |
652 | + | /** |
653 | + | * returns the list of atoms belonging to this group. |
654 | + | */ |
655 | + | vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
656 | + | #ifdef IS_MPI |
657 | + | return groupListRow_[cg1]; |
658 | + | #else |
659 | + | return groupList_[cg1]; |
660 | + | #endif |
661 | + | } |
662 | + | |
663 | + | vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
664 | + | #ifdef IS_MPI |
665 | + | return groupListCol_[cg2]; |
666 | + | #else |
667 | + | return groupList_[cg2]; |
668 | + | #endif |
669 | + | } |
670 | ||
671 | + | Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ |
672 | + | Vector3d d; |
673 | + | |
674 | + | #ifdef IS_MPI |
675 | + | d = cgColData.position[cg2] - cgRowData.position[cg1]; |
676 | + | #else |
677 | + | d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; |
678 | + | #endif |
679 | + | |
680 | + | snap_->wrapVector(d); |
681 | + | return d; |
682 | + | } |
683 | + | |
684 | + | |
685 | + | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ |
686 | + | |
687 | + | Vector3d d; |
688 | + | |
689 | + | #ifdef IS_MPI |
690 | + | d = cgRowData.position[cg1] - atomRowData.position[atom1]; |
691 | + | #else |
692 | + | d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; |
693 | + | #endif |
694 | + | |
695 | + | snap_->wrapVector(d); |
696 | + | return d; |
697 | + | } |
698 | + | |
699 | + | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){ |
700 | + | Vector3d d; |
701 | + | |
702 | + | #ifdef IS_MPI |
703 | + | d = cgColData.position[cg2] - atomColData.position[atom2]; |
704 | + | #else |
705 | + | d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; |
706 | + | #endif |
707 | + | |
708 | + | snap_->wrapVector(d); |
709 | + | return d; |
710 | + | } |
711 | + | |
712 | + | RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
713 | + | #ifdef IS_MPI |
714 | + | return massFactorsRow[atom1]; |
715 | + | #else |
716 | + | return massFactors[atom1]; |
717 | + | #endif |
718 | + | } |
719 | + | |
720 | + | RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
721 | + | #ifdef IS_MPI |
722 | + | return massFactorsCol[atom2]; |
723 | + | #else |
724 | + | return massFactors[atom2]; |
725 | + | #endif |
726 | + | |
727 | + | } |
728 | + | |
729 | + | Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ |
730 | + | Vector3d d; |
731 | + | |
732 | + | #ifdef IS_MPI |
733 | + | d = atomColData.position[atom2] - atomRowData.position[atom1]; |
734 | + | #else |
735 | + | d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; |
736 | + | #endif |
737 | + | |
738 | + | snap_->wrapVector(d); |
739 | + | return d; |
740 | + | } |
741 | + | |
742 | + | vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
743 | + | return excludesForAtom[atom1]; |
744 | + | } |
745 | + | |
746 | + | /** |
747 | + | * We need to exclude some overcounted interactions that result from |
748 | + | * the parallel decomposition. |
749 | + | */ |
750 | + | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
751 | + | int unique_id_1, unique_id_2; |
752 | + | |
753 | + | #ifdef IS_MPI |
754 | + | // in MPI, we have to look up the unique IDs for each atom |
755 | + | unique_id_1 = AtomRowToGlobal[atom1]; |
756 | + | unique_id_2 = AtomColToGlobal[atom2]; |
757 | + | |
758 | + | // this situation should only arise in MPI simulations |
759 | + | if (unique_id_1 == unique_id_2) return true; |
760 | + | |
761 | + | // this prevents us from doing the pair on multiple processors |
762 | + | if (unique_id_1 < unique_id_2) { |
763 | + | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
764 | + | } else { |
765 | + | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
766 | + | } |
767 | + | #endif |
768 | + | return false; |
769 | + | } |
770 | + | |
771 | + | /** |
772 | + | * We need to handle the interactions for atoms who are involved in |
773 | + | * the same rigid body as well as some short range interactions |
774 | + | * (bonds, bends, torsions) differently from other interactions. |
775 | + | * We'll still visit the pairwise routines, but with a flag that |
776 | + | * tells those routines to exclude the pair from direct long range |
777 | + | * interactions. Some indirect interactions (notably reaction |
778 | + | * field) must still be handled for these pairs. |
779 | + | */ |
780 | + | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
781 | + | int unique_id_2; |
782 | + | |
783 | + | #ifdef IS_MPI |
784 | + | // in MPI, we have to look up the unique IDs for the row atom. |
785 | + | unique_id_2 = AtomColToGlobal[atom2]; |
786 | + | #else |
787 | + | // in the normal loop, the atom numbers are unique |
788 | + | unique_id_2 = atom2; |
789 | + | #endif |
790 | + | |
791 | + | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
792 | + | i != excludesForAtom[atom1].end(); ++i) { |
793 | + | if ( (*i) == unique_id_2 ) return true; |
794 | + | } |
795 | + | |
796 | + | return false; |
797 | + | } |
798 | + | |
799 | + | |
800 | + | void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ |
801 | + | #ifdef IS_MPI |
802 | + | atomRowData.force[atom1] += fg; |
803 | + | #else |
804 | + | snap_->atomData.force[atom1] += fg; |
805 | + | #endif |
806 | + | } |
807 | + | |
808 | + | void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){ |
809 | + | #ifdef IS_MPI |
810 | + | atomColData.force[atom2] += fg; |
811 | + | #else |
812 | + | snap_->atomData.force[atom2] += fg; |
813 | + | #endif |
814 | + | } |
815 | + | |
816 | + | // filling interaction blocks with pointers |
817 | + | void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
818 | + | int atom1, int atom2) { |
819 | + | |
820 | + | idat.excluded = excludeAtomPair(atom1, atom2); |
821 | + | |
822 | + | #ifdef IS_MPI |
823 | + | |
824 | + | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
825 | + | ff_->getAtomType(identsCol[atom2]) ); |
826 | + | |
827 | + | if (storageLayout_ & DataStorage::dslAmat) { |
828 | + | idat.A1 = &(atomRowData.aMat[atom1]); |
829 | + | idat.A2 = &(atomColData.aMat[atom2]); |
830 | + | } |
831 | + | |
832 | + | if (storageLayout_ & DataStorage::dslElectroFrame) { |
833 | + | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
834 | + | idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
835 | + | } |
836 | + | |
837 | + | if (storageLayout_ & DataStorage::dslTorque) { |
838 | + | idat.t1 = &(atomRowData.torque[atom1]); |
839 | + | idat.t2 = &(atomColData.torque[atom2]); |
840 | + | } |
841 | + | |
842 | + | if (storageLayout_ & DataStorage::dslDensity) { |
843 | + | idat.rho1 = &(atomRowData.density[atom1]); |
844 | + | idat.rho2 = &(atomColData.density[atom2]); |
845 | + | } |
846 | + | |
847 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
848 | + | idat.frho1 = &(atomRowData.functional[atom1]); |
849 | + | idat.frho2 = &(atomColData.functional[atom2]); |
850 | + | } |
851 | + | |
852 | + | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
853 | + | idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); |
854 | + | idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); |
855 | + | } |
856 | + | |
857 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
858 | + | idat.particlePot1 = &(atomRowData.particlePot[atom1]); |
859 | + | idat.particlePot2 = &(atomColData.particlePot[atom2]); |
860 | + | } |
861 | + | |
862 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
863 | + | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
864 | + | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
865 | + | } |
866 | + | |
867 | + | #else |
868 | + | |
869 | + | idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
870 | + | ff_->getAtomType(idents[atom2]) ); |
871 | + | |
872 | + | if (storageLayout_ & DataStorage::dslAmat) { |
873 | + | idat.A1 = &(snap_->atomData.aMat[atom1]); |
874 | + | idat.A2 = &(snap_->atomData.aMat[atom2]); |
875 | + | } |
876 | + | |
877 | + | if (storageLayout_ & DataStorage::dslElectroFrame) { |
878 | + | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
879 | + | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
880 | + | } |
881 | + | |
882 | + | if (storageLayout_ & DataStorage::dslTorque) { |
883 | + | idat.t1 = &(snap_->atomData.torque[atom1]); |
884 | + | idat.t2 = &(snap_->atomData.torque[atom2]); |
885 | + | } |
886 | + | |
887 | + | if (storageLayout_ & DataStorage::dslDensity) { |
888 | + | idat.rho1 = &(snap_->atomData.density[atom1]); |
889 | + | idat.rho2 = &(snap_->atomData.density[atom2]); |
890 | + | } |
891 | + | |
892 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
893 | + | idat.frho1 = &(snap_->atomData.functional[atom1]); |
894 | + | idat.frho2 = &(snap_->atomData.functional[atom2]); |
895 | + | } |
896 | + | |
897 | + | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
898 | + | idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); |
899 | + | idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); |
900 | + | } |
901 | + | |
902 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
903 | + | idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); |
904 | + | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
905 | + | } |
906 | + | |
907 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
908 | + | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
909 | + | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
910 | + | } |
911 | + | #endif |
912 | + | } |
913 | + | |
914 | + | |
915 | + | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
916 | + | #ifdef IS_MPI |
917 | + | pot_row[atom1] += 0.5 * *(idat.pot); |
918 | + | pot_col[atom2] += 0.5 * *(idat.pot); |
919 | + | |
920 | + | atomRowData.force[atom1] += *(idat.f1); |
921 | + | atomColData.force[atom2] -= *(idat.f1); |
922 | + | #else |
923 | + | pairwisePot += *(idat.pot); |
924 | + | |
925 | + | snap_->atomData.force[atom1] += *(idat.f1); |
926 | + | snap_->atomData.force[atom2] -= *(idat.f1); |
927 | + | #endif |
928 | + | |
929 | + | } |
930 | + | |
931 | + | /* |
932 | + | * buildNeighborList |
933 | + | * |
934 | + | * first element of pair is row-indexed CutoffGroup |
935 | + | * second element of pair is column-indexed CutoffGroup |
936 | + | */ |
937 | + | vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { |
938 | + | |
939 | + | vector<pair<int, int> > neighborList; |
940 | + | groupCutoffs cuts; |
941 | + | bool doAllPairs = false; |
942 | + | |
943 | + | #ifdef IS_MPI |
944 | + | cellListRow_.clear(); |
945 | + | cellListCol_.clear(); |
946 | + | #else |
947 | + | cellList_.clear(); |
948 | + | #endif |
949 | + | |
950 | + | RealType rList_ = (largestRcut_ + skinThickness_); |
951 | + | RealType rl2 = rList_ * rList_; |
952 | + | Snapshot* snap_ = sman_->getCurrentSnapshot(); |
953 | + | Mat3x3d Hmat = snap_->getHmat(); |
954 | + | Vector3d Hx = Hmat.getColumn(0); |
955 | + | Vector3d Hy = Hmat.getColumn(1); |
956 | + | Vector3d Hz = Hmat.getColumn(2); |
957 | + | |
958 | + | nCells_.x() = (int) ( Hx.length() )/ rList_; |
959 | + | nCells_.y() = (int) ( Hy.length() )/ rList_; |
960 | + | nCells_.z() = (int) ( Hz.length() )/ rList_; |
961 | + | |
962 | + | // handle small boxes where the cell offsets can end up repeating cells |
963 | + | |
964 | + | if (nCells_.x() < 3) doAllPairs = true; |
965 | + | if (nCells_.y() < 3) doAllPairs = true; |
966 | + | if (nCells_.z() < 3) doAllPairs = true; |
967 | + | |
968 | + | Mat3x3d invHmat = snap_->getInvHmat(); |
969 | + | Vector3d rs, scaled, dr; |
970 | + | Vector3i whichCell; |
971 | + | int cellIndex; |
972 | + | int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
973 | + | |
974 | + | #ifdef IS_MPI |
975 | + | cellListRow_.resize(nCtot); |
976 | + | cellListCol_.resize(nCtot); |
977 | + | #else |
978 | + | cellList_.resize(nCtot); |
979 | + | #endif |
980 | + | |
981 | + | if (!doAllPairs) { |
982 | + | #ifdef IS_MPI |
983 | + | |
984 | + | for (int i = 0; i < nGroupsInRow_; i++) { |
985 | + | rs = cgRowData.position[i]; |
986 | + | |
987 | + | // scaled positions relative to the box vectors |
988 | + | scaled = invHmat * rs; |
989 | + | |
990 | + | // wrap the vector back into the unit box by subtracting integer box |
991 | + | // numbers |
992 | + | for (int j = 0; j < 3; j++) { |
993 | + | scaled[j] -= roundMe(scaled[j]); |
994 | + | scaled[j] += 0.5; |
995 | + | } |
996 | + | |
997 | + | // find xyz-indices of cell that cutoffGroup is in. |
998 | + | whichCell.x() = nCells_.x() * scaled.x(); |
999 | + | whichCell.y() = nCells_.y() * scaled.y(); |
1000 | + | whichCell.z() = nCells_.z() * scaled.z(); |
1001 | + | |
1002 | + | // find single index of this cell: |
1003 | + | cellIndex = Vlinear(whichCell, nCells_); |
1004 | + | |
1005 | + | // add this cutoff group to the list of groups in this cell; |
1006 | + | cellListRow_[cellIndex].push_back(i); |
1007 | + | } |
1008 | + | |
1009 | + | for (int i = 0; i < nGroupsInCol_; i++) { |
1010 | + | rs = cgColData.position[i]; |
1011 | + | |
1012 | + | // scaled positions relative to the box vectors |
1013 | + | scaled = invHmat * rs; |
1014 | + | |
1015 | + | // wrap the vector back into the unit box by subtracting integer box |
1016 | + | // numbers |
1017 | + | for (int j = 0; j < 3; j++) { |
1018 | + | scaled[j] -= roundMe(scaled[j]); |
1019 | + | scaled[j] += 0.5; |
1020 | + | } |
1021 | + | |
1022 | + | // find xyz-indices of cell that cutoffGroup is in. |
1023 | + | whichCell.x() = nCells_.x() * scaled.x(); |
1024 | + | whichCell.y() = nCells_.y() * scaled.y(); |
1025 | + | whichCell.z() = nCells_.z() * scaled.z(); |
1026 | + | |
1027 | + | // find single index of this cell: |
1028 | + | cellIndex = Vlinear(whichCell, nCells_); |
1029 | + | |
1030 | + | // add this cutoff group to the list of groups in this cell; |
1031 | + | cellListCol_[cellIndex].push_back(i); |
1032 | + | } |
1033 | + | #else |
1034 | + | for (int i = 0; i < nGroups_; i++) { |
1035 | + | rs = snap_->cgData.position[i]; |
1036 | + | |
1037 | + | // scaled positions relative to the box vectors |
1038 | + | scaled = invHmat * rs; |
1039 | + | |
1040 | + | // wrap the vector back into the unit box by subtracting integer box |
1041 | + | // numbers |
1042 | + | for (int j = 0; j < 3; j++) { |
1043 | + | scaled[j] -= roundMe(scaled[j]); |
1044 | + | scaled[j] += 0.5; |
1045 | + | } |
1046 | + | |
1047 | + | // find xyz-indices of cell that cutoffGroup is in. |
1048 | + | whichCell.x() = nCells_.x() * scaled.x(); |
1049 | + | whichCell.y() = nCells_.y() * scaled.y(); |
1050 | + | whichCell.z() = nCells_.z() * scaled.z(); |
1051 | + | |
1052 | + | // find single index of this cell: |
1053 | + | cellIndex = Vlinear(whichCell, nCells_); |
1054 | + | |
1055 | + | // add this cutoff group to the list of groups in this cell; |
1056 | + | cellList_[cellIndex].push_back(i); |
1057 | + | } |
1058 | + | #endif |
1059 | + | |
1060 | + | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1061 | + | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1062 | + | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1063 | + | Vector3i m1v(m1x, m1y, m1z); |
1064 | + | int m1 = Vlinear(m1v, nCells_); |
1065 | + | |
1066 | + | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1067 | + | os != cellOffsets_.end(); ++os) { |
1068 | + | |
1069 | + | Vector3i m2v = m1v + (*os); |
1070 | + | |
1071 | + | if (m2v.x() >= nCells_.x()) { |
1072 | + | m2v.x() = 0; |
1073 | + | } else if (m2v.x() < 0) { |
1074 | + | m2v.x() = nCells_.x() - 1; |
1075 | + | } |
1076 | + | |
1077 | + | if (m2v.y() >= nCells_.y()) { |
1078 | + | m2v.y() = 0; |
1079 | + | } else if (m2v.y() < 0) { |
1080 | + | m2v.y() = nCells_.y() - 1; |
1081 | + | } |
1082 | + | |
1083 | + | if (m2v.z() >= nCells_.z()) { |
1084 | + | m2v.z() = 0; |
1085 | + | } else if (m2v.z() < 0) { |
1086 | + | m2v.z() = nCells_.z() - 1; |
1087 | + | } |
1088 | + | |
1089 | + | int m2 = Vlinear (m2v, nCells_); |
1090 | + | |
1091 | + | #ifdef IS_MPI |
1092 | + | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1093 | + | j1 != cellListRow_[m1].end(); ++j1) { |
1094 | + | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1095 | + | j2 != cellListCol_[m2].end(); ++j2) { |
1096 | + | |
1097 | + | // Always do this if we're in different cells or if |
1098 | + | // we're in the same cell and the global index of the |
1099 | + | // j2 cutoff group is less than the j1 cutoff group |
1100 | + | |
1101 | + | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1102 | + | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1103 | + | snap_->wrapVector(dr); |
1104 | + | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1105 | + | if (dr.lengthSquare() < cuts.third) { |
1106 | + | neighborList.push_back(make_pair((*j1), (*j2))); |
1107 | + | } |
1108 | + | } |
1109 | + | } |
1110 | + | } |
1111 | + | #else |
1112 | + | |
1113 | + | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1114 | + | j1 != cellList_[m1].end(); ++j1) { |
1115 | + | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1116 | + | j2 != cellList_[m2].end(); ++j2) { |
1117 | + | |
1118 | + | // Always do this if we're in different cells or if |
1119 | + | // we're in the same cell and the global index of the |
1120 | + | // j2 cutoff group is less than the j1 cutoff group |
1121 | + | |
1122 | + | if (m2 != m1 || (*j2) < (*j1)) { |
1123 | + | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1124 | + | snap_->wrapVector(dr); |
1125 | + | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1126 | + | if (dr.lengthSquare() < cuts.third) { |
1127 | + | neighborList.push_back(make_pair((*j1), (*j2))); |
1128 | + | } |
1129 | + | } |
1130 | + | } |
1131 | + | } |
1132 | + | #endif |
1133 | + | } |
1134 | + | } |
1135 | + | } |
1136 | + | } |
1137 | + | } else { |
1138 | + | // branch to do all cutoff group pairs |
1139 | + | #ifdef IS_MPI |
1140 | + | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1141 | + | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1142 | + | dr = cgColData.position[j2] - cgRowData.position[j1]; |
1143 | + | snap_->wrapVector(dr); |
1144 | + | cuts = getGroupCutoffs( j1, j2 ); |
1145 | + | if (dr.lengthSquare() < cuts.third) { |
1146 | + | neighborList.push_back(make_pair(j1, j2)); |
1147 | + | } |
1148 | + | } |
1149 | + | } |
1150 | + | #else |
1151 | + | for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1152 | + | for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1153 | + | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1154 | + | snap_->wrapVector(dr); |
1155 | + | cuts = getGroupCutoffs( j1, j2 ); |
1156 | + | if (dr.lengthSquare() < cuts.third) { |
1157 | + | neighborList.push_back(make_pair(j1, j2)); |
1158 | + | } |
1159 | + | } |
1160 | + | } |
1161 | + | #endif |
1162 | + | } |
1163 | + | |
1164 | + | // save the local cutoff group positions for the check that is |
1165 | + | // done on each loop: |
1166 | + | saved_CG_positions_.clear(); |
1167 | + | for (int i = 0; i < nGroups_; i++) |
1168 | + | saved_CG_positions_.push_back(snap_->cgData.position[i]); |
1169 | + | |
1170 | + | return neighborList; |
1171 | + | } |
1172 | } //end namespace OpenMD |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |