# | Line 42 | Line 42 | |
---|---|---|
42 | #include "math/SquareMatrix3.hpp" | |
43 | #include "nonbonded/NonBondedInteraction.hpp" | |
44 | #include "brains/SnapshotManager.hpp" | |
45 | + | #include "brains/PairList.hpp" |
46 | ||
47 | using namespace std; | |
48 | namespace OpenMD { | |
49 | ||
50 | + | ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { |
51 | + | |
52 | + | // In a parallel computation, row and colum scans must visit all |
53 | + | // surrounding cells (not just the 14 upper triangular blocks that |
54 | + | // are used when the processor can see all pairs) |
55 | + | #ifdef IS_MPI |
56 | + | cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
57 | + | cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
58 | + | cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
59 | + | cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
60 | + | cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
61 | + | cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
62 | + | cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
63 | + | cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
64 | + | cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
65 | + | cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
66 | + | cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
67 | + | cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
68 | + | cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
69 | + | #endif |
70 | + | } |
71 | + | |
72 | + | |
73 | /** | |
74 | * distributeInitialData is essentially a copy of the older fortran | |
75 | * SimulationSetup | |
76 | */ | |
53 | – | |
77 | void ForceMatrixDecomposition::distributeInitialData() { | |
78 | snap_ = sman_->getCurrentSnapshot(); | |
79 | storageLayout_ = sman_->getStorageLayout(); | |
80 | + | ff_ = info_->getForceField(); |
81 | nLocal_ = snap_->getNumberOfAtoms(); | |
82 | < | nGroups_ = snap_->getNumberOfCutoffGroups(); |
82 | > | |
83 | > | nGroups_ = info_->getNLocalCutoffGroups(); |
84 | > | // gather the information for atomtype IDs (atids): |
85 | > | idents = info_->getIdentArray(); |
86 | > | AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
87 | > | cgLocalToGlobal = info_->getGlobalGroupIndices(); |
88 | > | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
89 | ||
90 | + | massFactors = info_->getMassFactors(); |
91 | + | |
92 | + | PairList* excludes = info_->getExcludedInteractions(); |
93 | + | PairList* oneTwo = info_->getOneTwoInteractions(); |
94 | + | PairList* oneThree = info_->getOneThreeInteractions(); |
95 | + | PairList* oneFour = info_->getOneFourInteractions(); |
96 | + | |
97 | #ifdef IS_MPI | |
98 | ||
99 | < | AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
100 | < | AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
64 | < | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
65 | < | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
99 | > | MPI::Intracomm row = rowComm.getComm(); |
100 | > | MPI::Intracomm col = colComm.getComm(); |
101 | ||
102 | < | AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
103 | < | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
104 | < | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
105 | < | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
102 | > | AtomPlanIntRow = new Plan<int>(row, nLocal_); |
103 | > | AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
104 | > | AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); |
105 | > | AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); |
106 | > | AtomPlanPotRow = new Plan<potVec>(row, nLocal_); |
107 | ||
108 | < | cgCommIntRow = new Communicator<Row,int>(nGroups_); |
109 | < | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
110 | < | cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
111 | < | cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
108 | > | AtomPlanIntColumn = new Plan<int>(col, nLocal_); |
109 | > | AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); |
110 | > | AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); |
111 | > | AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); |
112 | > | AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); |
113 | ||
114 | < | nAtomsInRow_ = AtomCommIntRow->getSize(); |
115 | < | nAtomsInCol_ = AtomCommIntColumn->getSize(); |
116 | < | nGroupsInRow_ = cgCommIntRow->getSize(); |
117 | < | nGroupsInCol_ = cgCommIntColumn->getSize(); |
114 | > | cgPlanIntRow = new Plan<int>(row, nGroups_); |
115 | > | cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); |
116 | > | cgPlanIntColumn = new Plan<int>(col, nGroups_); |
117 | > | cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); |
118 | ||
119 | + | nAtomsInRow_ = AtomPlanIntRow->getSize(); |
120 | + | nAtomsInCol_ = AtomPlanIntColumn->getSize(); |
121 | + | nGroupsInRow_ = cgPlanIntRow->getSize(); |
122 | + | nGroupsInCol_ = cgPlanIntColumn->getSize(); |
123 | + | |
124 | // Modify the data storage objects with the correct layouts and sizes: | |
125 | atomRowData.resize(nAtomsInRow_); | |
126 | atomRowData.setStorageLayout(storageLayout_); | |
# | Line 88 | Line 130 | namespace OpenMD { | |
130 | cgRowData.setStorageLayout(DataStorage::dslPosition); | |
131 | cgColData.resize(nGroupsInCol_); | |
132 | cgColData.setStorageLayout(DataStorage::dslPosition); | |
133 | + | |
134 | + | identsRow.resize(nAtomsInRow_); |
135 | + | identsCol.resize(nAtomsInCol_); |
136 | ||
137 | < | vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES, |
138 | < | vector<RealType> (nAtomsInRow_, 0.0)); |
139 | < | vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES, |
140 | < | vector<RealType> (nAtomsInCol_, 0.0)); |
137 | > | AtomPlanIntRow->gather(idents, identsRow); |
138 | > | AtomPlanIntColumn->gather(idents, identsCol); |
139 | > | |
140 | > | // allocate memory for the parallel objects |
141 | > | atypesRow.resize(nAtomsInRow_); |
142 | > | atypesCol.resize(nAtomsInCol_); |
143 | ||
144 | + | for (int i = 0; i < nAtomsInRow_; i++) |
145 | + | atypesRow[i] = ff_->getAtomType(identsRow[i]); |
146 | + | for (int i = 0; i < nAtomsInCol_; i++) |
147 | + | atypesCol[i] = ff_->getAtomType(identsCol[i]); |
148 | ||
149 | < | vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0); |
149 | > | pot_row.resize(nAtomsInRow_); |
150 | > | pot_col.resize(nAtomsInCol_); |
151 | > | |
152 | > | AtomRowToGlobal.resize(nAtomsInRow_); |
153 | > | AtomColToGlobal.resize(nAtomsInCol_); |
154 | > | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
155 | > | AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
156 | > | |
157 | > | cerr << "Atoms in Local:\n"; |
158 | > | for (int i = 0; i < AtomLocalToGlobal.size(); i++) { |
159 | > | cerr << "i =\t" << i << "\t localAt =\t" << AtomLocalToGlobal[i] << "\n"; |
160 | > | } |
161 | > | cerr << "Atoms in Row:\n"; |
162 | > | for (int i = 0; i < AtomRowToGlobal.size(); i++) { |
163 | > | cerr << "i =\t" << i << "\t rowAt =\t" << AtomRowToGlobal[i] << "\n"; |
164 | > | } |
165 | > | cerr << "Atoms in Col:\n"; |
166 | > | for (int i = 0; i < AtomColToGlobal.size(); i++) { |
167 | > | cerr << "i =\t" << i << "\t colAt =\t" << AtomColToGlobal[i] << "\n"; |
168 | > | } |
169 | > | |
170 | > | cgRowToGlobal.resize(nGroupsInRow_); |
171 | > | cgColToGlobal.resize(nGroupsInCol_); |
172 | > | cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
173 | > | cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
174 | > | |
175 | > | cerr << "Gruops in Local:\n"; |
176 | > | for (int i = 0; i < cgLocalToGlobal.size(); i++) { |
177 | > | cerr << "i =\t" << i << "\t localCG =\t" << cgLocalToGlobal[i] << "\n"; |
178 | > | } |
179 | > | cerr << "Groups in Row:\n"; |
180 | > | for (int i = 0; i < cgRowToGlobal.size(); i++) { |
181 | > | cerr << "i =\t" << i << "\t rowCG =\t" << cgRowToGlobal[i] << "\n"; |
182 | > | } |
183 | > | cerr << "Groups in Col:\n"; |
184 | > | for (int i = 0; i < cgColToGlobal.size(); i++) { |
185 | > | cerr << "i =\t" << i << "\t colCG =\t" << cgColToGlobal[i] << "\n"; |
186 | > | } |
187 | > | |
188 | > | |
189 | > | massFactorsRow.resize(nAtomsInRow_); |
190 | > | massFactorsCol.resize(nAtomsInCol_); |
191 | > | AtomPlanRealRow->gather(massFactors, massFactorsRow); |
192 | > | AtomPlanRealColumn->gather(massFactors, massFactorsCol); |
193 | > | |
194 | > | groupListRow_.clear(); |
195 | > | groupListRow_.resize(nGroupsInRow_); |
196 | > | for (int i = 0; i < nGroupsInRow_; i++) { |
197 | > | int gid = cgRowToGlobal[i]; |
198 | > | for (int j = 0; j < nAtomsInRow_; j++) { |
199 | > | int aid = AtomRowToGlobal[j]; |
200 | > | if (globalGroupMembership[aid] == gid) |
201 | > | groupListRow_[i].push_back(j); |
202 | > | } |
203 | > | } |
204 | > | |
205 | > | groupListCol_.clear(); |
206 | > | groupListCol_.resize(nGroupsInCol_); |
207 | > | for (int i = 0; i < nGroupsInCol_; i++) { |
208 | > | int gid = cgColToGlobal[i]; |
209 | > | for (int j = 0; j < nAtomsInCol_; j++) { |
210 | > | int aid = AtomColToGlobal[j]; |
211 | > | if (globalGroupMembership[aid] == gid) |
212 | > | groupListCol_[i].push_back(j); |
213 | > | } |
214 | > | } |
215 | > | |
216 | > | excludesForAtom.clear(); |
217 | > | excludesForAtom.resize(nAtomsInRow_); |
218 | > | toposForAtom.clear(); |
219 | > | toposForAtom.resize(nAtomsInRow_); |
220 | > | topoDist.clear(); |
221 | > | topoDist.resize(nAtomsInRow_); |
222 | > | for (int i = 0; i < nAtomsInRow_; i++) { |
223 | > | int iglob = AtomRowToGlobal[i]; |
224 | > | |
225 | > | for (int j = 0; j < nAtomsInCol_; j++) { |
226 | > | int jglob = AtomColToGlobal[j]; |
227 | > | |
228 | > | if (excludes->hasPair(iglob, jglob)) |
229 | > | excludesForAtom[i].push_back(j); |
230 | > | |
231 | > | if (oneTwo->hasPair(iglob, jglob)) { |
232 | > | toposForAtom[i].push_back(j); |
233 | > | topoDist[i].push_back(1); |
234 | > | } else { |
235 | > | if (oneThree->hasPair(iglob, jglob)) { |
236 | > | toposForAtom[i].push_back(j); |
237 | > | topoDist[i].push_back(2); |
238 | > | } else { |
239 | > | if (oneFour->hasPair(iglob, jglob)) { |
240 | > | toposForAtom[i].push_back(j); |
241 | > | topoDist[i].push_back(3); |
242 | > | } |
243 | > | } |
244 | > | } |
245 | > | } |
246 | > | } |
247 | > | |
248 | > | #endif |
249 | > | |
250 | > | // allocate memory for the parallel objects |
251 | > | atypesLocal.resize(nLocal_); |
252 | > | |
253 | > | for (int i = 0; i < nLocal_; i++) |
254 | > | atypesLocal[i] = ff_->getAtomType(idents[i]); |
255 | > | |
256 | > | groupList_.clear(); |
257 | > | groupList_.resize(nGroups_); |
258 | > | for (int i = 0; i < nGroups_; i++) { |
259 | > | int gid = cgLocalToGlobal[i]; |
260 | > | for (int j = 0; j < nLocal_; j++) { |
261 | > | int aid = AtomLocalToGlobal[j]; |
262 | > | if (globalGroupMembership[aid] == gid) { |
263 | > | groupList_[i].push_back(j); |
264 | > | } |
265 | > | } |
266 | > | } |
267 | > | |
268 | > | excludesForAtom.clear(); |
269 | > | excludesForAtom.resize(nLocal_); |
270 | > | toposForAtom.clear(); |
271 | > | toposForAtom.resize(nLocal_); |
272 | > | topoDist.clear(); |
273 | > | topoDist.resize(nLocal_); |
274 | > | |
275 | > | for (int i = 0; i < nLocal_; i++) { |
276 | > | int iglob = AtomLocalToGlobal[i]; |
277 | > | |
278 | > | for (int j = 0; j < nLocal_; j++) { |
279 | > | int jglob = AtomLocalToGlobal[j]; |
280 | > | |
281 | > | if (excludes->hasPair(iglob, jglob)) |
282 | > | excludesForAtom[i].push_back(j); |
283 | > | |
284 | > | if (oneTwo->hasPair(iglob, jglob)) { |
285 | > | toposForAtom[i].push_back(j); |
286 | > | topoDist[i].push_back(1); |
287 | > | } else { |
288 | > | if (oneThree->hasPair(iglob, jglob)) { |
289 | > | toposForAtom[i].push_back(j); |
290 | > | topoDist[i].push_back(2); |
291 | > | } else { |
292 | > | if (oneFour->hasPair(iglob, jglob)) { |
293 | > | toposForAtom[i].push_back(j); |
294 | > | topoDist[i].push_back(3); |
295 | > | } |
296 | > | } |
297 | > | } |
298 | > | } |
299 | > | } |
300 | ||
301 | < | // gather the information for atomtype IDs (atids): |
302 | < | vector<int> identsLocal = info_->getIdentArray(); |
303 | < | identsRow.reserve(nAtomsInRow_); |
304 | < | identsCol.reserve(nAtomsInCol_); |
301 | > | createGtypeCutoffMap(); |
302 | > | |
303 | > | } |
304 | > | |
305 | > | void ForceMatrixDecomposition::createGtypeCutoffMap() { |
306 | ||
307 | < | AtomCommIntRow->gather(identsLocal, identsRow); |
308 | < | AtomCommIntColumn->gather(identsLocal, identsCol); |
307 | > | RealType tol = 1e-6; |
308 | > | largestRcut_ = 0.0; |
309 | > | RealType rc; |
310 | > | int atid; |
311 | > | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
312 | ||
313 | < | AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
314 | < | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
315 | < | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
313 | > | map<int, RealType> atypeCutoff; |
314 | > | |
315 | > | for (set<AtomType*>::iterator at = atypes.begin(); |
316 | > | at != atypes.end(); ++at){ |
317 | > | atid = (*at)->getIdent(); |
318 | > | if (userChoseCutoff_) |
319 | > | atypeCutoff[atid] = userCutoff_; |
320 | > | else |
321 | > | atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
322 | > | } |
323 | ||
324 | < | cgLocalToGlobal = info_->getGlobalGroupIndices(); |
325 | < | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
326 | < | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
324 | > | vector<RealType> gTypeCutoffs; |
325 | > | // first we do a single loop over the cutoff groups to find the |
326 | > | // largest cutoff for any atypes present in this group. |
327 | > | #ifdef IS_MPI |
328 | > | vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); |
329 | > | groupRowToGtype.resize(nGroupsInRow_); |
330 | > | for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { |
331 | > | vector<int> atomListRow = getAtomsInGroupRow(cg1); |
332 | > | for (vector<int>::iterator ia = atomListRow.begin(); |
333 | > | ia != atomListRow.end(); ++ia) { |
334 | > | int atom1 = (*ia); |
335 | > | atid = identsRow[atom1]; |
336 | > | if (atypeCutoff[atid] > groupCutoffRow[cg1]) { |
337 | > | groupCutoffRow[cg1] = atypeCutoff[atid]; |
338 | > | } |
339 | > | } |
340 | ||
341 | < | // still need: |
342 | < | // topoDist |
343 | < | // exclude |
341 | > | bool gTypeFound = false; |
342 | > | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
343 | > | if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) { |
344 | > | groupRowToGtype[cg1] = gt; |
345 | > | gTypeFound = true; |
346 | > | } |
347 | > | } |
348 | > | if (!gTypeFound) { |
349 | > | gTypeCutoffs.push_back( groupCutoffRow[cg1] ); |
350 | > | groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; |
351 | > | } |
352 | > | |
353 | > | } |
354 | > | vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); |
355 | > | groupColToGtype.resize(nGroupsInCol_); |
356 | > | for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { |
357 | > | vector<int> atomListCol = getAtomsInGroupColumn(cg2); |
358 | > | for (vector<int>::iterator jb = atomListCol.begin(); |
359 | > | jb != atomListCol.end(); ++jb) { |
360 | > | int atom2 = (*jb); |
361 | > | atid = identsCol[atom2]; |
362 | > | if (atypeCutoff[atid] > groupCutoffCol[cg2]) { |
363 | > | groupCutoffCol[cg2] = atypeCutoff[atid]; |
364 | > | } |
365 | > | } |
366 | > | bool gTypeFound = false; |
367 | > | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
368 | > | if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) { |
369 | > | groupColToGtype[cg2] = gt; |
370 | > | gTypeFound = true; |
371 | > | } |
372 | > | } |
373 | > | if (!gTypeFound) { |
374 | > | gTypeCutoffs.push_back( groupCutoffCol[cg2] ); |
375 | > | groupColToGtype[cg2] = gTypeCutoffs.size() - 1; |
376 | > | } |
377 | > | } |
378 | > | #else |
379 | > | |
380 | > | vector<RealType> groupCutoff(nGroups_, 0.0); |
381 | > | groupToGtype.resize(nGroups_); |
382 | > | for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
383 | > | groupCutoff[cg1] = 0.0; |
384 | > | vector<int> atomList = getAtomsInGroupRow(cg1); |
385 | > | for (vector<int>::iterator ia = atomList.begin(); |
386 | > | ia != atomList.end(); ++ia) { |
387 | > | int atom1 = (*ia); |
388 | > | atid = idents[atom1]; |
389 | > | if (atypeCutoff[atid] > groupCutoff[cg1]) |
390 | > | groupCutoff[cg1] = atypeCutoff[atid]; |
391 | > | } |
392 | > | |
393 | > | bool gTypeFound = false; |
394 | > | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
395 | > | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
396 | > | groupToGtype[cg1] = gt; |
397 | > | gTypeFound = true; |
398 | > | } |
399 | > | } |
400 | > | if (!gTypeFound) { |
401 | > | gTypeCutoffs.push_back( groupCutoff[cg1] ); |
402 | > | groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
403 | > | } |
404 | > | } |
405 | #endif | |
406 | + | |
407 | + | // Now we find the maximum group cutoff value present in the simulation |
408 | + | |
409 | + | RealType groupMax = *max_element(gTypeCutoffs.begin(), |
410 | + | gTypeCutoffs.end()); |
411 | + | |
412 | + | #ifdef IS_MPI |
413 | + | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, |
414 | + | MPI::MAX); |
415 | + | #endif |
416 | + | |
417 | + | RealType tradRcut = groupMax; |
418 | + | |
419 | + | for (int i = 0; i < gTypeCutoffs.size(); i++) { |
420 | + | for (int j = 0; j < gTypeCutoffs.size(); j++) { |
421 | + | RealType thisRcut; |
422 | + | switch(cutoffPolicy_) { |
423 | + | case TRADITIONAL: |
424 | + | thisRcut = tradRcut; |
425 | + | break; |
426 | + | case MIX: |
427 | + | thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); |
428 | + | break; |
429 | + | case MAX: |
430 | + | thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); |
431 | + | break; |
432 | + | default: |
433 | + | sprintf(painCave.errMsg, |
434 | + | "ForceMatrixDecomposition::createGtypeCutoffMap " |
435 | + | "hit an unknown cutoff policy!\n"); |
436 | + | painCave.severity = OPENMD_ERROR; |
437 | + | painCave.isFatal = 1; |
438 | + | simError(); |
439 | + | break; |
440 | + | } |
441 | + | |
442 | + | pair<int,int> key = make_pair(i,j); |
443 | + | gTypeCutoffMap[key].first = thisRcut; |
444 | + | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
445 | + | gTypeCutoffMap[key].second = thisRcut*thisRcut; |
446 | + | gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
447 | + | // sanity check |
448 | + | |
449 | + | if (userChoseCutoff_) { |
450 | + | if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
451 | + | sprintf(painCave.errMsg, |
452 | + | "ForceMatrixDecomposition::createGtypeCutoffMap " |
453 | + | "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
454 | + | painCave.severity = OPENMD_ERROR; |
455 | + | painCave.isFatal = 1; |
456 | + | simError(); |
457 | + | } |
458 | + | } |
459 | + | } |
460 | + | } |
461 | } | |
462 | + | |
463 | + | |
464 | + | groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
465 | + | int i, j; |
466 | + | #ifdef IS_MPI |
467 | + | i = groupRowToGtype[cg1]; |
468 | + | j = groupColToGtype[cg2]; |
469 | + | #else |
470 | + | i = groupToGtype[cg1]; |
471 | + | j = groupToGtype[cg2]; |
472 | + | #endif |
473 | + | return gTypeCutoffMap[make_pair(i,j)]; |
474 | + | } |
475 | + | |
476 | + | int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
477 | + | for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
478 | + | if (toposForAtom[atom1][j] == atom2) |
479 | + | return topoDist[atom1][j]; |
480 | + | } |
481 | + | return 0; |
482 | + | } |
483 | + | |
484 | + | void ForceMatrixDecomposition::zeroWorkArrays() { |
485 | + | pairwisePot = 0.0; |
486 | + | embeddingPot = 0.0; |
487 | + | |
488 | + | #ifdef IS_MPI |
489 | + | if (storageLayout_ & DataStorage::dslForce) { |
490 | + | fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); |
491 | + | fill(atomColData.force.begin(), atomColData.force.end(), V3Zero); |
492 | + | } |
493 | + | |
494 | + | if (storageLayout_ & DataStorage::dslTorque) { |
495 | + | fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero); |
496 | + | fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero); |
497 | + | } |
498 | ||
499 | + | fill(pot_row.begin(), pot_row.end(), |
500 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
501 | ||
502 | + | fill(pot_col.begin(), pot_col.end(), |
503 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
504 | ||
505 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
506 | + | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
507 | + | 0.0); |
508 | + | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), |
509 | + | 0.0); |
510 | + | } |
511 | + | |
512 | + | if (storageLayout_ & DataStorage::dslDensity) { |
513 | + | fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0); |
514 | + | fill(atomColData.density.begin(), atomColData.density.end(), 0.0); |
515 | + | } |
516 | + | |
517 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
518 | + | fill(atomRowData.functional.begin(), atomRowData.functional.end(), |
519 | + | 0.0); |
520 | + | fill(atomColData.functional.begin(), atomColData.functional.end(), |
521 | + | 0.0); |
522 | + | } |
523 | + | |
524 | + | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
525 | + | fill(atomRowData.functionalDerivative.begin(), |
526 | + | atomRowData.functionalDerivative.end(), 0.0); |
527 | + | fill(atomColData.functionalDerivative.begin(), |
528 | + | atomColData.functionalDerivative.end(), 0.0); |
529 | + | } |
530 | + | |
531 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
532 | + | fill(atomRowData.skippedCharge.begin(), |
533 | + | atomRowData.skippedCharge.end(), 0.0); |
534 | + | fill(atomColData.skippedCharge.begin(), |
535 | + | atomColData.skippedCharge.end(), 0.0); |
536 | + | } |
537 | + | |
538 | + | #endif |
539 | + | // even in parallel, we need to zero out the local arrays: |
540 | + | |
541 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
542 | + | fill(snap_->atomData.particlePot.begin(), |
543 | + | snap_->atomData.particlePot.end(), 0.0); |
544 | + | } |
545 | + | |
546 | + | if (storageLayout_ & DataStorage::dslDensity) { |
547 | + | fill(snap_->atomData.density.begin(), |
548 | + | snap_->atomData.density.end(), 0.0); |
549 | + | } |
550 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
551 | + | fill(snap_->atomData.functional.begin(), |
552 | + | snap_->atomData.functional.end(), 0.0); |
553 | + | } |
554 | + | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
555 | + | fill(snap_->atomData.functionalDerivative.begin(), |
556 | + | snap_->atomData.functionalDerivative.end(), 0.0); |
557 | + | } |
558 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
559 | + | fill(snap_->atomData.skippedCharge.begin(), |
560 | + | snap_->atomData.skippedCharge.end(), 0.0); |
561 | + | } |
562 | + | |
563 | + | } |
564 | + | |
565 | + | |
566 | void ForceMatrixDecomposition::distributeData() { | |
567 | snap_ = sman_->getCurrentSnapshot(); | |
568 | storageLayout_ = sman_->getStorageLayout(); | |
569 | #ifdef IS_MPI | |
570 | ||
571 | // gather up the atomic positions | |
572 | < | AtomCommVectorRow->gather(snap_->atomData.position, |
572 | > | AtomPlanVectorRow->gather(snap_->atomData.position, |
573 | atomRowData.position); | |
574 | < | AtomCommVectorColumn->gather(snap_->atomData.position, |
574 | > | AtomPlanVectorColumn->gather(snap_->atomData.position, |
575 | atomColData.position); | |
576 | ||
577 | // gather up the cutoff group positions | |
578 | < | cgCommVectorRow->gather(snap_->cgData.position, |
578 | > | |
579 | > | cerr << "before gather\n"; |
580 | > | for (int i = 0; i < snap_->cgData.position.size(); i++) { |
581 | > | cerr << "cgpos = " << snap_->cgData.position[i] << "\n"; |
582 | > | } |
583 | > | |
584 | > | cgPlanVectorRow->gather(snap_->cgData.position, |
585 | cgRowData.position); | |
586 | < | cgCommVectorColumn->gather(snap_->cgData.position, |
586 | > | |
587 | > | cerr << "after gather\n"; |
588 | > | for (int i = 0; i < cgRowData.position.size(); i++) { |
589 | > | cerr << "cgRpos = " << cgRowData.position[i] << "\n"; |
590 | > | } |
591 | > | |
592 | > | cgPlanVectorColumn->gather(snap_->cgData.position, |
593 | cgColData.position); | |
594 | + | for (int i = 0; i < cgColData.position.size(); i++) { |
595 | + | cerr << "cgCpos = " << cgColData.position[i] << "\n"; |
596 | + | } |
597 | + | |
598 | ||
599 | // if needed, gather the atomic rotation matrices | |
600 | if (storageLayout_ & DataStorage::dslAmat) { | |
601 | < | AtomCommMatrixRow->gather(snap_->atomData.aMat, |
601 | > | AtomPlanMatrixRow->gather(snap_->atomData.aMat, |
602 | atomRowData.aMat); | |
603 | < | AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
603 | > | AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
604 | atomColData.aMat); | |
605 | } | |
606 | ||
607 | // if needed, gather the atomic eletrostatic frames | |
608 | if (storageLayout_ & DataStorage::dslElectroFrame) { | |
609 | < | AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
609 | > | AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
610 | atomRowData.electroFrame); | |
611 | < | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
611 | > | AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
612 | atomColData.electroFrame); | |
613 | } | |
614 | + | |
615 | #endif | |
616 | } | |
617 | ||
618 | + | /* collects information obtained during the pre-pair loop onto local |
619 | + | * data structures. |
620 | + | */ |
621 | void ForceMatrixDecomposition::collectIntermediateData() { | |
622 | snap_ = sman_->getCurrentSnapshot(); | |
623 | storageLayout_ = sman_->getStorageLayout(); | |
# | Line 163 | Line 625 | namespace OpenMD { | |
625 | ||
626 | if (storageLayout_ & DataStorage::dslDensity) { | |
627 | ||
628 | < | AtomCommRealRow->scatter(atomRowData.density, |
628 | > | AtomPlanRealRow->scatter(atomRowData.density, |
629 | snap_->atomData.density); | |
630 | ||
631 | int n = snap_->atomData.density.size(); | |
632 | < | std::vector<RealType> rho_tmp(n, 0.0); |
633 | < | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
632 | > | vector<RealType> rho_tmp(n, 0.0); |
633 | > | AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); |
634 | for (int i = 0; i < n; i++) | |
635 | snap_->atomData.density[i] += rho_tmp[i]; | |
636 | } | |
637 | #endif | |
638 | } | |
639 | < | |
639 | > | |
640 | > | /* |
641 | > | * redistributes information obtained during the pre-pair loop out to |
642 | > | * row and column-indexed data structures |
643 | > | */ |
644 | void ForceMatrixDecomposition::distributeIntermediateData() { | |
645 | snap_ = sman_->getCurrentSnapshot(); | |
646 | storageLayout_ = sman_->getStorageLayout(); | |
647 | #ifdef IS_MPI | |
648 | if (storageLayout_ & DataStorage::dslFunctional) { | |
649 | < | AtomCommRealRow->gather(snap_->atomData.functional, |
649 | > | AtomPlanRealRow->gather(snap_->atomData.functional, |
650 | atomRowData.functional); | |
651 | < | AtomCommRealColumn->gather(snap_->atomData.functional, |
651 | > | AtomPlanRealColumn->gather(snap_->atomData.functional, |
652 | atomColData.functional); | |
653 | } | |
654 | ||
655 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
656 | < | AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
656 | > | AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, |
657 | atomRowData.functionalDerivative); | |
658 | < | AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
658 | > | AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, |
659 | atomColData.functionalDerivative); | |
660 | } | |
661 | #endif | |
# | Line 203 | Line 669 | namespace OpenMD { | |
669 | int n = snap_->atomData.force.size(); | |
670 | vector<Vector3d> frc_tmp(n, V3Zero); | |
671 | ||
672 | < | AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
672 | > | AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); |
673 | for (int i = 0; i < n; i++) { | |
674 | snap_->atomData.force[i] += frc_tmp[i]; | |
675 | frc_tmp[i] = 0.0; | |
676 | } | |
677 | ||
678 | < | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
679 | < | for (int i = 0; i < n; i++) |
678 | > | AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); |
679 | > | for (int i = 0; i < n; i++) { |
680 | snap_->atomData.force[i] += frc_tmp[i]; | |
681 | < | |
682 | < | |
681 | > | } |
682 | > | |
683 | if (storageLayout_ & DataStorage::dslTorque) { | |
684 | ||
685 | < | int nt = snap_->atomData.force.size(); |
685 | > | int nt = snap_->atomData.torque.size(); |
686 | vector<Vector3d> trq_tmp(nt, V3Zero); | |
687 | ||
688 | < | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
689 | < | for (int i = 0; i < n; i++) { |
688 | > | AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); |
689 | > | for (int i = 0; i < nt; i++) { |
690 | snap_->atomData.torque[i] += trq_tmp[i]; | |
691 | trq_tmp[i] = 0.0; | |
692 | } | |
693 | ||
694 | < | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
695 | < | for (int i = 0; i < n; i++) |
694 | > | AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); |
695 | > | for (int i = 0; i < nt; i++) |
696 | snap_->atomData.torque[i] += trq_tmp[i]; | |
697 | } | |
698 | + | |
699 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
700 | + | |
701 | + | int ns = snap_->atomData.skippedCharge.size(); |
702 | + | vector<RealType> skch_tmp(ns, 0.0); |
703 | + | |
704 | + | AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
705 | + | for (int i = 0; i < ns; i++) { |
706 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
707 | + | skch_tmp[i] = 0.0; |
708 | + | } |
709 | + | |
710 | + | AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
711 | + | for (int i = 0; i < ns; i++) |
712 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
713 | + | } |
714 | ||
715 | nLocal_ = snap_->getNumberOfAtoms(); | |
716 | ||
717 | < | vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES, |
718 | < | vector<RealType> (nLocal_, 0.0)); |
717 | > | vector<potVec> pot_temp(nLocal_, |
718 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
719 | > | |
720 | > | // scatter/gather pot_row into the members of my column |
721 | > | |
722 | > | AtomPlanPotRow->scatter(pot_row, pot_temp); |
723 | > | |
724 | > | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
725 | > | pairwisePot += pot_temp[ii]; |
726 | ||
727 | < | for (int i = 0; i < N_INTERACTION_FAMILIES; i++) { |
728 | < | AtomCommRealRow->scatter(pot_row[i], pot_temp[i]); |
729 | < | for (int ii = 0; ii < pot_temp[i].size(); ii++ ) { |
730 | < | pot_local[i] += pot_temp[i][ii]; |
731 | < | } |
732 | < | } |
727 | > | fill(pot_temp.begin(), pot_temp.end(), |
728 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
729 | > | |
730 | > | AtomPlanPotColumn->scatter(pot_col, pot_temp); |
731 | > | |
732 | > | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
733 | > | pairwisePot += pot_temp[ii]; |
734 | #endif | |
735 | + | |
736 | + | cerr << "pairwisePot = " << pairwisePot << "\n"; |
737 | } | |
738 | ||
739 | + | int ForceMatrixDecomposition::getNAtomsInRow() { |
740 | + | #ifdef IS_MPI |
741 | + | return nAtomsInRow_; |
742 | + | #else |
743 | + | return nLocal_; |
744 | + | #endif |
745 | + | } |
746 | + | |
747 | + | /** |
748 | + | * returns the list of atoms belonging to this group. |
749 | + | */ |
750 | + | vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
751 | + | #ifdef IS_MPI |
752 | + | return groupListRow_[cg1]; |
753 | + | #else |
754 | + | return groupList_[cg1]; |
755 | + | #endif |
756 | + | } |
757 | + | |
758 | + | vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
759 | + | #ifdef IS_MPI |
760 | + | return groupListCol_[cg2]; |
761 | + | #else |
762 | + | return groupList_[cg2]; |
763 | + | #endif |
764 | + | } |
765 | ||
766 | Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ | |
767 | Vector3d d; | |
768 | ||
769 | #ifdef IS_MPI | |
770 | d = cgColData.position[cg2] - cgRowData.position[cg1]; | |
771 | + | cerr << "cg1 = " << cg1 << "\tcg1p = " << cgRowData.position[cg1] << "\n"; |
772 | + | cerr << "cg2 = " << cg2 << "\tcg2p = " << cgColData.position[cg2] << "\n"; |
773 | #else | |
774 | d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; | |
775 | + | cerr << "cg1 = " << cg1 << "\tcg1p = " << snap_->cgData.position[cg1] << "\n"; |
776 | + | cerr << "cg2 = " << cg2 << "\tcg2p = " << snap_->cgData.position[cg2] << "\n"; |
777 | #endif | |
778 | ||
779 | snap_->wrapVector(d); | |
# | Line 285 | Line 807 | namespace OpenMD { | |
807 | snap_->wrapVector(d); | |
808 | return d; | |
809 | } | |
810 | + | |
811 | + | RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
812 | + | #ifdef IS_MPI |
813 | + | return massFactorsRow[atom1]; |
814 | + | #else |
815 | + | return massFactors[atom1]; |
816 | + | #endif |
817 | + | } |
818 | + | |
819 | + | RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
820 | + | #ifdef IS_MPI |
821 | + | return massFactorsCol[atom2]; |
822 | + | #else |
823 | + | return massFactors[atom2]; |
824 | + | #endif |
825 | + | |
826 | + | } |
827 | ||
828 | Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ | |
829 | Vector3d d; | |
# | Line 299 | Line 838 | namespace OpenMD { | |
838 | return d; | |
839 | } | |
840 | ||
841 | + | vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
842 | + | return excludesForAtom[atom1]; |
843 | + | } |
844 | + | |
845 | + | /** |
846 | + | * We need to exclude some overcounted interactions that result from |
847 | + | * the parallel decomposition. |
848 | + | */ |
849 | + | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
850 | + | int unique_id_1, unique_id_2; |
851 | + | |
852 | + | |
853 | + | cerr << "sap with atom1, atom2 =\t" << atom1 << "\t" << atom2 << "\n"; |
854 | + | #ifdef IS_MPI |
855 | + | // in MPI, we have to look up the unique IDs for each atom |
856 | + | unique_id_1 = AtomRowToGlobal[atom1]; |
857 | + | unique_id_2 = AtomColToGlobal[atom2]; |
858 | + | |
859 | + | cerr << "sap with uid1, uid2 =\t" << unique_id_1 << "\t" << unique_id_2 << "\n"; |
860 | + | // this situation should only arise in MPI simulations |
861 | + | if (unique_id_1 == unique_id_2) return true; |
862 | + | |
863 | + | // this prevents us from doing the pair on multiple processors |
864 | + | if (unique_id_1 < unique_id_2) { |
865 | + | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
866 | + | } else { |
867 | + | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
868 | + | } |
869 | + | #endif |
870 | + | return false; |
871 | + | } |
872 | + | |
873 | + | /** |
874 | + | * We need to handle the interactions for atoms who are involved in |
875 | + | * the same rigid body as well as some short range interactions |
876 | + | * (bonds, bends, torsions) differently from other interactions. |
877 | + | * We'll still visit the pairwise routines, but with a flag that |
878 | + | * tells those routines to exclude the pair from direct long range |
879 | + | * interactions. Some indirect interactions (notably reaction |
880 | + | * field) must still be handled for these pairs. |
881 | + | */ |
882 | + | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
883 | + | int unique_id_2; |
884 | + | #ifdef IS_MPI |
885 | + | // in MPI, we have to look up the unique IDs for the row atom. |
886 | + | unique_id_2 = AtomColToGlobal[atom2]; |
887 | + | #else |
888 | + | // in the normal loop, the atom numbers are unique |
889 | + | unique_id_2 = atom2; |
890 | + | #endif |
891 | + | |
892 | + | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
893 | + | i != excludesForAtom[atom1].end(); ++i) { |
894 | + | if ( (*i) == unique_id_2 ) return true; |
895 | + | } |
896 | + | |
897 | + | return false; |
898 | + | } |
899 | + | |
900 | + | |
901 | void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ | |
902 | #ifdef IS_MPI | |
903 | atomRowData.force[atom1] += fg; | |
# | Line 316 | Line 915 | namespace OpenMD { | |
915 | } | |
916 | ||
917 | // filling interaction blocks with pointers | |
918 | < | InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) { |
919 | < | InteractionData idat; |
918 | > | void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
919 | > | int atom1, int atom2) { |
920 | ||
921 | + | idat.excluded = excludeAtomPair(atom1, atom2); |
922 | + | |
923 | #ifdef IS_MPI | |
924 | + | idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
925 | + | //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
926 | + | // ff_->getAtomType(identsCol[atom2]) ); |
927 | + | |
928 | if (storageLayout_ & DataStorage::dslAmat) { | |
929 | idat.A1 = &(atomRowData.aMat[atom1]); | |
930 | idat.A2 = &(atomColData.aMat[atom2]); | |
# | Line 340 | Line 945 | namespace OpenMD { | |
945 | idat.rho2 = &(atomColData.density[atom2]); | |
946 | } | |
947 | ||
948 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
949 | + | idat.frho1 = &(atomRowData.functional[atom1]); |
950 | + | idat.frho2 = &(atomColData.functional[atom2]); |
951 | + | } |
952 | + | |
953 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
954 | idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); | |
955 | idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); | |
956 | } | |
957 | + | |
958 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
959 | + | idat.particlePot1 = &(atomRowData.particlePot[atom1]); |
960 | + | idat.particlePot2 = &(atomColData.particlePot[atom2]); |
961 | + | } |
962 | + | |
963 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
964 | + | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
965 | + | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
966 | + | } |
967 | + | |
968 | #else | |
969 | + | |
970 | + | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
971 | + | //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
972 | + | // ff_->getAtomType(idents[atom2]) ); |
973 | + | |
974 | if (storageLayout_ & DataStorage::dslAmat) { | |
975 | idat.A1 = &(snap_->atomData.aMat[atom1]); | |
976 | idat.A2 = &(snap_->atomData.aMat[atom2]); | |
# | Line 360 | Line 986 | namespace OpenMD { | |
986 | idat.t2 = &(snap_->atomData.torque[atom2]); | |
987 | } | |
988 | ||
989 | < | if (storageLayout_ & DataStorage::dslDensity) { |
989 | > | if (storageLayout_ & DataStorage::dslDensity) { |
990 | idat.rho1 = &(snap_->atomData.density[atom1]); | |
991 | idat.rho2 = &(snap_->atomData.density[atom2]); | |
992 | } | |
993 | ||
994 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
995 | + | idat.frho1 = &(snap_->atomData.functional[atom1]); |
996 | + | idat.frho2 = &(snap_->atomData.functional[atom2]); |
997 | + | } |
998 | + | |
999 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
1000 | idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); | |
1001 | idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); | |
1002 | } | |
1003 | + | |
1004 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
1005 | + | idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); |
1006 | + | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
1007 | + | } |
1008 | + | |
1009 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
1010 | + | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
1011 | + | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
1012 | + | } |
1013 | #endif | |
373 | – | return idat; |
1014 | } | |
1015 | ||
1016 | < | InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ |
1017 | < | |
378 | < | InteractionData idat; |
1016 | > | |
1017 | > | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
1018 | #ifdef IS_MPI | |
1019 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { |
1020 | < | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
1021 | < | idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
1022 | < | } |
1023 | < | if (storageLayout_ & DataStorage::dslTorque) { |
385 | < | idat.t1 = &(atomRowData.torque[atom1]); |
386 | < | idat.t2 = &(atomColData.torque[atom2]); |
387 | < | } |
388 | < | if (storageLayout_ & DataStorage::dslForce) { |
389 | < | idat.t1 = &(atomRowData.force[atom1]); |
390 | < | idat.t2 = &(atomColData.force[atom2]); |
391 | < | } |
1019 | > | pot_row[atom1] += 0.5 * *(idat.pot); |
1020 | > | pot_col[atom2] += 0.5 * *(idat.pot); |
1021 | > | |
1022 | > | atomRowData.force[atom1] += *(idat.f1); |
1023 | > | atomColData.force[atom2] -= *(idat.f1); |
1024 | #else | |
1025 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { |
1026 | < | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
1027 | < | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
1028 | < | } |
397 | < | if (storageLayout_ & DataStorage::dslTorque) { |
398 | < | idat.t1 = &(snap_->atomData.torque[atom1]); |
399 | < | idat.t2 = &(snap_->atomData.torque[atom2]); |
400 | < | } |
401 | < | if (storageLayout_ & DataStorage::dslForce) { |
402 | < | idat.t1 = &(snap_->atomData.force[atom1]); |
403 | < | idat.t2 = &(snap_->atomData.force[atom2]); |
404 | < | } |
1025 | > | pairwisePot += *(idat.pot); |
1026 | > | |
1027 | > | snap_->atomData.force[atom1] += *(idat.f1); |
1028 | > | snap_->atomData.force[atom2] -= *(idat.f1); |
1029 | #endif | |
1030 | ||
1031 | } | |
1032 | ||
409 | – | SelfData ForceMatrixDecomposition::fillSelfData(int atom1) { |
410 | – | SelfData sdat; |
411 | – | // Still Missing atype, skippedCharge, potVec pot, |
412 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { |
413 | – | sdat.eFrame = &(snap_->atomData.electroFrame[atom1]); |
414 | – | } |
415 | – | |
416 | – | if (storageLayout_ & DataStorage::dslTorque) { |
417 | – | sdat.t = &(snap_->atomData.torque[atom1]); |
418 | – | } |
419 | – | |
420 | – | if (storageLayout_ & DataStorage::dslDensity) { |
421 | – | sdat.rho = &(snap_->atomData.density[atom1]); |
422 | – | } |
423 | – | |
424 | – | if (storageLayout_ & DataStorage::dslFunctional) { |
425 | – | sdat.frho = &(snap_->atomData.functional[atom1]); |
426 | – | } |
427 | – | |
428 | – | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
429 | – | sdat.dfrhodrho = &(snap_->atomData.functionalDerivative[atom1]); |
430 | – | } |
431 | – | |
432 | – | return sdat; |
433 | – | } |
434 | – | |
435 | – | |
436 | – | |
1033 | /* | |
1034 | * buildNeighborList | |
1035 | * | |
# | Line 443 | Line 1039 | namespace OpenMD { | |
1039 | vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { | |
1040 | ||
1041 | vector<pair<int, int> > neighborList; | |
1042 | + | groupCutoffs cuts; |
1043 | + | bool doAllPairs = false; |
1044 | + | |
1045 | #ifdef IS_MPI | |
1046 | < | CellListRow.clear(); |
1047 | < | CellListCol.clear(); |
1046 | > | cellListRow_.clear(); |
1047 | > | cellListCol_.clear(); |
1048 | #else | |
1049 | < | CellList.clear(); |
1049 | > | cellList_.clear(); |
1050 | #endif | |
1051 | ||
1052 | < | // dangerous to not do error checking. |
454 | < | RealType skinThickness_ = info_->getSimParams()->getSkinThickness(); |
455 | < | RealType rCut_; |
456 | < | |
457 | < | RealType rList_ = (rCut_ + skinThickness_); |
1052 | > | RealType rList_ = (largestRcut_ + skinThickness_); |
1053 | RealType rl2 = rList_ * rList_; | |
1054 | Snapshot* snap_ = sman_->getCurrentSnapshot(); | |
1055 | Mat3x3d Hmat = snap_->getHmat(); | |
1056 | Vector3d Hx = Hmat.getColumn(0); | |
1057 | Vector3d Hy = Hmat.getColumn(1); | |
1058 | Vector3d Hz = Hmat.getColumn(2); | |
464 | – | Vector3i nCells; |
1059 | ||
1060 | < | nCells.x() = (int) ( Hx.length() )/ rList_; |
1061 | < | nCells.y() = (int) ( Hy.length() )/ rList_; |
1062 | < | nCells.z() = (int) ( Hz.length() )/ rList_; |
1060 | > | nCells_.x() = (int) ( Hx.length() )/ rList_; |
1061 | > | nCells_.y() = (int) ( Hy.length() )/ rList_; |
1062 | > | nCells_.z() = (int) ( Hz.length() )/ rList_; |
1063 | ||
1064 | + | // handle small boxes where the cell offsets can end up repeating cells |
1065 | + | |
1066 | + | if (nCells_.x() < 3) doAllPairs = true; |
1067 | + | if (nCells_.y() < 3) doAllPairs = true; |
1068 | + | if (nCells_.z() < 3) doAllPairs = true; |
1069 | + | |
1070 | Mat3x3d invHmat = snap_->getInvHmat(); | |
1071 | Vector3d rs, scaled, dr; | |
1072 | Vector3i whichCell; | |
1073 | int cellIndex; | |
1074 | + | int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
1075 | ||
1076 | #ifdef IS_MPI | |
1077 | < | for (int i = 0; i < nGroupsInRow_; i++) { |
1078 | < | rs = cgRowData.position[i]; |
478 | < | // scaled positions relative to the box vectors |
479 | < | scaled = invHmat * rs; |
480 | < | // wrap the vector back into the unit box by subtracting integer box |
481 | < | // numbers |
482 | < | for (int j = 0; j < 3; j++) |
483 | < | scaled[j] -= roundMe(scaled[j]); |
484 | < | |
485 | < | // find xyz-indices of cell that cutoffGroup is in. |
486 | < | whichCell.x() = nCells.x() * scaled.x(); |
487 | < | whichCell.y() = nCells.y() * scaled.y(); |
488 | < | whichCell.z() = nCells.z() * scaled.z(); |
489 | < | |
490 | < | // find single index of this cell: |
491 | < | cellIndex = Vlinear(whichCell, nCells); |
492 | < | // add this cutoff group to the list of groups in this cell; |
493 | < | CellListRow[cellIndex].push_back(i); |
494 | < | } |
495 | < | |
496 | < | for (int i = 0; i < nGroupsInCol_; i++) { |
497 | < | rs = cgColData.position[i]; |
498 | < | // scaled positions relative to the box vectors |
499 | < | scaled = invHmat * rs; |
500 | < | // wrap the vector back into the unit box by subtracting integer box |
501 | < | // numbers |
502 | < | for (int j = 0; j < 3; j++) |
503 | < | scaled[j] -= roundMe(scaled[j]); |
504 | < | |
505 | < | // find xyz-indices of cell that cutoffGroup is in. |
506 | < | whichCell.x() = nCells.x() * scaled.x(); |
507 | < | whichCell.y() = nCells.y() * scaled.y(); |
508 | < | whichCell.z() = nCells.z() * scaled.z(); |
509 | < | |
510 | < | // find single index of this cell: |
511 | < | cellIndex = Vlinear(whichCell, nCells); |
512 | < | // add this cutoff group to the list of groups in this cell; |
513 | < | CellListCol[cellIndex].push_back(i); |
514 | < | } |
1077 | > | cellListRow_.resize(nCtot); |
1078 | > | cellListCol_.resize(nCtot); |
1079 | #else | |
1080 | < | for (int i = 0; i < nGroups_; i++) { |
1081 | < | rs = snap_->cgData.position[i]; |
518 | < | // scaled positions relative to the box vectors |
519 | < | scaled = invHmat * rs; |
520 | < | // wrap the vector back into the unit box by subtracting integer box |
521 | < | // numbers |
522 | < | for (int j = 0; j < 3; j++) |
523 | < | scaled[j] -= roundMe(scaled[j]); |
1080 | > | cellList_.resize(nCtot); |
1081 | > | #endif |
1082 | ||
1083 | < | // find xyz-indices of cell that cutoffGroup is in. |
1084 | < | whichCell.x() = nCells.x() * scaled.x(); |
527 | < | whichCell.y() = nCells.y() * scaled.y(); |
528 | < | whichCell.z() = nCells.z() * scaled.z(); |
1083 | > | if (!doAllPairs) { |
1084 | > | #ifdef IS_MPI |
1085 | ||
1086 | < | // find single index of this cell: |
1087 | < | cellIndex = Vlinear(whichCell, nCells); |
1088 | < | // add this cutoff group to the list of groups in this cell; |
1089 | < | CellList[cellIndex].push_back(i); |
1090 | < | } |
1086 | > | for (int i = 0; i < nGroupsInRow_; i++) { |
1087 | > | rs = cgRowData.position[i]; |
1088 | > | |
1089 | > | // scaled positions relative to the box vectors |
1090 | > | scaled = invHmat * rs; |
1091 | > | |
1092 | > | // wrap the vector back into the unit box by subtracting integer box |
1093 | > | // numbers |
1094 | > | for (int j = 0; j < 3; j++) { |
1095 | > | scaled[j] -= roundMe(scaled[j]); |
1096 | > | scaled[j] += 0.5; |
1097 | > | } |
1098 | > | |
1099 | > | // find xyz-indices of cell that cutoffGroup is in. |
1100 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1101 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1102 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1103 | > | |
1104 | > | // find single index of this cell: |
1105 | > | cellIndex = Vlinear(whichCell, nCells_); |
1106 | > | |
1107 | > | // add this cutoff group to the list of groups in this cell; |
1108 | > | cellListRow_[cellIndex].push_back(i); |
1109 | > | } |
1110 | > | for (int i = 0; i < nGroupsInCol_; i++) { |
1111 | > | rs = cgColData.position[i]; |
1112 | > | |
1113 | > | // scaled positions relative to the box vectors |
1114 | > | scaled = invHmat * rs; |
1115 | > | |
1116 | > | // wrap the vector back into the unit box by subtracting integer box |
1117 | > | // numbers |
1118 | > | for (int j = 0; j < 3; j++) { |
1119 | > | scaled[j] -= roundMe(scaled[j]); |
1120 | > | scaled[j] += 0.5; |
1121 | > | } |
1122 | > | |
1123 | > | // find xyz-indices of cell that cutoffGroup is in. |
1124 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1125 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1126 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1127 | > | |
1128 | > | // find single index of this cell: |
1129 | > | cellIndex = Vlinear(whichCell, nCells_); |
1130 | > | |
1131 | > | // add this cutoff group to the list of groups in this cell; |
1132 | > | cellListCol_[cellIndex].push_back(i); |
1133 | > | } |
1134 | > | #else |
1135 | > | for (int i = 0; i < nGroups_; i++) { |
1136 | > | rs = snap_->cgData.position[i]; |
1137 | > | |
1138 | > | // scaled positions relative to the box vectors |
1139 | > | scaled = invHmat * rs; |
1140 | > | |
1141 | > | // wrap the vector back into the unit box by subtracting integer box |
1142 | > | // numbers |
1143 | > | for (int j = 0; j < 3; j++) { |
1144 | > | scaled[j] -= roundMe(scaled[j]); |
1145 | > | scaled[j] += 0.5; |
1146 | > | } |
1147 | > | |
1148 | > | // find xyz-indices of cell that cutoffGroup is in. |
1149 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1150 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1151 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1152 | > | |
1153 | > | // find single index of this cell: |
1154 | > | cellIndex = Vlinear(whichCell, nCells_); |
1155 | > | |
1156 | > | // add this cutoff group to the list of groups in this cell; |
1157 | > | cellList_[cellIndex].push_back(i); |
1158 | > | } |
1159 | #endif | |
1160 | ||
1161 | < | |
1162 | < | |
1163 | < | for (int m1z = 0; m1z < nCells.z(); m1z++) { |
1164 | < | for (int m1y = 0; m1y < nCells.y(); m1y++) { |
1165 | < | for (int m1x = 0; m1x < nCells.x(); m1x++) { |
1166 | < | Vector3i m1v(m1x, m1y, m1z); |
1167 | < | int m1 = Vlinear(m1v, nCells); |
1168 | < | for (int offset = 0; offset < nOffset_; offset++) { |
1169 | < | Vector3i m2v = m1v + cellOffsets_[offset]; |
1170 | < | |
1171 | < | if (m2v.x() >= nCells.x()) { |
1172 | < | m2v.x() = 0; |
1173 | < | } else if (m2v.x() < 0) { |
1174 | < | m2v.x() = nCells.x() - 1; |
1175 | < | } |
1176 | < | |
1177 | < | if (m2v.y() >= nCells.y()) { |
1178 | < | m2v.y() = 0; |
1179 | < | } else if (m2v.y() < 0) { |
1180 | < | m2v.y() = nCells.y() - 1; |
1181 | < | } |
1182 | < | |
1183 | < | if (m2v.z() >= nCells.z()) { |
1184 | < | m2v.z() = 0; |
1185 | < | } else if (m2v.z() < 0) { |
1186 | < | m2v.z() = nCells.z() - 1; |
1187 | < | } |
1188 | < | |
1189 | < | int m2 = Vlinear (m2v, nCells); |
1190 | < | |
1161 | > | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1162 | > | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1163 | > | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1164 | > | Vector3i m1v(m1x, m1y, m1z); |
1165 | > | int m1 = Vlinear(m1v, nCells_); |
1166 | > | |
1167 | > | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1168 | > | os != cellOffsets_.end(); ++os) { |
1169 | > | |
1170 | > | Vector3i m2v = m1v + (*os); |
1171 | > | |
1172 | > | if (m2v.x() >= nCells_.x()) { |
1173 | > | m2v.x() = 0; |
1174 | > | } else if (m2v.x() < 0) { |
1175 | > | m2v.x() = nCells_.x() - 1; |
1176 | > | } |
1177 | > | |
1178 | > | if (m2v.y() >= nCells_.y()) { |
1179 | > | m2v.y() = 0; |
1180 | > | } else if (m2v.y() < 0) { |
1181 | > | m2v.y() = nCells_.y() - 1; |
1182 | > | } |
1183 | > | |
1184 | > | if (m2v.z() >= nCells_.z()) { |
1185 | > | m2v.z() = 0; |
1186 | > | } else if (m2v.z() < 0) { |
1187 | > | m2v.z() = nCells_.z() - 1; |
1188 | > | } |
1189 | > | |
1190 | > | int m2 = Vlinear (m2v, nCells_); |
1191 | > | |
1192 | #ifdef IS_MPI | |
1193 | < | for (vector<int>::iterator j1 = CellListRow[m1].begin(); |
1194 | < | j1 != CellListRow[m1].end(); ++j1) { |
1195 | < | for (vector<int>::iterator j2 = CellListCol[m2].begin(); |
1196 | < | j2 != CellListCol[m2].end(); ++j2) { |
1197 | < | |
1198 | < | // Always do this if we're in different cells or if |
1199 | < | // we're in the same cell and the global index of the |
575 | < | // j2 cutoff group is less than the j1 cutoff group |
576 | < | |
577 | < | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1193 | > | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1194 | > | j1 != cellListRow_[m1].end(); ++j1) { |
1195 | > | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1196 | > | j2 != cellListCol_[m2].end(); ++j2) { |
1197 | > | |
1198 | > | // In parallel, we need to visit *all* pairs of row & |
1199 | > | // column indicies and will truncate later on. |
1200 | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | |
1201 | snap_->wrapVector(dr); | |
1202 | < | if (dr.lengthSquare() < rl2) { |
1202 | > | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1203 | > | if (dr.lengthSquare() < cuts.third) { |
1204 | neighborList.push_back(make_pair((*j1), (*j2))); | |
1205 | < | } |
1205 | > | } |
1206 | } | |
1207 | } | |
585 | – | } |
1208 | #else | |
1209 | < | for (vector<int>::iterator j1 = CellList[m1].begin(); |
1210 | < | j1 != CellList[m1].end(); ++j1) { |
1211 | < | for (vector<int>::iterator j2 = CellList[m2].begin(); |
1212 | < | j2 != CellList[m2].end(); ++j2) { |
1213 | < | |
1214 | < | // Always do this if we're in different cells or if |
1215 | < | // we're in the same cell and the global index of the |
1216 | < | // j2 cutoff group is less than the j1 cutoff group |
1217 | < | |
1218 | < | if (m2 != m1 || (*j2) < (*j1)) { |
1219 | < | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1220 | < | snap_->wrapVector(dr); |
1221 | < | if (dr.lengthSquare() < rl2) { |
1222 | < | neighborList.push_back(make_pair((*j1), (*j2))); |
1209 | > | |
1210 | > | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1211 | > | j1 != cellList_[m1].end(); ++j1) { |
1212 | > | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1213 | > | j2 != cellList_[m2].end(); ++j2) { |
1214 | > | |
1215 | > | // Always do this if we're in different cells or if |
1216 | > | // we're in the same cell and the global index of the |
1217 | > | // j2 cutoff group is less than the j1 cutoff group |
1218 | > | |
1219 | > | if (m2 != m1 || (*j2) < (*j1)) { |
1220 | > | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1221 | > | snap_->wrapVector(dr); |
1222 | > | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1223 | > | if (dr.lengthSquare() < cuts.third) { |
1224 | > | neighborList.push_back(make_pair((*j1), (*j2))); |
1225 | > | } |
1226 | } | |
1227 | } | |
1228 | } | |
604 | – | } |
1229 | #endif | |
1230 | + | } |
1231 | } | |
1232 | } | |
1233 | } | |
1234 | + | } else { |
1235 | + | // branch to do all cutoff group pairs |
1236 | + | #ifdef IS_MPI |
1237 | + | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1238 | + | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1239 | + | dr = cgColData.position[j2] - cgRowData.position[j1]; |
1240 | + | snap_->wrapVector(dr); |
1241 | + | cuts = getGroupCutoffs( j1, j2 ); |
1242 | + | if (dr.lengthSquare() < cuts.third) { |
1243 | + | neighborList.push_back(make_pair(j1, j2)); |
1244 | + | } |
1245 | + | } |
1246 | + | } |
1247 | + | #else |
1248 | + | for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1249 | + | for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1250 | + | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1251 | + | snap_->wrapVector(dr); |
1252 | + | cuts = getGroupCutoffs( j1, j2 ); |
1253 | + | if (dr.lengthSquare() < cuts.third) { |
1254 | + | neighborList.push_back(make_pair(j1, j2)); |
1255 | + | } |
1256 | + | } |
1257 | + | } |
1258 | + | #endif |
1259 | } | |
1260 | + | |
1261 | + | // save the local cutoff group positions for the check that is |
1262 | + | // done on each loop: |
1263 | + | saved_CG_positions_.clear(); |
1264 | + | for (int i = 0; i < nGroups_; i++) |
1265 | + | saved_CG_positions_.push_back(snap_->cgData.position[i]); |
1266 | + | |
1267 | return neighborList; | |
1268 | } | |
1269 | } //end namespace OpenMD |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |