# | Line 38 | Line 38 | |
---|---|---|
38 | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | |
39 | * [4] Vardeman & Gezelter, in progress (2009). | |
40 | */ | |
41 | < | #include "parallel/ForceDecomposition.hpp" |
41 | > | #include "parallel/ForceMatrixDecomposition.hpp" |
42 | #include "math/SquareMatrix3.hpp" | |
43 | #include "nonbonded/NonBondedInteraction.hpp" | |
44 | #include "brains/SnapshotManager.hpp" | |
45 | + | #include "brains/PairList.hpp" |
46 | ||
47 | using namespace std; | |
48 | namespace OpenMD { | |
# | Line 51 | Line 52 | namespace OpenMD { | |
52 | * SimulationSetup | |
53 | */ | |
54 | ||
55 | < | void ForceDecomposition::distributeInitialData() { |
56 | < | #ifdef IS_MPI |
57 | < | Snapshot* snap = sman_->getCurrentSnapshot(); |
58 | < | int nLocal = snap->getNumberOfAtoms(); |
59 | < | int nGroups = snap->getNumberOfCutoffGroups(); |
55 | > | void ForceMatrixDecomposition::distributeInitialData() { |
56 | > | snap_ = sman_->getCurrentSnapshot(); |
57 | > | storageLayout_ = sman_->getStorageLayout(); |
58 | > | ff_ = info_->getForceField(); |
59 | > | nLocal_ = snap_->getNumberOfAtoms(); |
60 | > | |
61 | > | nGroups_ = info_->getNLocalCutoffGroups(); |
62 | > | // gather the information for atomtype IDs (atids): |
63 | > | idents = info_->getIdentArray(); |
64 | > | AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
65 | > | cgLocalToGlobal = info_->getGlobalGroupIndices(); |
66 | > | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
67 | ||
68 | < | AtomCommIntI = new Communicator<Row,int>(nLocal); |
61 | < | AtomCommRealI = new Communicator<Row,RealType>(nLocal); |
62 | < | AtomCommVectorI = new Communicator<Row,Vector3d>(nLocal); |
63 | < | AtomCommMatrixI = new Communicator<Row,Mat3x3d>(nLocal); |
68 | > | massFactors = info_->getMassFactors(); |
69 | ||
70 | < | AtomCommIntJ = new Communicator<Column,int>(nLocal); |
71 | < | AtomCommRealJ = new Communicator<Column,RealType>(nLocal); |
72 | < | AtomCommVectorJ = new Communicator<Column,Vector3d>(nLocal); |
73 | < | AtomCommMatrixJ = new Communicator<Column,Mat3x3d>(nLocal); |
70 | > | PairList* excludes = info_->getExcludedInteractions(); |
71 | > | PairList* oneTwo = info_->getOneTwoInteractions(); |
72 | > | PairList* oneThree = info_->getOneThreeInteractions(); |
73 | > | PairList* oneFour = info_->getOneFourInteractions(); |
74 | ||
75 | < | cgCommIntI = new Communicator<Row,int>(nGroups); |
76 | < | cgCommVectorI = new Communicator<Row,Vector3d>(nGroups); |
77 | < | cgCommIntJ = new Communicator<Column,int>(nGroups); |
78 | < | cgCommVectorJ = new Communicator<Column,Vector3d>(nGroups); |
75 | > | #ifdef IS_MPI |
76 | > | |
77 | > | AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
78 | > | AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
79 | > | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
80 | > | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
81 | > | AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
82 | ||
83 | < | int nAtomsInRow = AtomCommIntI->getSize(); |
84 | < | int nAtomsInCol = AtomCommIntJ->getSize(); |
85 | < | int nGroupsInRow = cgCommIntI->getSize(); |
86 | < | int nGroupsInCol = cgCommIntJ->getSize(); |
83 | > | AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
84 | > | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
85 | > | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
86 | > | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
87 | > | AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
88 | ||
89 | < | vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES, |
90 | < | vector<RealType> (nAtomsInRow, 0.0)); |
91 | < | vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES, |
92 | < | vector<RealType> (nAtomsInCol, 0.0)); |
89 | > | cgCommIntRow = new Communicator<Row,int>(nGroups_); |
90 | > | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
91 | > | cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
92 | > | cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
93 | > | |
94 | > | nAtomsInRow_ = AtomCommIntRow->getSize(); |
95 | > | nAtomsInCol_ = AtomCommIntColumn->getSize(); |
96 | > | nGroupsInRow_ = cgCommIntRow->getSize(); |
97 | > | nGroupsInCol_ = cgCommIntColumn->getSize(); |
98 | > | |
99 | > | // Modify the data storage objects with the correct layouts and sizes: |
100 | > | atomRowData.resize(nAtomsInRow_); |
101 | > | atomRowData.setStorageLayout(storageLayout_); |
102 | > | atomColData.resize(nAtomsInCol_); |
103 | > | atomColData.setStorageLayout(storageLayout_); |
104 | > | cgRowData.resize(nGroupsInRow_); |
105 | > | cgRowData.setStorageLayout(DataStorage::dslPosition); |
106 | > | cgColData.resize(nGroupsInCol_); |
107 | > | cgColData.setStorageLayout(DataStorage::dslPosition); |
108 | > | |
109 | > | identsRow.resize(nAtomsInRow_); |
110 | > | identsCol.resize(nAtomsInCol_); |
111 | ||
112 | < | vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0); |
112 | > | AtomCommIntRow->gather(idents, identsRow); |
113 | > | AtomCommIntColumn->gather(idents, identsCol); |
114 | > | |
115 | > | // allocate memory for the parallel objects |
116 | > | atypesRow.resize(nAtomsInRow_); |
117 | > | atypesCol.resize(nAtomsInCol_); |
118 | ||
119 | < | // gather the information for atomtype IDs (atids): |
120 | < | AtomCommIntI->gather(info_->getIdentArray(), identsRow); |
121 | < | AtomCommIntJ->gather(info_->getIdentArray(), identsCol); |
119 | > | for (int i = 0; i < nAtomsInRow_; i++) |
120 | > | atypesRow[i] = ff_->getAtomType(identsRow[i]); |
121 | > | for (int i = 0; i < nAtomsInCol_; i++) |
122 | > | atypesCol[i] = ff_->getAtomType(identsCol[i]); |
123 | ||
124 | < | AtomLocalToGlobal = info_->getLocalToGlobalAtomIndex(); |
125 | < | AtomCommIntI->gather(AtomLocalToGlobal, AtomRowToGlobal); |
93 | < | AtomCommIntJ->gather(AtomLocalToGlobal, AtomColToGlobal); |
124 | > | pot_row.resize(nAtomsInRow_); |
125 | > | pot_col.resize(nAtomsInCol_); |
126 | ||
127 | < | cgLocalToGlobal = info_->getLocalToGlobalCutoffGroupIndex(); |
128 | < | cgCommIntI->gather(cgLocalToGlobal, cgRowToGlobal); |
129 | < | cgCommIntJ->gather(cgLocalToGlobal, cgColToGlobal); |
127 | > | AtomRowToGlobal.resize(nAtomsInRow_); |
128 | > | AtomColToGlobal.resize(nAtomsInCol_); |
129 | > | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
130 | > | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
131 | > | |
132 | > | cgRowToGlobal.resize(nGroupsInRow_); |
133 | > | cgColToGlobal.resize(nGroupsInCol_); |
134 | > | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
135 | > | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
136 | ||
137 | < | |
138 | < | |
137 | > | massFactorsRow.resize(nAtomsInRow_); |
138 | > | massFactorsCol.resize(nAtomsInCol_); |
139 | > | AtomCommRealRow->gather(massFactors, massFactorsRow); |
140 | > | AtomCommRealColumn->gather(massFactors, massFactorsCol); |
141 | ||
142 | + | groupListRow_.clear(); |
143 | + | groupListRow_.resize(nGroupsInRow_); |
144 | + | for (int i = 0; i < nGroupsInRow_; i++) { |
145 | + | int gid = cgRowToGlobal[i]; |
146 | + | for (int j = 0; j < nAtomsInRow_; j++) { |
147 | + | int aid = AtomRowToGlobal[j]; |
148 | + | if (globalGroupMembership[aid] == gid) |
149 | + | groupListRow_[i].push_back(j); |
150 | + | } |
151 | + | } |
152 | ||
153 | + | groupListCol_.clear(); |
154 | + | groupListCol_.resize(nGroupsInCol_); |
155 | + | for (int i = 0; i < nGroupsInCol_; i++) { |
156 | + | int gid = cgColToGlobal[i]; |
157 | + | for (int j = 0; j < nAtomsInCol_; j++) { |
158 | + | int aid = AtomColToGlobal[j]; |
159 | + | if (globalGroupMembership[aid] == gid) |
160 | + | groupListCol_[i].push_back(j); |
161 | + | } |
162 | + | } |
163 | ||
164 | < | // still need: |
165 | < | // topoDist |
166 | < | // exclude |
164 | > | excludesForAtom.clear(); |
165 | > | excludesForAtom.resize(nAtomsInRow_); |
166 | > | toposForAtom.clear(); |
167 | > | toposForAtom.resize(nAtomsInRow_); |
168 | > | topoDist.clear(); |
169 | > | topoDist.resize(nAtomsInRow_); |
170 | > | for (int i = 0; i < nAtomsInRow_; i++) { |
171 | > | int iglob = AtomRowToGlobal[i]; |
172 | > | |
173 | > | for (int j = 0; j < nAtomsInCol_; j++) { |
174 | > | int jglob = AtomColToGlobal[j]; |
175 | > | |
176 | > | if (excludes->hasPair(iglob, jglob)) |
177 | > | excludesForAtom[i].push_back(j); |
178 | > | |
179 | > | if (oneTwo->hasPair(iglob, jglob)) { |
180 | > | toposForAtom[i].push_back(j); |
181 | > | topoDist[i].push_back(1); |
182 | > | } else { |
183 | > | if (oneThree->hasPair(iglob, jglob)) { |
184 | > | toposForAtom[i].push_back(j); |
185 | > | topoDist[i].push_back(2); |
186 | > | } else { |
187 | > | if (oneFour->hasPair(iglob, jglob)) { |
188 | > | toposForAtom[i].push_back(j); |
189 | > | topoDist[i].push_back(3); |
190 | > | } |
191 | > | } |
192 | > | } |
193 | > | } |
194 | > | } |
195 | > | |
196 | #endif | |
197 | + | |
198 | + | // allocate memory for the parallel objects |
199 | + | atypesLocal.resize(nLocal_); |
200 | + | |
201 | + | for (int i = 0; i < nLocal_; i++) |
202 | + | atypesLocal[i] = ff_->getAtomType(idents[i]); |
203 | + | |
204 | + | groupList_.clear(); |
205 | + | groupList_.resize(nGroups_); |
206 | + | for (int i = 0; i < nGroups_; i++) { |
207 | + | int gid = cgLocalToGlobal[i]; |
208 | + | for (int j = 0; j < nLocal_; j++) { |
209 | + | int aid = AtomLocalToGlobal[j]; |
210 | + | if (globalGroupMembership[aid] == gid) { |
211 | + | groupList_[i].push_back(j); |
212 | + | } |
213 | + | } |
214 | + | } |
215 | + | |
216 | + | excludesForAtom.clear(); |
217 | + | excludesForAtom.resize(nLocal_); |
218 | + | toposForAtom.clear(); |
219 | + | toposForAtom.resize(nLocal_); |
220 | + | topoDist.clear(); |
221 | + | topoDist.resize(nLocal_); |
222 | + | |
223 | + | for (int i = 0; i < nLocal_; i++) { |
224 | + | int iglob = AtomLocalToGlobal[i]; |
225 | + | |
226 | + | for (int j = 0; j < nLocal_; j++) { |
227 | + | int jglob = AtomLocalToGlobal[j]; |
228 | + | |
229 | + | if (excludes->hasPair(iglob, jglob)) |
230 | + | excludesForAtom[i].push_back(j); |
231 | + | |
232 | + | if (oneTwo->hasPair(iglob, jglob)) { |
233 | + | toposForAtom[i].push_back(j); |
234 | + | topoDist[i].push_back(1); |
235 | + | } else { |
236 | + | if (oneThree->hasPair(iglob, jglob)) { |
237 | + | toposForAtom[i].push_back(j); |
238 | + | topoDist[i].push_back(2); |
239 | + | } else { |
240 | + | if (oneFour->hasPair(iglob, jglob)) { |
241 | + | toposForAtom[i].push_back(j); |
242 | + | topoDist[i].push_back(3); |
243 | + | } |
244 | + | } |
245 | + | } |
246 | + | } |
247 | + | } |
248 | + | |
249 | + | createGtypeCutoffMap(); |
250 | + | |
251 | } | |
252 | + | |
253 | + | void ForceMatrixDecomposition::createGtypeCutoffMap() { |
254 | ||
255 | + | RealType tol = 1e-6; |
256 | + | largestRcut_ = 0.0; |
257 | + | RealType rc; |
258 | + | int atid; |
259 | + | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
260 | + | |
261 | + | map<int, RealType> atypeCutoff; |
262 | + | |
263 | + | for (set<AtomType*>::iterator at = atypes.begin(); |
264 | + | at != atypes.end(); ++at){ |
265 | + | atid = (*at)->getIdent(); |
266 | + | if (userChoseCutoff_) |
267 | + | atypeCutoff[atid] = userCutoff_; |
268 | + | else |
269 | + | atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
270 | + | } |
271 | + | |
272 | + | vector<RealType> gTypeCutoffs; |
273 | + | // first we do a single loop over the cutoff groups to find the |
274 | + | // largest cutoff for any atypes present in this group. |
275 | + | #ifdef IS_MPI |
276 | + | vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); |
277 | + | groupRowToGtype.resize(nGroupsInRow_); |
278 | + | for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { |
279 | + | vector<int> atomListRow = getAtomsInGroupRow(cg1); |
280 | + | for (vector<int>::iterator ia = atomListRow.begin(); |
281 | + | ia != atomListRow.end(); ++ia) { |
282 | + | int atom1 = (*ia); |
283 | + | atid = identsRow[atom1]; |
284 | + | if (atypeCutoff[atid] > groupCutoffRow[cg1]) { |
285 | + | groupCutoffRow[cg1] = atypeCutoff[atid]; |
286 | + | } |
287 | + | } |
288 | ||
289 | + | bool gTypeFound = false; |
290 | + | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
291 | + | if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) { |
292 | + | groupRowToGtype[cg1] = gt; |
293 | + | gTypeFound = true; |
294 | + | } |
295 | + | } |
296 | + | if (!gTypeFound) { |
297 | + | gTypeCutoffs.push_back( groupCutoffRow[cg1] ); |
298 | + | groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; |
299 | + | } |
300 | + | |
301 | + | } |
302 | + | vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); |
303 | + | groupColToGtype.resize(nGroupsInCol_); |
304 | + | for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { |
305 | + | vector<int> atomListCol = getAtomsInGroupColumn(cg2); |
306 | + | for (vector<int>::iterator jb = atomListCol.begin(); |
307 | + | jb != atomListCol.end(); ++jb) { |
308 | + | int atom2 = (*jb); |
309 | + | atid = identsCol[atom2]; |
310 | + | if (atypeCutoff[atid] > groupCutoffCol[cg2]) { |
311 | + | groupCutoffCol[cg2] = atypeCutoff[atid]; |
312 | + | } |
313 | + | } |
314 | + | bool gTypeFound = false; |
315 | + | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
316 | + | if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) { |
317 | + | groupColToGtype[cg2] = gt; |
318 | + | gTypeFound = true; |
319 | + | } |
320 | + | } |
321 | + | if (!gTypeFound) { |
322 | + | gTypeCutoffs.push_back( groupCutoffCol[cg2] ); |
323 | + | groupColToGtype[cg2] = gTypeCutoffs.size() - 1; |
324 | + | } |
325 | + | } |
326 | + | #else |
327 | ||
328 | < | void ForceDecomposition::distributeData() { |
328 | > | vector<RealType> groupCutoff(nGroups_, 0.0); |
329 | > | groupToGtype.resize(nGroups_); |
330 | > | for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
331 | > | groupCutoff[cg1] = 0.0; |
332 | > | vector<int> atomList = getAtomsInGroupRow(cg1); |
333 | > | for (vector<int>::iterator ia = atomList.begin(); |
334 | > | ia != atomList.end(); ++ia) { |
335 | > | int atom1 = (*ia); |
336 | > | atid = idents[atom1]; |
337 | > | if (atypeCutoff[atid] > groupCutoff[cg1]) |
338 | > | groupCutoff[cg1] = atypeCutoff[atid]; |
339 | > | } |
340 | > | |
341 | > | bool gTypeFound = false; |
342 | > | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
343 | > | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
344 | > | groupToGtype[cg1] = gt; |
345 | > | gTypeFound = true; |
346 | > | } |
347 | > | } |
348 | > | if (!gTypeFound) { |
349 | > | gTypeCutoffs.push_back( groupCutoff[cg1] ); |
350 | > | groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
351 | > | } |
352 | > | } |
353 | > | #endif |
354 | > | |
355 | > | // Now we find the maximum group cutoff value present in the simulation |
356 | > | |
357 | > | RealType groupMax = *max_element(gTypeCutoffs.begin(), |
358 | > | gTypeCutoffs.end()); |
359 | > | |
360 | #ifdef IS_MPI | |
361 | < | Snapshot* snap = sman_->getCurrentSnapshot(); |
361 | > | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, |
362 | > | MPI::MAX); |
363 | > | #endif |
364 | ||
365 | + | RealType tradRcut = groupMax; |
366 | + | |
367 | + | for (int i = 0; i < gTypeCutoffs.size(); i++) { |
368 | + | for (int j = 0; j < gTypeCutoffs.size(); j++) { |
369 | + | RealType thisRcut; |
370 | + | switch(cutoffPolicy_) { |
371 | + | case TRADITIONAL: |
372 | + | thisRcut = tradRcut; |
373 | + | break; |
374 | + | case MIX: |
375 | + | thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); |
376 | + | break; |
377 | + | case MAX: |
378 | + | thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); |
379 | + | break; |
380 | + | default: |
381 | + | sprintf(painCave.errMsg, |
382 | + | "ForceMatrixDecomposition::createGtypeCutoffMap " |
383 | + | "hit an unknown cutoff policy!\n"); |
384 | + | painCave.severity = OPENMD_ERROR; |
385 | + | painCave.isFatal = 1; |
386 | + | simError(); |
387 | + | break; |
388 | + | } |
389 | + | |
390 | + | pair<int,int> key = make_pair(i,j); |
391 | + | gTypeCutoffMap[key].first = thisRcut; |
392 | + | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
393 | + | gTypeCutoffMap[key].second = thisRcut*thisRcut; |
394 | + | gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
395 | + | // sanity check |
396 | + | |
397 | + | if (userChoseCutoff_) { |
398 | + | if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
399 | + | sprintf(painCave.errMsg, |
400 | + | "ForceMatrixDecomposition::createGtypeCutoffMap " |
401 | + | "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
402 | + | painCave.severity = OPENMD_ERROR; |
403 | + | painCave.isFatal = 1; |
404 | + | simError(); |
405 | + | } |
406 | + | } |
407 | + | } |
408 | + | } |
409 | + | } |
410 | + | |
411 | + | |
412 | + | groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
413 | + | int i, j; |
414 | + | #ifdef IS_MPI |
415 | + | i = groupRowToGtype[cg1]; |
416 | + | j = groupColToGtype[cg2]; |
417 | + | #else |
418 | + | i = groupToGtype[cg1]; |
419 | + | j = groupToGtype[cg2]; |
420 | + | #endif |
421 | + | return gTypeCutoffMap[make_pair(i,j)]; |
422 | + | } |
423 | + | |
424 | + | int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
425 | + | for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
426 | + | if (toposForAtom[atom1][j] == atom2) |
427 | + | return topoDist[atom1][j]; |
428 | + | } |
429 | + | return 0; |
430 | + | } |
431 | + | |
432 | + | void ForceMatrixDecomposition::zeroWorkArrays() { |
433 | + | pairwisePot = 0.0; |
434 | + | embeddingPot = 0.0; |
435 | + | |
436 | + | #ifdef IS_MPI |
437 | + | if (storageLayout_ & DataStorage::dslForce) { |
438 | + | fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); |
439 | + | fill(atomColData.force.begin(), atomColData.force.end(), V3Zero); |
440 | + | } |
441 | + | |
442 | + | if (storageLayout_ & DataStorage::dslTorque) { |
443 | + | fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero); |
444 | + | fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero); |
445 | + | } |
446 | + | |
447 | + | fill(pot_row.begin(), pot_row.end(), |
448 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
449 | + | |
450 | + | fill(pot_col.begin(), pot_col.end(), |
451 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
452 | + | |
453 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
454 | + | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
455 | + | 0.0); |
456 | + | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), |
457 | + | 0.0); |
458 | + | } |
459 | + | |
460 | + | if (storageLayout_ & DataStorage::dslDensity) { |
461 | + | fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0); |
462 | + | fill(atomColData.density.begin(), atomColData.density.end(), 0.0); |
463 | + | } |
464 | + | |
465 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
466 | + | fill(atomRowData.functional.begin(), atomRowData.functional.end(), |
467 | + | 0.0); |
468 | + | fill(atomColData.functional.begin(), atomColData.functional.end(), |
469 | + | 0.0); |
470 | + | } |
471 | + | |
472 | + | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
473 | + | fill(atomRowData.functionalDerivative.begin(), |
474 | + | atomRowData.functionalDerivative.end(), 0.0); |
475 | + | fill(atomColData.functionalDerivative.begin(), |
476 | + | atomColData.functionalDerivative.end(), 0.0); |
477 | + | } |
478 | + | |
479 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
480 | + | fill(atomRowData.skippedCharge.begin(), |
481 | + | atomRowData.skippedCharge.end(), 0.0); |
482 | + | fill(atomColData.skippedCharge.begin(), |
483 | + | atomColData.skippedCharge.end(), 0.0); |
484 | + | } |
485 | + | |
486 | + | #endif |
487 | + | // even in parallel, we need to zero out the local arrays: |
488 | + | |
489 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
490 | + | fill(snap_->atomData.particlePot.begin(), |
491 | + | snap_->atomData.particlePot.end(), 0.0); |
492 | + | } |
493 | + | |
494 | + | if (storageLayout_ & DataStorage::dslDensity) { |
495 | + | fill(snap_->atomData.density.begin(), |
496 | + | snap_->atomData.density.end(), 0.0); |
497 | + | } |
498 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
499 | + | fill(snap_->atomData.functional.begin(), |
500 | + | snap_->atomData.functional.end(), 0.0); |
501 | + | } |
502 | + | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
503 | + | fill(snap_->atomData.functionalDerivative.begin(), |
504 | + | snap_->atomData.functionalDerivative.end(), 0.0); |
505 | + | } |
506 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
507 | + | fill(snap_->atomData.skippedCharge.begin(), |
508 | + | snap_->atomData.skippedCharge.end(), 0.0); |
509 | + | } |
510 | + | |
511 | + | } |
512 | + | |
513 | + | |
514 | + | void ForceMatrixDecomposition::distributeData() { |
515 | + | snap_ = sman_->getCurrentSnapshot(); |
516 | + | storageLayout_ = sman_->getStorageLayout(); |
517 | + | #ifdef IS_MPI |
518 | + | |
519 | // gather up the atomic positions | |
520 | < | AtomCommVectorI->gather(snap->atomData.position, |
521 | < | snap->atomIData.position); |
522 | < | AtomCommVectorJ->gather(snap->atomData.position, |
523 | < | snap->atomJData.position); |
520 | > | AtomCommVectorRow->gather(snap_->atomData.position, |
521 | > | atomRowData.position); |
522 | > | AtomCommVectorColumn->gather(snap_->atomData.position, |
523 | > | atomColData.position); |
524 | ||
525 | // gather up the cutoff group positions | |
526 | < | cgCommVectorI->gather(snap->cgData.position, |
527 | < | snap->cgIData.position); |
528 | < | cgCommVectorJ->gather(snap->cgData.position, |
529 | < | snap->cgJData.position); |
526 | > | cgCommVectorRow->gather(snap_->cgData.position, |
527 | > | cgRowData.position); |
528 | > | cgCommVectorColumn->gather(snap_->cgData.position, |
529 | > | cgColData.position); |
530 | ||
531 | // if needed, gather the atomic rotation matrices | |
532 | < | if (snap->atomData.getStorageLayout() & DataStorage::dslAmat) { |
533 | < | AtomCommMatrixI->gather(snap->atomData.aMat, |
534 | < | snap->atomIData.aMat); |
535 | < | AtomCommMatrixJ->gather(snap->atomData.aMat, |
536 | < | snap->atomJData.aMat); |
532 | > | if (storageLayout_ & DataStorage::dslAmat) { |
533 | > | AtomCommMatrixRow->gather(snap_->atomData.aMat, |
534 | > | atomRowData.aMat); |
535 | > | AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
536 | > | atomColData.aMat); |
537 | } | |
538 | ||
539 | // if needed, gather the atomic eletrostatic frames | |
540 | < | if (snap->atomData.getStorageLayout() & DataStorage::dslElectroFrame) { |
541 | < | AtomCommMatrixI->gather(snap->atomData.electroFrame, |
542 | < | snap->atomIData.electroFrame); |
543 | < | AtomCommMatrixJ->gather(snap->atomData.electroFrame, |
544 | < | snap->atomJData.electroFrame); |
540 | > | if (storageLayout_ & DataStorage::dslElectroFrame) { |
541 | > | AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
542 | > | atomRowData.electroFrame); |
543 | > | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
544 | > | atomColData.electroFrame); |
545 | } | |
546 | + | |
547 | #endif | |
548 | } | |
549 | ||
550 | < | void ForceDecomposition::collectIntermediateData() { |
550 | > | /* collects information obtained during the pre-pair loop onto local |
551 | > | * data structures. |
552 | > | */ |
553 | > | void ForceMatrixDecomposition::collectIntermediateData() { |
554 | > | snap_ = sman_->getCurrentSnapshot(); |
555 | > | storageLayout_ = sman_->getStorageLayout(); |
556 | #ifdef IS_MPI | |
148 | – | Snapshot* snap = sman_->getCurrentSnapshot(); |
557 | ||
558 | < | if (snap->atomData.getStorageLayout() & DataStorage::dslDensity) { |
559 | < | |
560 | < | AtomCommRealI->scatter(snap->atomIData.density, |
561 | < | snap->atomData.density); |
562 | < | |
563 | < | int n = snap->atomData.density.size(); |
564 | < | std::vector<RealType> rho_tmp(n, 0.0); |
565 | < | AtomCommRealJ->scatter(snap->atomJData.density, rho_tmp); |
558 | > | if (storageLayout_ & DataStorage::dslDensity) { |
559 | > | |
560 | > | AtomCommRealRow->scatter(atomRowData.density, |
561 | > | snap_->atomData.density); |
562 | > | |
563 | > | int n = snap_->atomData.density.size(); |
564 | > | vector<RealType> rho_tmp(n, 0.0); |
565 | > | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
566 | for (int i = 0; i < n; i++) | |
567 | < | snap->atomData.density[i] += rho_tmp[i]; |
567 | > | snap_->atomData.density[i] += rho_tmp[i]; |
568 | } | |
569 | #endif | |
570 | } | |
571 | < | |
572 | < | void ForceDecomposition::distributeIntermediateData() { |
571 | > | |
572 | > | /* |
573 | > | * redistributes information obtained during the pre-pair loop out to |
574 | > | * row and column-indexed data structures |
575 | > | */ |
576 | > | void ForceMatrixDecomposition::distributeIntermediateData() { |
577 | > | snap_ = sman_->getCurrentSnapshot(); |
578 | > | storageLayout_ = sman_->getStorageLayout(); |
579 | #ifdef IS_MPI | |
580 | < | Snapshot* snap = sman_->getCurrentSnapshot(); |
581 | < | if (snap->atomData.getStorageLayout() & DataStorage::dslFunctional) { |
582 | < | AtomCommRealI->gather(snap->atomData.functional, |
583 | < | snap->atomIData.functional); |
584 | < | AtomCommRealJ->gather(snap->atomData.functional, |
171 | < | snap->atomJData.functional); |
580 | > | if (storageLayout_ & DataStorage::dslFunctional) { |
581 | > | AtomCommRealRow->gather(snap_->atomData.functional, |
582 | > | atomRowData.functional); |
583 | > | AtomCommRealColumn->gather(snap_->atomData.functional, |
584 | > | atomColData.functional); |
585 | } | |
586 | ||
587 | < | if (snap->atomData.getStorageLayout() & DataStorage::dslFunctionalDerivative) { |
588 | < | AtomCommRealI->gather(snap->atomData.functionalDerivative, |
589 | < | snap->atomIData.functionalDerivative); |
590 | < | AtomCommRealJ->gather(snap->atomData.functionalDerivative, |
591 | < | snap->atomJData.functionalDerivative); |
587 | > | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
588 | > | AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
589 | > | atomRowData.functionalDerivative); |
590 | > | AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
591 | > | atomColData.functionalDerivative); |
592 | } | |
593 | #endif | |
594 | } | |
595 | ||
596 | ||
597 | < | void ForceDecomposition::collectData() { |
598 | < | #ifdef IS_MPI |
599 | < | Snapshot* snap = sman_->getCurrentSnapshot(); |
600 | < | |
601 | < | int n = snap->atomData.force.size(); |
597 | > | void ForceMatrixDecomposition::collectData() { |
598 | > | snap_ = sman_->getCurrentSnapshot(); |
599 | > | storageLayout_ = sman_->getStorageLayout(); |
600 | > | #ifdef IS_MPI |
601 | > | int n = snap_->atomData.force.size(); |
602 | vector<Vector3d> frc_tmp(n, V3Zero); | |
603 | ||
604 | < | AtomCommVectorI->scatter(snap->atomIData.force, frc_tmp); |
604 | > | AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
605 | for (int i = 0; i < n; i++) { | |
606 | < | snap->atomData.force[i] += frc_tmp[i]; |
606 | > | snap_->atomData.force[i] += frc_tmp[i]; |
607 | frc_tmp[i] = 0.0; | |
608 | } | |
609 | ||
610 | < | AtomCommVectorJ->scatter(snap->atomJData.force, frc_tmp); |
611 | < | for (int i = 0; i < n; i++) |
612 | < | snap->atomData.force[i] += frc_tmp[i]; |
613 | < | |
614 | < | |
202 | < | if (snap->atomData.getStorageLayout() & DataStorage::dslTorque) { |
610 | > | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
611 | > | for (int i = 0; i < n; i++) |
612 | > | snap_->atomData.force[i] += frc_tmp[i]; |
613 | > | |
614 | > | if (storageLayout_ & DataStorage::dslTorque) { |
615 | ||
616 | < | int nt = snap->atomData.force.size(); |
616 | > | int nt = snap_->atomData.torque.size(); |
617 | vector<Vector3d> trq_tmp(nt, V3Zero); | |
618 | ||
619 | < | AtomCommVectorI->scatter(snap->atomIData.torque, trq_tmp); |
620 | < | for (int i = 0; i < n; i++) { |
621 | < | snap->atomData.torque[i] += trq_tmp[i]; |
619 | > | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
620 | > | for (int i = 0; i < nt; i++) { |
621 | > | snap_->atomData.torque[i] += trq_tmp[i]; |
622 | trq_tmp[i] = 0.0; | |
623 | } | |
624 | ||
625 | < | AtomCommVectorJ->scatter(snap->atomJData.torque, trq_tmp); |
626 | < | for (int i = 0; i < n; i++) |
627 | < | snap->atomData.torque[i] += trq_tmp[i]; |
625 | > | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
626 | > | for (int i = 0; i < nt; i++) |
627 | > | snap_->atomData.torque[i] += trq_tmp[i]; |
628 | } | |
629 | + | |
630 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
631 | + | |
632 | + | int ns = snap_->atomData.skippedCharge.size(); |
633 | + | vector<RealType> skch_tmp(ns, 0.0); |
634 | + | |
635 | + | AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
636 | + | for (int i = 0; i < ns; i++) { |
637 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
638 | + | skch_tmp[i] = 0.0; |
639 | + | } |
640 | + | |
641 | + | AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
642 | + | for (int i = 0; i < ns; i++) |
643 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
644 | + | } |
645 | ||
646 | < | int nLocal = snap->getNumberOfAtoms(); |
646 | > | nLocal_ = snap_->getNumberOfAtoms(); |
647 | ||
648 | < | vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES, |
649 | < | vector<RealType> (nLocal, 0.0)); |
648 | > | vector<potVec> pot_temp(nLocal_, |
649 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
650 | > | |
651 | > | // scatter/gather pot_row into the members of my column |
652 | > | |
653 | > | AtomCommPotRow->scatter(pot_row, pot_temp); |
654 | > | |
655 | > | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
656 | > | pairwisePot += pot_temp[ii]; |
657 | ||
658 | < | for (int i = 0; i < N_INTERACTION_FAMILIES; i++) { |
659 | < | AtomCommRealI->scatter(pot_row[i], pot_temp[i]); |
660 | < | for (int ii = 0; ii < pot_temp[i].size(); ii++ ) { |
661 | < | pot_local[i] += pot_temp[i][ii]; |
662 | < | } |
658 | > | fill(pot_temp.begin(), pot_temp.end(), |
659 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
660 | > | |
661 | > | AtomCommPotColumn->scatter(pot_col, pot_temp); |
662 | > | |
663 | > | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
664 | > | pairwisePot += pot_temp[ii]; |
665 | > | #endif |
666 | > | |
667 | > | } |
668 | > | |
669 | > | int ForceMatrixDecomposition::getNAtomsInRow() { |
670 | > | #ifdef IS_MPI |
671 | > | return nAtomsInRow_; |
672 | > | #else |
673 | > | return nLocal_; |
674 | > | #endif |
675 | > | } |
676 | > | |
677 | > | /** |
678 | > | * returns the list of atoms belonging to this group. |
679 | > | */ |
680 | > | vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
681 | > | #ifdef IS_MPI |
682 | > | return groupListRow_[cg1]; |
683 | > | #else |
684 | > | return groupList_[cg1]; |
685 | > | #endif |
686 | > | } |
687 | > | |
688 | > | vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
689 | > | #ifdef IS_MPI |
690 | > | return groupListCol_[cg2]; |
691 | > | #else |
692 | > | return groupList_[cg2]; |
693 | > | #endif |
694 | > | } |
695 | > | |
696 | > | Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ |
697 | > | Vector3d d; |
698 | > | |
699 | > | #ifdef IS_MPI |
700 | > | d = cgColData.position[cg2] - cgRowData.position[cg1]; |
701 | > | #else |
702 | > | d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; |
703 | > | #endif |
704 | > | |
705 | > | snap_->wrapVector(d); |
706 | > | return d; |
707 | > | } |
708 | > | |
709 | > | |
710 | > | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ |
711 | > | |
712 | > | Vector3d d; |
713 | > | |
714 | > | #ifdef IS_MPI |
715 | > | d = cgRowData.position[cg1] - atomRowData.position[atom1]; |
716 | > | #else |
717 | > | d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; |
718 | > | #endif |
719 | > | |
720 | > | snap_->wrapVector(d); |
721 | > | return d; |
722 | > | } |
723 | > | |
724 | > | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){ |
725 | > | Vector3d d; |
726 | > | |
727 | > | #ifdef IS_MPI |
728 | > | d = cgColData.position[cg2] - atomColData.position[atom2]; |
729 | > | #else |
730 | > | d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; |
731 | > | #endif |
732 | > | |
733 | > | snap_->wrapVector(d); |
734 | > | return d; |
735 | > | } |
736 | > | |
737 | > | RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
738 | > | #ifdef IS_MPI |
739 | > | return massFactorsRow[atom1]; |
740 | > | #else |
741 | > | return massFactors[atom1]; |
742 | > | #endif |
743 | > | } |
744 | > | |
745 | > | RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
746 | > | #ifdef IS_MPI |
747 | > | return massFactorsCol[atom2]; |
748 | > | #else |
749 | > | return massFactors[atom2]; |
750 | > | #endif |
751 | > | |
752 | > | } |
753 | > | |
754 | > | Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ |
755 | > | Vector3d d; |
756 | > | |
757 | > | #ifdef IS_MPI |
758 | > | d = atomColData.position[atom2] - atomRowData.position[atom1]; |
759 | > | #else |
760 | > | d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; |
761 | > | #endif |
762 | > | |
763 | > | snap_->wrapVector(d); |
764 | > | return d; |
765 | > | } |
766 | > | |
767 | > | vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
768 | > | return excludesForAtom[atom1]; |
769 | > | } |
770 | > | |
771 | > | /** |
772 | > | * We need to exclude some overcounted interactions that result from |
773 | > | * the parallel decomposition. |
774 | > | */ |
775 | > | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
776 | > | int unique_id_1, unique_id_2; |
777 | > | |
778 | > | #ifdef IS_MPI |
779 | > | // in MPI, we have to look up the unique IDs for each atom |
780 | > | unique_id_1 = AtomRowToGlobal[atom1]; |
781 | > | unique_id_2 = AtomColToGlobal[atom2]; |
782 | > | |
783 | > | // this situation should only arise in MPI simulations |
784 | > | if (unique_id_1 == unique_id_2) return true; |
785 | > | |
786 | > | // this prevents us from doing the pair on multiple processors |
787 | > | if (unique_id_1 < unique_id_2) { |
788 | > | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
789 | > | } else { |
790 | > | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
791 | > | } |
792 | > | #endif |
793 | > | return false; |
794 | > | } |
795 | > | |
796 | > | /** |
797 | > | * We need to handle the interactions for atoms who are involved in |
798 | > | * the same rigid body as well as some short range interactions |
799 | > | * (bonds, bends, torsions) differently from other interactions. |
800 | > | * We'll still visit the pairwise routines, but with a flag that |
801 | > | * tells those routines to exclude the pair from direct long range |
802 | > | * interactions. Some indirect interactions (notably reaction |
803 | > | * field) must still be handled for these pairs. |
804 | > | */ |
805 | > | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
806 | > | int unique_id_2; |
807 | > | |
808 | > | #ifdef IS_MPI |
809 | > | // in MPI, we have to look up the unique IDs for the row atom. |
810 | > | unique_id_2 = AtomColToGlobal[atom2]; |
811 | > | #else |
812 | > | // in the normal loop, the atom numbers are unique |
813 | > | unique_id_2 = atom2; |
814 | > | #endif |
815 | > | |
816 | > | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
817 | > | i != excludesForAtom[atom1].end(); ++i) { |
818 | > | if ( (*i) == unique_id_2 ) return true; |
819 | > | } |
820 | > | |
821 | > | return false; |
822 | > | } |
823 | > | |
824 | > | |
825 | > | void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ |
826 | > | #ifdef IS_MPI |
827 | > | atomRowData.force[atom1] += fg; |
828 | > | #else |
829 | > | snap_->atomData.force[atom1] += fg; |
830 | > | #endif |
831 | > | } |
832 | > | |
833 | > | void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){ |
834 | > | #ifdef IS_MPI |
835 | > | atomColData.force[atom2] += fg; |
836 | > | #else |
837 | > | snap_->atomData.force[atom2] += fg; |
838 | > | #endif |
839 | > | } |
840 | > | |
841 | > | // filling interaction blocks with pointers |
842 | > | void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
843 | > | int atom1, int atom2) { |
844 | > | |
845 | > | idat.excluded = excludeAtomPair(atom1, atom2); |
846 | > | |
847 | > | #ifdef IS_MPI |
848 | > | idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
849 | > | //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
850 | > | // ff_->getAtomType(identsCol[atom2]) ); |
851 | > | |
852 | > | if (storageLayout_ & DataStorage::dslAmat) { |
853 | > | idat.A1 = &(atomRowData.aMat[atom1]); |
854 | > | idat.A2 = &(atomColData.aMat[atom2]); |
855 | > | } |
856 | > | |
857 | > | if (storageLayout_ & DataStorage::dslElectroFrame) { |
858 | > | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
859 | > | idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
860 | > | } |
861 | > | |
862 | > | if (storageLayout_ & DataStorage::dslTorque) { |
863 | > | idat.t1 = &(atomRowData.torque[atom1]); |
864 | > | idat.t2 = &(atomColData.torque[atom2]); |
865 | > | } |
866 | > | |
867 | > | if (storageLayout_ & DataStorage::dslDensity) { |
868 | > | idat.rho1 = &(atomRowData.density[atom1]); |
869 | > | idat.rho2 = &(atomColData.density[atom2]); |
870 | > | } |
871 | > | |
872 | > | if (storageLayout_ & DataStorage::dslFunctional) { |
873 | > | idat.frho1 = &(atomRowData.functional[atom1]); |
874 | > | idat.frho2 = &(atomColData.functional[atom2]); |
875 | > | } |
876 | > | |
877 | > | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
878 | > | idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); |
879 | > | idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); |
880 | > | } |
881 | > | |
882 | > | if (storageLayout_ & DataStorage::dslParticlePot) { |
883 | > | idat.particlePot1 = &(atomRowData.particlePot[atom1]); |
884 | > | idat.particlePot2 = &(atomColData.particlePot[atom2]); |
885 | > | } |
886 | > | |
887 | > | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
888 | > | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
889 | > | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
890 | > | } |
891 | > | |
892 | > | #else |
893 | > | |
894 | > | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
895 | > | //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
896 | > | // ff_->getAtomType(idents[atom2]) ); |
897 | > | |
898 | > | if (storageLayout_ & DataStorage::dslAmat) { |
899 | > | idat.A1 = &(snap_->atomData.aMat[atom1]); |
900 | > | idat.A2 = &(snap_->atomData.aMat[atom2]); |
901 | } | |
902 | + | |
903 | + | if (storageLayout_ & DataStorage::dslElectroFrame) { |
904 | + | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
905 | + | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
906 | + | } |
907 | + | |
908 | + | if (storageLayout_ & DataStorage::dslTorque) { |
909 | + | idat.t1 = &(snap_->atomData.torque[atom1]); |
910 | + | idat.t2 = &(snap_->atomData.torque[atom2]); |
911 | + | } |
912 | + | |
913 | + | if (storageLayout_ & DataStorage::dslDensity) { |
914 | + | idat.rho1 = &(snap_->atomData.density[atom1]); |
915 | + | idat.rho2 = &(snap_->atomData.density[atom2]); |
916 | + | } |
917 | + | |
918 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
919 | + | idat.frho1 = &(snap_->atomData.functional[atom1]); |
920 | + | idat.frho2 = &(snap_->atomData.functional[atom2]); |
921 | + | } |
922 | + | |
923 | + | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
924 | + | idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); |
925 | + | idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); |
926 | + | } |
927 | + | |
928 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
929 | + | idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); |
930 | + | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
931 | + | } |
932 | + | |
933 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
934 | + | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
935 | + | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
936 | + | } |
937 | #endif | |
938 | } | |
939 | + | |
940 | ||
941 | + | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
942 | + | #ifdef IS_MPI |
943 | + | pot_row[atom1] += 0.5 * *(idat.pot); |
944 | + | pot_col[atom2] += 0.5 * *(idat.pot); |
945 | + | |
946 | + | atomRowData.force[atom1] += *(idat.f1); |
947 | + | atomColData.force[atom2] -= *(idat.f1); |
948 | + | #else |
949 | + | pairwisePot += *(idat.pot); |
950 | + | |
951 | + | snap_->atomData.force[atom1] += *(idat.f1); |
952 | + | snap_->atomData.force[atom2] -= *(idat.f1); |
953 | + | #endif |
954 | + | |
955 | + | } |
956 | + | |
957 | + | /* |
958 | + | * buildNeighborList |
959 | + | * |
960 | + | * first element of pair is row-indexed CutoffGroup |
961 | + | * second element of pair is column-indexed CutoffGroup |
962 | + | */ |
963 | + | vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { |
964 | + | |
965 | + | vector<pair<int, int> > neighborList; |
966 | + | groupCutoffs cuts; |
967 | + | bool doAllPairs = false; |
968 | + | |
969 | + | #ifdef IS_MPI |
970 | + | cellListRow_.clear(); |
971 | + | cellListCol_.clear(); |
972 | + | #else |
973 | + | cellList_.clear(); |
974 | + | #endif |
975 | + | |
976 | + | RealType rList_ = (largestRcut_ + skinThickness_); |
977 | + | RealType rl2 = rList_ * rList_; |
978 | + | Snapshot* snap_ = sman_->getCurrentSnapshot(); |
979 | + | Mat3x3d Hmat = snap_->getHmat(); |
980 | + | Vector3d Hx = Hmat.getColumn(0); |
981 | + | Vector3d Hy = Hmat.getColumn(1); |
982 | + | Vector3d Hz = Hmat.getColumn(2); |
983 | + | |
984 | + | nCells_.x() = (int) ( Hx.length() )/ rList_; |
985 | + | nCells_.y() = (int) ( Hy.length() )/ rList_; |
986 | + | nCells_.z() = (int) ( Hz.length() )/ rList_; |
987 | + | |
988 | + | // handle small boxes where the cell offsets can end up repeating cells |
989 | + | |
990 | + | if (nCells_.x() < 3) doAllPairs = true; |
991 | + | if (nCells_.y() < 3) doAllPairs = true; |
992 | + | if (nCells_.z() < 3) doAllPairs = true; |
993 | + | |
994 | + | Mat3x3d invHmat = snap_->getInvHmat(); |
995 | + | Vector3d rs, scaled, dr; |
996 | + | Vector3i whichCell; |
997 | + | int cellIndex; |
998 | + | int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
999 | + | |
1000 | + | #ifdef IS_MPI |
1001 | + | cellListRow_.resize(nCtot); |
1002 | + | cellListCol_.resize(nCtot); |
1003 | + | #else |
1004 | + | cellList_.resize(nCtot); |
1005 | + | #endif |
1006 | + | |
1007 | + | if (!doAllPairs) { |
1008 | + | #ifdef IS_MPI |
1009 | + | |
1010 | + | for (int i = 0; i < nGroupsInRow_; i++) { |
1011 | + | rs = cgRowData.position[i]; |
1012 | + | |
1013 | + | // scaled positions relative to the box vectors |
1014 | + | scaled = invHmat * rs; |
1015 | + | |
1016 | + | // wrap the vector back into the unit box by subtracting integer box |
1017 | + | // numbers |
1018 | + | for (int j = 0; j < 3; j++) { |
1019 | + | scaled[j] -= roundMe(scaled[j]); |
1020 | + | scaled[j] += 0.5; |
1021 | + | } |
1022 | + | |
1023 | + | // find xyz-indices of cell that cutoffGroup is in. |
1024 | + | whichCell.x() = nCells_.x() * scaled.x(); |
1025 | + | whichCell.y() = nCells_.y() * scaled.y(); |
1026 | + | whichCell.z() = nCells_.z() * scaled.z(); |
1027 | + | |
1028 | + | // find single index of this cell: |
1029 | + | cellIndex = Vlinear(whichCell, nCells_); |
1030 | + | |
1031 | + | // add this cutoff group to the list of groups in this cell; |
1032 | + | cellListRow_[cellIndex].push_back(i); |
1033 | + | } |
1034 | + | |
1035 | + | for (int i = 0; i < nGroupsInCol_; i++) { |
1036 | + | rs = cgColData.position[i]; |
1037 | + | |
1038 | + | // scaled positions relative to the box vectors |
1039 | + | scaled = invHmat * rs; |
1040 | + | |
1041 | + | // wrap the vector back into the unit box by subtracting integer box |
1042 | + | // numbers |
1043 | + | for (int j = 0; j < 3; j++) { |
1044 | + | scaled[j] -= roundMe(scaled[j]); |
1045 | + | scaled[j] += 0.5; |
1046 | + | } |
1047 | + | |
1048 | + | // find xyz-indices of cell that cutoffGroup is in. |
1049 | + | whichCell.x() = nCells_.x() * scaled.x(); |
1050 | + | whichCell.y() = nCells_.y() * scaled.y(); |
1051 | + | whichCell.z() = nCells_.z() * scaled.z(); |
1052 | + | |
1053 | + | // find single index of this cell: |
1054 | + | cellIndex = Vlinear(whichCell, nCells_); |
1055 | + | |
1056 | + | // add this cutoff group to the list of groups in this cell; |
1057 | + | cellListCol_[cellIndex].push_back(i); |
1058 | + | } |
1059 | + | #else |
1060 | + | for (int i = 0; i < nGroups_; i++) { |
1061 | + | rs = snap_->cgData.position[i]; |
1062 | + | |
1063 | + | // scaled positions relative to the box vectors |
1064 | + | scaled = invHmat * rs; |
1065 | + | |
1066 | + | // wrap the vector back into the unit box by subtracting integer box |
1067 | + | // numbers |
1068 | + | for (int j = 0; j < 3; j++) { |
1069 | + | scaled[j] -= roundMe(scaled[j]); |
1070 | + | scaled[j] += 0.5; |
1071 | + | } |
1072 | + | |
1073 | + | // find xyz-indices of cell that cutoffGroup is in. |
1074 | + | whichCell.x() = nCells_.x() * scaled.x(); |
1075 | + | whichCell.y() = nCells_.y() * scaled.y(); |
1076 | + | whichCell.z() = nCells_.z() * scaled.z(); |
1077 | + | |
1078 | + | // find single index of this cell: |
1079 | + | cellIndex = Vlinear(whichCell, nCells_); |
1080 | + | |
1081 | + | // add this cutoff group to the list of groups in this cell; |
1082 | + | cellList_[cellIndex].push_back(i); |
1083 | + | } |
1084 | + | #endif |
1085 | + | |
1086 | + | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1087 | + | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1088 | + | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1089 | + | Vector3i m1v(m1x, m1y, m1z); |
1090 | + | int m1 = Vlinear(m1v, nCells_); |
1091 | + | |
1092 | + | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1093 | + | os != cellOffsets_.end(); ++os) { |
1094 | + | |
1095 | + | Vector3i m2v = m1v + (*os); |
1096 | + | |
1097 | + | if (m2v.x() >= nCells_.x()) { |
1098 | + | m2v.x() = 0; |
1099 | + | } else if (m2v.x() < 0) { |
1100 | + | m2v.x() = nCells_.x() - 1; |
1101 | + | } |
1102 | + | |
1103 | + | if (m2v.y() >= nCells_.y()) { |
1104 | + | m2v.y() = 0; |
1105 | + | } else if (m2v.y() < 0) { |
1106 | + | m2v.y() = nCells_.y() - 1; |
1107 | + | } |
1108 | + | |
1109 | + | if (m2v.z() >= nCells_.z()) { |
1110 | + | m2v.z() = 0; |
1111 | + | } else if (m2v.z() < 0) { |
1112 | + | m2v.z() = nCells_.z() - 1; |
1113 | + | } |
1114 | + | |
1115 | + | int m2 = Vlinear (m2v, nCells_); |
1116 | + | |
1117 | + | #ifdef IS_MPI |
1118 | + | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1119 | + | j1 != cellListRow_[m1].end(); ++j1) { |
1120 | + | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1121 | + | j2 != cellListCol_[m2].end(); ++j2) { |
1122 | + | |
1123 | + | // Always do this if we're in different cells or if |
1124 | + | // we're in the same cell and the global index of the |
1125 | + | // j2 cutoff group is less than the j1 cutoff group |
1126 | + | |
1127 | + | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1128 | + | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1129 | + | snap_->wrapVector(dr); |
1130 | + | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1131 | + | if (dr.lengthSquare() < cuts.third) { |
1132 | + | neighborList.push_back(make_pair((*j1), (*j2))); |
1133 | + | } |
1134 | + | } |
1135 | + | } |
1136 | + | } |
1137 | + | #else |
1138 | + | |
1139 | + | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1140 | + | j1 != cellList_[m1].end(); ++j1) { |
1141 | + | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1142 | + | j2 != cellList_[m2].end(); ++j2) { |
1143 | + | |
1144 | + | // Always do this if we're in different cells or if |
1145 | + | // we're in the same cell and the global index of the |
1146 | + | // j2 cutoff group is less than the j1 cutoff group |
1147 | + | |
1148 | + | if (m2 != m1 || (*j2) < (*j1)) { |
1149 | + | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1150 | + | snap_->wrapVector(dr); |
1151 | + | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1152 | + | if (dr.lengthSquare() < cuts.third) { |
1153 | + | neighborList.push_back(make_pair((*j1), (*j2))); |
1154 | + | } |
1155 | + | } |
1156 | + | } |
1157 | + | } |
1158 | + | #endif |
1159 | + | } |
1160 | + | } |
1161 | + | } |
1162 | + | } |
1163 | + | } else { |
1164 | + | // branch to do all cutoff group pairs |
1165 | + | #ifdef IS_MPI |
1166 | + | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1167 | + | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1168 | + | dr = cgColData.position[j2] - cgRowData.position[j1]; |
1169 | + | snap_->wrapVector(dr); |
1170 | + | cuts = getGroupCutoffs( j1, j2 ); |
1171 | + | if (dr.lengthSquare() < cuts.third) { |
1172 | + | neighborList.push_back(make_pair(j1, j2)); |
1173 | + | } |
1174 | + | } |
1175 | + | } |
1176 | + | #else |
1177 | + | for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1178 | + | for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1179 | + | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1180 | + | snap_->wrapVector(dr); |
1181 | + | cuts = getGroupCutoffs( j1, j2 ); |
1182 | + | if (dr.lengthSquare() < cuts.third) { |
1183 | + | neighborList.push_back(make_pair(j1, j2)); |
1184 | + | } |
1185 | + | } |
1186 | + | } |
1187 | + | #endif |
1188 | + | } |
1189 | + | |
1190 | + | // save the local cutoff group positions for the check that is |
1191 | + | // done on each loop: |
1192 | + | saved_CG_positions_.clear(); |
1193 | + | for (int i = 0; i < nGroups_; i++) |
1194 | + | saved_CG_positions_.push_back(snap_->cgData.position[i]); |
1195 | + | |
1196 | + | return neighborList; |
1197 | + | } |
1198 | } //end namespace OpenMD |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |