# | Line 57 | Line 57 | namespace OpenMD { | |
---|---|---|
57 | storageLayout_ = sman_->getStorageLayout(); | |
58 | ff_ = info_->getForceField(); | |
59 | nLocal_ = snap_->getNumberOfAtoms(); | |
60 | < | |
60 | > | |
61 | nGroups_ = info_->getNLocalCutoffGroups(); | |
62 | – | cerr << "in dId, nGroups = " << nGroups_ << "\n"; |
62 | // gather the information for atomtype IDs (atids): | |
63 | < | identsLocal = info_->getIdentArray(); |
63 | > | idents = info_->getIdentArray(); |
64 | AtomLocalToGlobal = info_->getGlobalAtomIndices(); | |
65 | cgLocalToGlobal = info_->getGlobalGroupIndices(); | |
66 | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); | |
67 | + | |
68 | massFactors = info_->getMassFactors(); | |
69 | – | PairList excludes = info_->getExcludedInteractions(); |
70 | – | PairList oneTwo = info_->getOneTwoInteractions(); |
71 | – | PairList oneThree = info_->getOneThreeInteractions(); |
72 | – | PairList oneFour = info_->getOneFourInteractions(); |
69 | ||
70 | + | PairList* excludes = info_->getExcludedInteractions(); |
71 | + | PairList* oneTwo = info_->getOneTwoInteractions(); |
72 | + | PairList* oneThree = info_->getOneThreeInteractions(); |
73 | + | PairList* oneFour = info_->getOneFourInteractions(); |
74 | + | |
75 | #ifdef IS_MPI | |
76 | ||
77 | AtomCommIntRow = new Communicator<Row,int>(nLocal_); | |
# | Line 108 | Line 109 | namespace OpenMD { | |
109 | identsRow.resize(nAtomsInRow_); | |
110 | identsCol.resize(nAtomsInCol_); | |
111 | ||
112 | < | AtomCommIntRow->gather(identsLocal, identsRow); |
113 | < | AtomCommIntColumn->gather(identsLocal, identsCol); |
112 | > | AtomCommIntRow->gather(idents, identsRow); |
113 | > | AtomCommIntColumn->gather(idents, identsCol); |
114 | ||
115 | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | |
116 | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); | |
# | Line 142 | Line 143 | namespace OpenMD { | |
143 | } | |
144 | } | |
145 | ||
146 | < | skipsForAtom.clear(); |
147 | < | skipsForAtom.resize(nAtomsInRow_); |
146 | > | excludesForAtom.clear(); |
147 | > | excludesForAtom.resize(nAtomsInRow_); |
148 | toposForAtom.clear(); | |
149 | toposForAtom.resize(nAtomsInRow_); | |
150 | topoDist.clear(); | |
# | Line 154 | Line 155 | namespace OpenMD { | |
155 | for (int j = 0; j < nAtomsInCol_; j++) { | |
156 | int jglob = AtomColToGlobal[j]; | |
157 | ||
158 | < | if (excludes.hasPair(iglob, jglob)) |
159 | < | skipsForAtom[i].push_back(j); |
158 | > | if (excludes->hasPair(iglob, jglob)) |
159 | > | excludesForAtom[i].push_back(j); |
160 | ||
161 | < | if (oneTwo.hasPair(iglob, jglob)) { |
161 | > | if (oneTwo->hasPair(iglob, jglob)) { |
162 | toposForAtom[i].push_back(j); | |
163 | topoDist[i].push_back(1); | |
164 | } else { | |
165 | < | if (oneThree.hasPair(iglob, jglob)) { |
165 | > | if (oneThree->hasPair(iglob, jglob)) { |
166 | toposForAtom[i].push_back(j); | |
167 | topoDist[i].push_back(2); | |
168 | } else { | |
169 | < | if (oneFour.hasPair(iglob, jglob)) { |
169 | > | if (oneFour->hasPair(iglob, jglob)) { |
170 | toposForAtom[i].push_back(j); | |
171 | topoDist[i].push_back(3); | |
172 | } | |
# | Line 188 | Line 189 | namespace OpenMD { | |
189 | } | |
190 | } | |
191 | ||
192 | < | skipsForAtom.clear(); |
193 | < | skipsForAtom.resize(nLocal_); |
192 | > | excludesForAtom.clear(); |
193 | > | excludesForAtom.resize(nLocal_); |
194 | toposForAtom.clear(); | |
195 | toposForAtom.resize(nLocal_); | |
196 | topoDist.clear(); | |
# | Line 201 | Line 202 | namespace OpenMD { | |
202 | for (int j = 0; j < nLocal_; j++) { | |
203 | int jglob = AtomLocalToGlobal[j]; | |
204 | ||
205 | < | if (excludes.hasPair(iglob, jglob)) |
206 | < | skipsForAtom[i].push_back(j); |
205 | > | if (excludes->hasPair(iglob, jglob)) |
206 | > | excludesForAtom[i].push_back(j); |
207 | ||
208 | < | if (oneTwo.hasPair(iglob, jglob)) { |
208 | > | if (oneTwo->hasPair(iglob, jglob)) { |
209 | toposForAtom[i].push_back(j); | |
210 | topoDist[i].push_back(1); | |
211 | } else { | |
212 | < | if (oneThree.hasPair(iglob, jglob)) { |
212 | > | if (oneThree->hasPair(iglob, jglob)) { |
213 | toposForAtom[i].push_back(j); | |
214 | topoDist[i].push_back(2); | |
215 | } else { | |
216 | < | if (oneFour.hasPair(iglob, jglob)) { |
216 | > | if (oneFour->hasPair(iglob, jglob)) { |
217 | toposForAtom[i].push_back(j); | |
218 | topoDist[i].push_back(3); | |
219 | } | |
# | Line 222 | Line 223 | namespace OpenMD { | |
223 | } | |
224 | ||
225 | createGtypeCutoffMap(); | |
226 | + | |
227 | } | |
228 | ||
229 | void ForceMatrixDecomposition::createGtypeCutoffMap() { | |
230 | < | |
230 | > | |
231 | RealType tol = 1e-6; | |
232 | RealType rc; | |
233 | int atid; | |
234 | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); | |
235 | < | vector<RealType> atypeCutoff; |
236 | < | atypeCutoff.resize( atypes.size() ); |
235 | < | |
235 | > | map<int, RealType> atypeCutoff; |
236 | > | |
237 | for (set<AtomType*>::iterator at = atypes.begin(); | |
238 | at != atypes.end(); ++at){ | |
238 | – | rc = interactionMan_->getSuggestedCutoffRadius(*at); |
239 | atid = (*at)->getIdent(); | |
240 | < | atypeCutoff[atid] = rc; |
240 | > | if (userChoseCutoff_) |
241 | > | atypeCutoff[atid] = userCutoff_; |
242 | > | else |
243 | > | atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
244 | } | |
245 | ||
246 | vector<RealType> gTypeCutoffs; | |
244 | – | |
247 | // first we do a single loop over the cutoff groups to find the | |
248 | // largest cutoff for any atypes present in this group. | |
249 | #ifdef IS_MPI | |
# | Line 299 | Line 301 | namespace OpenMD { | |
301 | ||
302 | vector<RealType> groupCutoff(nGroups_, 0.0); | |
303 | groupToGtype.resize(nGroups_); | |
302 | – | |
303 | – | cerr << "nGroups = " << nGroups_ << "\n"; |
304 | for (int cg1 = 0; cg1 < nGroups_; cg1++) { | |
305 | ||
306 | groupCutoff[cg1] = 0.0; | |
# | Line 309 | Line 309 | namespace OpenMD { | |
309 | for (vector<int>::iterator ia = atomList.begin(); | |
310 | ia != atomList.end(); ++ia) { | |
311 | int atom1 = (*ia); | |
312 | < | atid = identsLocal[atom1]; |
312 | > | atid = idents[atom1]; |
313 | if (atypeCutoff[atid] > groupCutoff[cg1]) { | |
314 | groupCutoff[cg1] = atypeCutoff[atid]; | |
315 | } | |
# | Line 329 | Line 329 | namespace OpenMD { | |
329 | } | |
330 | #endif | |
331 | ||
332 | – | cerr << "gTypeCutoffs.size() = " << gTypeCutoffs.size() << "\n"; |
332 | // Now we find the maximum group cutoff value present in the simulation | |
333 | ||
334 | RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); | |
# | Line 378 | Line 377 | namespace OpenMD { | |
377 | if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { | |
378 | sprintf(painCave.errMsg, | |
379 | "ForceMatrixDecomposition::createGtypeCutoffMap " | |
380 | < | "user-specified rCut does not match computed group Cutoff\n"); |
380 | > | "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
381 | painCave.severity = OPENMD_ERROR; | |
382 | painCave.isFatal = 1; | |
383 | simError(); | |
# | Line 410 | Line 409 | namespace OpenMD { | |
409 | } | |
410 | ||
411 | void ForceMatrixDecomposition::zeroWorkArrays() { | |
412 | < | |
413 | < | for (int j = 0; j < N_INTERACTION_FAMILIES; j++) { |
415 | < | longRangePot_[j] = 0.0; |
416 | < | } |
412 | > | pairwisePot = 0.0; |
413 | > | embeddingPot = 0.0; |
414 | ||
415 | #ifdef IS_MPI | |
416 | if (storageLayout_ & DataStorage::dslForce) { | |
# | Line 430 | Line 427 | namespace OpenMD { | |
427 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
428 | ||
429 | fill(pot_col.begin(), pot_col.end(), | |
430 | < | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
434 | < | |
435 | < | pot_local = Vector<RealType, N_INTERACTION_FAMILIES>(0.0); |
430 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
431 | ||
432 | if (storageLayout_ & DataStorage::dslParticlePot) { | |
433 | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); | |
# | Line 456 | Line 451 | namespace OpenMD { | |
451 | atomColData.functionalDerivative.end(), 0.0); | |
452 | } | |
453 | ||
454 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
455 | + | fill(atomRowData.skippedCharge.begin(), |
456 | + | atomRowData.skippedCharge.end(), 0.0); |
457 | + | fill(atomColData.skippedCharge.begin(), |
458 | + | atomColData.skippedCharge.end(), 0.0); |
459 | + | } |
460 | + | |
461 | #else | |
462 | ||
463 | if (storageLayout_ & DataStorage::dslParticlePot) { | |
# | Line 475 | Line 477 | namespace OpenMD { | |
477 | fill(snap_->atomData.functionalDerivative.begin(), | |
478 | snap_->atomData.functionalDerivative.end(), 0.0); | |
479 | } | |
480 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
481 | + | fill(snap_->atomData.skippedCharge.begin(), |
482 | + | snap_->atomData.skippedCharge.end(), 0.0); |
483 | + | } |
484 | #endif | |
485 | ||
486 | } | |
# | Line 582 | Line 588 | namespace OpenMD { | |
588 | ||
589 | if (storageLayout_ & DataStorage::dslTorque) { | |
590 | ||
591 | < | int nt = snap_->atomData.force.size(); |
591 | > | int nt = snap_->atomData.torque.size(); |
592 | vector<Vector3d> trq_tmp(nt, V3Zero); | |
593 | ||
594 | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); | |
595 | < | for (int i = 0; i < n; i++) { |
595 | > | for (int i = 0; i < nt; i++) { |
596 | snap_->atomData.torque[i] += trq_tmp[i]; | |
597 | trq_tmp[i] = 0.0; | |
598 | } | |
599 | ||
600 | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); | |
601 | < | for (int i = 0; i < n; i++) |
601 | > | for (int i = 0; i < nt; i++) |
602 | snap_->atomData.torque[i] += trq_tmp[i]; | |
603 | } | |
604 | + | |
605 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
606 | + | |
607 | + | int ns = snap_->atomData.skippedCharge.size(); |
608 | + | vector<RealType> skch_tmp(ns, 0.0); |
609 | + | |
610 | + | AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
611 | + | for (int i = 0; i < ns; i++) { |
612 | + | snap_->atomData.skippedCharge[i] = skch_tmp[i]; |
613 | + | skch_tmp[i] = 0.0; |
614 | + | } |
615 | + | |
616 | + | AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
617 | + | for (int i = 0; i < ns; i++) |
618 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
619 | + | } |
620 | ||
621 | nLocal_ = snap_->getNumberOfAtoms(); | |
622 | ||
# | Line 606 | Line 628 | namespace OpenMD { | |
628 | AtomCommPotRow->scatter(pot_row, pot_temp); | |
629 | ||
630 | for (int ii = 0; ii < pot_temp.size(); ii++ ) | |
631 | < | pot_local += pot_temp[ii]; |
631 | > | pairwisePot += pot_temp[ii]; |
632 | ||
633 | fill(pot_temp.begin(), pot_temp.end(), | |
634 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
# | Line 614 | Line 636 | namespace OpenMD { | |
636 | AtomCommPotColumn->scatter(pot_col, pot_temp); | |
637 | ||
638 | for (int ii = 0; ii < pot_temp.size(); ii++ ) | |
639 | < | pot_local += pot_temp[ii]; |
618 | < | |
639 | > | pairwisePot += pot_temp[ii]; |
640 | #endif | |
641 | + | |
642 | } | |
643 | ||
644 | int ForceMatrixDecomposition::getNAtomsInRow() { | |
# | Line 717 | Line 739 | namespace OpenMD { | |
739 | return d; | |
740 | } | |
741 | ||
742 | < | vector<int> ForceMatrixDecomposition::getSkipsForAtom(int atom1) { |
743 | < | return skipsForAtom[atom1]; |
742 | > | vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
743 | > | return excludesForAtom[atom1]; |
744 | } | |
745 | ||
746 | /** | |
747 | < | * There are a number of reasons to skip a pair or a |
726 | < | * particle. Mostly we do this to exclude atoms who are involved in |
727 | < | * short range interactions (bonds, bends, torsions), but we also |
728 | < | * need to exclude some overcounted interactions that result from |
747 | > | * We need to exclude some overcounted interactions that result from |
748 | * the parallel decomposition. | |
749 | */ | |
750 | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { | |
# | Line 745 | Line 764 | namespace OpenMD { | |
764 | } else { | |
765 | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | |
766 | } | |
767 | + | #endif |
768 | + | return false; |
769 | + | } |
770 | + | |
771 | + | /** |
772 | + | * We need to handle the interactions for atoms who are involved in |
773 | + | * the same rigid body as well as some short range interactions |
774 | + | * (bonds, bends, torsions) differently from other interactions. |
775 | + | * We'll still visit the pairwise routines, but with a flag that |
776 | + | * tells those routines to exclude the pair from direct long range |
777 | + | * interactions. Some indirect interactions (notably reaction |
778 | + | * field) must still be handled for these pairs. |
779 | + | */ |
780 | + | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
781 | + | int unique_id_2; |
782 | + | |
783 | + | #ifdef IS_MPI |
784 | + | // in MPI, we have to look up the unique IDs for the row atom. |
785 | + | unique_id_2 = AtomColToGlobal[atom2]; |
786 | #else | |
787 | // in the normal loop, the atom numbers are unique | |
750 | – | unique_id_1 = atom1; |
788 | unique_id_2 = atom2; | |
789 | #endif | |
790 | ||
791 | < | for (vector<int>::iterator i = skipsForAtom[atom1].begin(); |
792 | < | i != skipsForAtom[atom1].end(); ++i) { |
791 | > | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
792 | > | i != excludesForAtom[atom1].end(); ++i) { |
793 | if ( (*i) == unique_id_2 ) return true; | |
794 | < | } |
794 | > | } |
795 | ||
796 | + | return false; |
797 | } | |
798 | ||
799 | ||
# | Line 776 | Line 814 | namespace OpenMD { | |
814 | } | |
815 | ||
816 | // filling interaction blocks with pointers | |
817 | < | void ForceMatrixDecomposition::fillInteractionData(InteractionData idat, |
818 | < | int atom1, int atom2) { |
817 | > | void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
818 | > | int atom1, int atom2) { |
819 | > | |
820 | > | idat.excluded = excludeAtomPair(atom1, atom2); |
821 | > | |
822 | #ifdef IS_MPI | |
823 | ||
824 | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), | |
# | Line 818 | Line 859 | namespace OpenMD { | |
859 | idat.particlePot2 = &(atomColData.particlePot[atom2]); | |
860 | } | |
861 | ||
862 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
863 | + | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
864 | + | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
865 | + | } |
866 | + | |
867 | #else | |
868 | ||
869 | < | idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), |
870 | < | ff_->getAtomType(identsLocal[atom2]) ); |
869 | > | idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
870 | > | ff_->getAtomType(idents[atom2]) ); |
871 | ||
872 | if (storageLayout_ & DataStorage::dslAmat) { | |
873 | idat.A1 = &(snap_->atomData.aMat[atom1]); | |
# | Line 838 | Line 884 | namespace OpenMD { | |
884 | idat.t2 = &(snap_->atomData.torque[atom2]); | |
885 | } | |
886 | ||
887 | < | if (storageLayout_ & DataStorage::dslDensity) { |
887 | > | if (storageLayout_ & DataStorage::dslDensity) { |
888 | idat.rho1 = &(snap_->atomData.density[atom1]); | |
889 | idat.rho2 = &(snap_->atomData.density[atom2]); | |
890 | } | |
# | Line 858 | Line 904 | namespace OpenMD { | |
904 | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); | |
905 | } | |
906 | ||
907 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
908 | + | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
909 | + | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
910 | + | } |
911 | #endif | |
912 | } | |
913 | ||
914 | ||
915 | < | void ForceMatrixDecomposition::unpackInteractionData(InteractionData idat, int atom1, int atom2) { |
915 | > | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
916 | #ifdef IS_MPI | |
917 | pot_row[atom1] += 0.5 * *(idat.pot); | |
918 | pot_col[atom2] += 0.5 * *(idat.pot); | |
# | Line 870 | Line 920 | namespace OpenMD { | |
920 | atomRowData.force[atom1] += *(idat.f1); | |
921 | atomColData.force[atom2] -= *(idat.f1); | |
922 | #else | |
923 | < | longRangePot_ += *(idat.pot); |
924 | < | |
923 | > | pairwisePot += *(idat.pot); |
924 | > | |
925 | snap_->atomData.force[atom1] += *(idat.f1); | |
926 | snap_->atomData.force[atom2] -= *(idat.f1); | |
927 | #endif | |
928 | < | |
928 | > | |
929 | } | |
930 | ||
881 | – | |
882 | – | void ForceMatrixDecomposition::fillSkipData(InteractionData idat, |
883 | – | int atom1, int atom2) { |
884 | – | #ifdef IS_MPI |
885 | – | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
886 | – | ff_->getAtomType(identsCol[atom2]) ); |
887 | – | |
888 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { |
889 | – | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
890 | – | idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
891 | – | } |
892 | – | if (storageLayout_ & DataStorage::dslTorque) { |
893 | – | idat.t1 = &(atomRowData.torque[atom1]); |
894 | – | idat.t2 = &(atomColData.torque[atom2]); |
895 | – | } |
896 | – | #else |
897 | – | idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), |
898 | – | ff_->getAtomType(identsLocal[atom2]) ); |
899 | – | |
900 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { |
901 | – | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
902 | – | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
903 | – | } |
904 | – | if (storageLayout_ & DataStorage::dslTorque) { |
905 | – | idat.t1 = &(snap_->atomData.torque[atom1]); |
906 | – | idat.t2 = &(snap_->atomData.torque[atom2]); |
907 | – | } |
908 | – | #endif |
909 | – | } |
910 | – | |
931 | /* | |
932 | * buildNeighborList | |
933 | * | |
# | Line 918 | Line 938 | namespace OpenMD { | |
938 | ||
939 | vector<pair<int, int> > neighborList; | |
940 | groupCutoffs cuts; | |
941 | + | bool doAllPairs = false; |
942 | + | |
943 | #ifdef IS_MPI | |
944 | cellListRow_.clear(); | |
945 | cellListCol_.clear(); | |
# | Line 937 | Line 959 | namespace OpenMD { | |
959 | nCells_.y() = (int) ( Hy.length() )/ rList_; | |
960 | nCells_.z() = (int) ( Hz.length() )/ rList_; | |
961 | ||
962 | + | // handle small boxes where the cell offsets can end up repeating cells |
963 | + | |
964 | + | if (nCells_.x() < 3) doAllPairs = true; |
965 | + | if (nCells_.y() < 3) doAllPairs = true; |
966 | + | if (nCells_.z() < 3) doAllPairs = true; |
967 | + | |
968 | Mat3x3d invHmat = snap_->getInvHmat(); | |
969 | Vector3d rs, scaled, dr; | |
970 | Vector3i whichCell; | |
971 | int cellIndex; | |
972 | int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); | |
973 | ||
946 | – | cerr << "flag1\n"; |
974 | #ifdef IS_MPI | |
975 | cellListRow_.resize(nCtot); | |
976 | cellListCol_.resize(nCtot); | |
977 | #else | |
978 | cellList_.resize(nCtot); | |
979 | #endif | |
980 | < | cerr << "flag2\n"; |
980 | > | |
981 | > | if (!doAllPairs) { |
982 | #ifdef IS_MPI | |
955 | – | for (int i = 0; i < nGroupsInRow_; i++) { |
956 | – | rs = cgRowData.position[i]; |
983 | ||
984 | < | // scaled positions relative to the box vectors |
985 | < | scaled = invHmat * rs; |
986 | < | |
987 | < | // wrap the vector back into the unit box by subtracting integer box |
988 | < | // numbers |
989 | < | for (int j = 0; j < 3; j++) { |
990 | < | scaled[j] -= roundMe(scaled[j]); |
991 | < | scaled[j] += 0.5; |
992 | < | } |
993 | < | |
994 | < | // find xyz-indices of cell that cutoffGroup is in. |
995 | < | whichCell.x() = nCells_.x() * scaled.x(); |
996 | < | whichCell.y() = nCells_.y() * scaled.y(); |
997 | < | whichCell.z() = nCells_.z() * scaled.z(); |
998 | < | |
999 | < | // find single index of this cell: |
1000 | < | cellIndex = Vlinear(whichCell, nCells_); |
1001 | < | |
1002 | < | // add this cutoff group to the list of groups in this cell; |
1003 | < | cellListRow_[cellIndex].push_back(i); |
1004 | < | } |
1005 | < | |
1006 | < | for (int i = 0; i < nGroupsInCol_; i++) { |
981 | < | rs = cgColData.position[i]; |
982 | < | |
983 | < | // scaled positions relative to the box vectors |
984 | < | scaled = invHmat * rs; |
985 | < | |
986 | < | // wrap the vector back into the unit box by subtracting integer box |
987 | < | // numbers |
988 | < | for (int j = 0; j < 3; j++) { |
989 | < | scaled[j] -= roundMe(scaled[j]); |
990 | < | scaled[j] += 0.5; |
984 | > | for (int i = 0; i < nGroupsInRow_; i++) { |
985 | > | rs = cgRowData.position[i]; |
986 | > | |
987 | > | // scaled positions relative to the box vectors |
988 | > | scaled = invHmat * rs; |
989 | > | |
990 | > | // wrap the vector back into the unit box by subtracting integer box |
991 | > | // numbers |
992 | > | for (int j = 0; j < 3; j++) { |
993 | > | scaled[j] -= roundMe(scaled[j]); |
994 | > | scaled[j] += 0.5; |
995 | > | } |
996 | > | |
997 | > | // find xyz-indices of cell that cutoffGroup is in. |
998 | > | whichCell.x() = nCells_.x() * scaled.x(); |
999 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1000 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1001 | > | |
1002 | > | // find single index of this cell: |
1003 | > | cellIndex = Vlinear(whichCell, nCells_); |
1004 | > | |
1005 | > | // add this cutoff group to the list of groups in this cell; |
1006 | > | cellListRow_[cellIndex].push_back(i); |
1007 | } | |
1008 | < | |
1009 | < | // find xyz-indices of cell that cutoffGroup is in. |
1010 | < | whichCell.x() = nCells_.x() * scaled.x(); |
1011 | < | whichCell.y() = nCells_.y() * scaled.y(); |
1012 | < | whichCell.z() = nCells_.z() * scaled.z(); |
1013 | < | |
1014 | < | // find single index of this cell: |
1015 | < | cellIndex = Vlinear(whichCell, nCells_); |
1016 | < | |
1017 | < | // add this cutoff group to the list of groups in this cell; |
1018 | < | cellListCol_[cellIndex].push_back(i); |
1019 | < | } |
1008 | > | |
1009 | > | for (int i = 0; i < nGroupsInCol_; i++) { |
1010 | > | rs = cgColData.position[i]; |
1011 | > | |
1012 | > | // scaled positions relative to the box vectors |
1013 | > | scaled = invHmat * rs; |
1014 | > | |
1015 | > | // wrap the vector back into the unit box by subtracting integer box |
1016 | > | // numbers |
1017 | > | for (int j = 0; j < 3; j++) { |
1018 | > | scaled[j] -= roundMe(scaled[j]); |
1019 | > | scaled[j] += 0.5; |
1020 | > | } |
1021 | > | |
1022 | > | // find xyz-indices of cell that cutoffGroup is in. |
1023 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1024 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1025 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1026 | > | |
1027 | > | // find single index of this cell: |
1028 | > | cellIndex = Vlinear(whichCell, nCells_); |
1029 | > | |
1030 | > | // add this cutoff group to the list of groups in this cell; |
1031 | > | cellListCol_[cellIndex].push_back(i); |
1032 | > | } |
1033 | #else | |
1034 | < | for (int i = 0; i < nGroups_; i++) { |
1035 | < | rs = snap_->cgData.position[i]; |
1036 | < | |
1037 | < | // scaled positions relative to the box vectors |
1038 | < | scaled = invHmat * rs; |
1039 | < | |
1040 | < | // wrap the vector back into the unit box by subtracting integer box |
1041 | < | // numbers |
1042 | < | for (int j = 0; j < 3; j++) { |
1043 | < | scaled[j] -= roundMe(scaled[j]); |
1044 | < | scaled[j] += 0.5; |
1034 | > | for (int i = 0; i < nGroups_; i++) { |
1035 | > | rs = snap_->cgData.position[i]; |
1036 | > | |
1037 | > | // scaled positions relative to the box vectors |
1038 | > | scaled = invHmat * rs; |
1039 | > | |
1040 | > | // wrap the vector back into the unit box by subtracting integer box |
1041 | > | // numbers |
1042 | > | for (int j = 0; j < 3; j++) { |
1043 | > | scaled[j] -= roundMe(scaled[j]); |
1044 | > | scaled[j] += 0.5; |
1045 | > | } |
1046 | > | |
1047 | > | // find xyz-indices of cell that cutoffGroup is in. |
1048 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1049 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1050 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1051 | > | |
1052 | > | // find single index of this cell: |
1053 | > | cellIndex = Vlinear(whichCell, nCells_); |
1054 | > | |
1055 | > | // add this cutoff group to the list of groups in this cell; |
1056 | > | cellList_[cellIndex].push_back(i); |
1057 | } | |
1017 | – | |
1018 | – | // find xyz-indices of cell that cutoffGroup is in. |
1019 | – | whichCell.x() = nCells_.x() * scaled.x(); |
1020 | – | whichCell.y() = nCells_.y() * scaled.y(); |
1021 | – | whichCell.z() = nCells_.z() * scaled.z(); |
1022 | – | |
1023 | – | // find single index of this cell: |
1024 | – | cellIndex = Vlinear(whichCell, nCells_); |
1025 | – | |
1026 | – | // add this cutoff group to the list of groups in this cell; |
1027 | – | cellList_[cellIndex].push_back(i); |
1028 | – | } |
1058 | #endif | |
1059 | ||
1060 | < | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1061 | < | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1062 | < | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1063 | < | Vector3i m1v(m1x, m1y, m1z); |
1064 | < | int m1 = Vlinear(m1v, nCells_); |
1036 | < | |
1037 | < | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1038 | < | os != cellOffsets_.end(); ++os) { |
1060 | > | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1061 | > | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1062 | > | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1063 | > | Vector3i m1v(m1x, m1y, m1z); |
1064 | > | int m1 = Vlinear(m1v, nCells_); |
1065 | ||
1066 | < | Vector3i m2v = m1v + (*os); |
1067 | < | |
1068 | < | if (m2v.x() >= nCells_.x()) { |
1069 | < | m2v.x() = 0; |
1070 | < | } else if (m2v.x() < 0) { |
1071 | < | m2v.x() = nCells_.x() - 1; |
1072 | < | } |
1073 | < | |
1074 | < | if (m2v.y() >= nCells_.y()) { |
1075 | < | m2v.y() = 0; |
1076 | < | } else if (m2v.y() < 0) { |
1077 | < | m2v.y() = nCells_.y() - 1; |
1078 | < | } |
1079 | < | |
1080 | < | if (m2v.z() >= nCells_.z()) { |
1081 | < | m2v.z() = 0; |
1082 | < | } else if (m2v.z() < 0) { |
1083 | < | m2v.z() = nCells_.z() - 1; |
1084 | < | } |
1085 | < | |
1086 | < | int m2 = Vlinear (m2v, nCells_); |
1087 | < | |
1066 | > | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1067 | > | os != cellOffsets_.end(); ++os) { |
1068 | > | |
1069 | > | Vector3i m2v = m1v + (*os); |
1070 | > | |
1071 | > | if (m2v.x() >= nCells_.x()) { |
1072 | > | m2v.x() = 0; |
1073 | > | } else if (m2v.x() < 0) { |
1074 | > | m2v.x() = nCells_.x() - 1; |
1075 | > | } |
1076 | > | |
1077 | > | if (m2v.y() >= nCells_.y()) { |
1078 | > | m2v.y() = 0; |
1079 | > | } else if (m2v.y() < 0) { |
1080 | > | m2v.y() = nCells_.y() - 1; |
1081 | > | } |
1082 | > | |
1083 | > | if (m2v.z() >= nCells_.z()) { |
1084 | > | m2v.z() = 0; |
1085 | > | } else if (m2v.z() < 0) { |
1086 | > | m2v.z() = nCells_.z() - 1; |
1087 | > | } |
1088 | > | |
1089 | > | int m2 = Vlinear (m2v, nCells_); |
1090 | > | |
1091 | #ifdef IS_MPI | |
1092 | < | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1093 | < | j1 != cellListRow_[m1].end(); ++j1) { |
1094 | < | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1095 | < | j2 != cellListCol_[m2].end(); ++j2) { |
1096 | < | |
1097 | < | // Always do this if we're in different cells or if |
1098 | < | // we're in the same cell and the global index of the |
1099 | < | // j2 cutoff group is less than the j1 cutoff group |
1100 | < | |
1101 | < | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1102 | < | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1103 | < | snap_->wrapVector(dr); |
1104 | < | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1105 | < | if (dr.lengthSquare() < cuts.third) { |
1106 | < | neighborList.push_back(make_pair((*j1), (*j2))); |
1092 | > | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1093 | > | j1 != cellListRow_[m1].end(); ++j1) { |
1094 | > | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1095 | > | j2 != cellListCol_[m2].end(); ++j2) { |
1096 | > | |
1097 | > | // Always do this if we're in different cells or if |
1098 | > | // we're in the same cell and the global index of the |
1099 | > | // j2 cutoff group is less than the j1 cutoff group |
1100 | > | |
1101 | > | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1102 | > | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1103 | > | snap_->wrapVector(dr); |
1104 | > | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1105 | > | if (dr.lengthSquare() < cuts.third) { |
1106 | > | neighborList.push_back(make_pair((*j1), (*j2))); |
1107 | > | } |
1108 | } | |
1109 | } | |
1110 | } | |
1081 | – | } |
1111 | #else | |
1112 | < | |
1113 | < | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1114 | < | j1 != cellList_[m1].end(); ++j1) { |
1115 | < | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1116 | < | j2 != cellList_[m2].end(); ++j2) { |
1117 | < | |
1118 | < | // Always do this if we're in different cells or if |
1119 | < | // we're in the same cell and the global index of the |
1120 | < | // j2 cutoff group is less than the j1 cutoff group |
1121 | < | |
1122 | < | if (m2 != m1 || (*j2) < (*j1)) { |
1123 | < | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1124 | < | snap_->wrapVector(dr); |
1125 | < | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1126 | < | if (dr.lengthSquare() < cuts.third) { |
1127 | < | neighborList.push_back(make_pair((*j1), (*j2))); |
1112 | > | |
1113 | > | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1114 | > | j1 != cellList_[m1].end(); ++j1) { |
1115 | > | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1116 | > | j2 != cellList_[m2].end(); ++j2) { |
1117 | > | |
1118 | > | // Always do this if we're in different cells or if |
1119 | > | // we're in the same cell and the global index of the |
1120 | > | // j2 cutoff group is less than the j1 cutoff group |
1121 | > | |
1122 | > | if (m2 != m1 || (*j2) < (*j1)) { |
1123 | > | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1124 | > | snap_->wrapVector(dr); |
1125 | > | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1126 | > | if (dr.lengthSquare() < cuts.third) { |
1127 | > | neighborList.push_back(make_pair((*j1), (*j2))); |
1128 | > | } |
1129 | } | |
1130 | } | |
1131 | } | |
1102 | – | } |
1132 | #endif | |
1133 | + | } |
1134 | } | |
1135 | } | |
1136 | } | |
1137 | + | } else { |
1138 | + | // branch to do all cutoff group pairs |
1139 | + | #ifdef IS_MPI |
1140 | + | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1141 | + | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1142 | + | dr = cgColData.position[j2] - cgRowData.position[j1]; |
1143 | + | snap_->wrapVector(dr); |
1144 | + | cuts = getGroupCutoffs( j1, j2 ); |
1145 | + | if (dr.lengthSquare() < cuts.third) { |
1146 | + | neighborList.push_back(make_pair(j1, j2)); |
1147 | + | } |
1148 | + | } |
1149 | + | } |
1150 | + | #else |
1151 | + | for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1152 | + | for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1153 | + | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1154 | + | snap_->wrapVector(dr); |
1155 | + | cuts = getGroupCutoffs( j1, j2 ); |
1156 | + | if (dr.lengthSquare() < cuts.third) { |
1157 | + | neighborList.push_back(make_pair(j1, j2)); |
1158 | + | } |
1159 | + | } |
1160 | + | } |
1161 | + | #endif |
1162 | } | |
1163 | < | |
1163 | > | |
1164 | // save the local cutoff group positions for the check that is | |
1165 | // done on each loop: | |
1166 | saved_CG_positions_.clear(); |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |