# | Line 57 | Line 57 | namespace OpenMD { | |
---|---|---|
57 | storageLayout_ = sman_->getStorageLayout(); | |
58 | ff_ = info_->getForceField(); | |
59 | nLocal_ = snap_->getNumberOfAtoms(); | |
60 | < | nGroups_ = snap_->getNumberOfCutoffGroups(); |
61 | < | |
60 | > | |
61 | > | nGroups_ = info_->getNLocalCutoffGroups(); |
62 | // gather the information for atomtype IDs (atids): | |
63 | < | identsLocal = info_->getIdentArray(); |
63 | > | idents = info_->getIdentArray(); |
64 | AtomLocalToGlobal = info_->getGlobalAtomIndices(); | |
65 | cgLocalToGlobal = info_->getGlobalGroupIndices(); | |
66 | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); | |
67 | – | vector<RealType> massFactorsLocal = info_->getMassFactors(); |
68 | – | PairList excludes = info_->getExcludedInteractions(); |
69 | – | PairList oneTwo = info_->getOneTwoInteractions(); |
70 | – | PairList oneThree = info_->getOneThreeInteractions(); |
71 | – | PairList oneFour = info_->getOneFourInteractions(); |
67 | ||
68 | + | massFactors = info_->getMassFactors(); |
69 | + | |
70 | + | PairList* excludes = info_->getExcludedInteractions(); |
71 | + | PairList* oneTwo = info_->getOneTwoInteractions(); |
72 | + | PairList* oneThree = info_->getOneThreeInteractions(); |
73 | + | PairList* oneFour = info_->getOneFourInteractions(); |
74 | + | |
75 | #ifdef IS_MPI | |
76 | ||
77 | AtomCommIntRow = new Communicator<Row,int>(nLocal_); | |
# | Line 104 | Line 106 | namespace OpenMD { | |
106 | cgColData.resize(nGroupsInCol_); | |
107 | cgColData.setStorageLayout(DataStorage::dslPosition); | |
108 | ||
109 | < | identsRow.reserve(nAtomsInRow_); |
110 | < | identsCol.reserve(nAtomsInCol_); |
109 | > | identsRow.resize(nAtomsInRow_); |
110 | > | identsCol.resize(nAtomsInCol_); |
111 | ||
112 | < | AtomCommIntRow->gather(identsLocal, identsRow); |
113 | < | AtomCommIntColumn->gather(identsLocal, identsCol); |
112 | > | AtomCommIntRow->gather(idents, identsRow); |
113 | > | AtomCommIntColumn->gather(idents, identsCol); |
114 | ||
115 | + | vector<int>::iterator it; |
116 | + | for (it = AtomLocalToGlobal.begin(); it != AtomLocalToGlobal.end(); ++it) { |
117 | + | cerr << "my AtomLocalToGlobal = " << (*it) << "\n"; |
118 | + | } |
119 | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | |
120 | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); | |
121 | ||
122 | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); | |
123 | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); | |
124 | ||
125 | < | AtomCommRealRow->gather(massFactorsLocal, massFactorsRow); |
126 | < | AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol); |
125 | > | AtomCommRealRow->gather(massFactors, massFactorsRow); |
126 | > | AtomCommRealColumn->gather(massFactors, massFactorsCol); |
127 | ||
128 | groupListRow_.clear(); | |
129 | < | groupListRow_.reserve(nGroupsInRow_); |
129 | > | groupListRow_.resize(nGroupsInRow_); |
130 | for (int i = 0; i < nGroupsInRow_; i++) { | |
131 | int gid = cgRowToGlobal[i]; | |
132 | for (int j = 0; j < nAtomsInRow_; j++) { | |
# | Line 131 | Line 137 | namespace OpenMD { | |
137 | } | |
138 | ||
139 | groupListCol_.clear(); | |
140 | < | groupListCol_.reserve(nGroupsInCol_); |
140 | > | groupListCol_.resize(nGroupsInCol_); |
141 | for (int i = 0; i < nGroupsInCol_; i++) { | |
142 | int gid = cgColToGlobal[i]; | |
143 | for (int j = 0; j < nAtomsInCol_; j++) { | |
# | Line 141 | Line 147 | namespace OpenMD { | |
147 | } | |
148 | } | |
149 | ||
150 | < | skipsForRowAtom.clear(); |
151 | < | skipsForRowAtom.reserve(nAtomsInRow_); |
150 | > | excludesForAtom.clear(); |
151 | > | excludesForAtom.resize(nAtomsInRow_); |
152 | > | toposForAtom.clear(); |
153 | > | toposForAtom.resize(nAtomsInRow_); |
154 | > | topoDist.clear(); |
155 | > | topoDist.resize(nAtomsInRow_); |
156 | for (int i = 0; i < nAtomsInRow_; i++) { | |
157 | int iglob = AtomRowToGlobal[i]; | |
148 | – | for (int j = 0; j < nAtomsInCol_; j++) { |
149 | – | int jglob = AtomColToGlobal[j]; |
150 | – | if (excludes.hasPair(iglob, jglob)) |
151 | – | skipsForRowAtom[i].push_back(j); |
152 | – | } |
153 | – | } |
158 | ||
155 | – | toposForRowAtom.clear(); |
156 | – | toposForRowAtom.reserve(nAtomsInRow_); |
157 | – | for (int i = 0; i < nAtomsInRow_; i++) { |
158 | – | int iglob = AtomRowToGlobal[i]; |
159 | – | int nTopos = 0; |
159 | for (int j = 0; j < nAtomsInCol_; j++) { | |
160 | < | int jglob = AtomColToGlobal[j]; |
161 | < | if (oneTwo.hasPair(iglob, jglob)) { |
162 | < | toposForRowAtom[i].push_back(j); |
163 | < | topoDistRow[i][nTopos] = 1; |
164 | < | nTopos++; |
160 | > | int jglob = AtomColToGlobal[j]; |
161 | > | |
162 | > | if (excludes->hasPair(iglob, jglob)) |
163 | > | excludesForAtom[i].push_back(j); |
164 | > | |
165 | > | if (oneTwo->hasPair(iglob, jglob)) { |
166 | > | toposForAtom[i].push_back(j); |
167 | > | topoDist[i].push_back(1); |
168 | > | } else { |
169 | > | if (oneThree->hasPair(iglob, jglob)) { |
170 | > | toposForAtom[i].push_back(j); |
171 | > | topoDist[i].push_back(2); |
172 | > | } else { |
173 | > | if (oneFour->hasPair(iglob, jglob)) { |
174 | > | toposForAtom[i].push_back(j); |
175 | > | topoDist[i].push_back(3); |
176 | > | } |
177 | > | } |
178 | } | |
167 | – | if (oneThree.hasPair(iglob, jglob)) { |
168 | – | toposForRowAtom[i].push_back(j); |
169 | – | topoDistRow[i][nTopos] = 2; |
170 | – | nTopos++; |
171 | – | } |
172 | – | if (oneFour.hasPair(iglob, jglob)) { |
173 | – | toposForRowAtom[i].push_back(j); |
174 | – | topoDistRow[i][nTopos] = 3; |
175 | – | nTopos++; |
176 | – | } |
179 | } | |
180 | } | |
181 | ||
182 | #endif | |
183 | ||
184 | groupList_.clear(); | |
185 | < | groupList_.reserve(nGroups_); |
185 | > | groupList_.resize(nGroups_); |
186 | for (int i = 0; i < nGroups_; i++) { | |
187 | int gid = cgLocalToGlobal[i]; | |
188 | for (int j = 0; j < nLocal_; j++) { | |
189 | int aid = AtomLocalToGlobal[j]; | |
190 | < | if (globalGroupMembership[aid] == gid) |
190 | > | if (globalGroupMembership[aid] == gid) { |
191 | groupList_[i].push_back(j); | |
192 | + | } |
193 | } | |
194 | } | |
195 | ||
196 | < | skipsForLocalAtom.clear(); |
197 | < | skipsForLocalAtom.reserve(nLocal_); |
196 | > | excludesForAtom.clear(); |
197 | > | excludesForAtom.resize(nLocal_); |
198 | > | toposForAtom.clear(); |
199 | > | toposForAtom.resize(nLocal_); |
200 | > | topoDist.clear(); |
201 | > | topoDist.resize(nLocal_); |
202 | ||
203 | for (int i = 0; i < nLocal_; i++) { | |
204 | int iglob = AtomLocalToGlobal[i]; | |
198 | – | for (int j = 0; j < nLocal_; j++) { |
199 | – | int jglob = AtomLocalToGlobal[j]; |
200 | – | if (excludes.hasPair(iglob, jglob)) |
201 | – | skipsForLocalAtom[i].push_back(j); |
202 | – | } |
203 | – | } |
205 | ||
205 | – | toposForLocalAtom.clear(); |
206 | – | toposForLocalAtom.reserve(nLocal_); |
207 | – | for (int i = 0; i < nLocal_; i++) { |
208 | – | int iglob = AtomLocalToGlobal[i]; |
209 | – | int nTopos = 0; |
206 | for (int j = 0; j < nLocal_; j++) { | |
207 | < | int jglob = AtomLocalToGlobal[j]; |
208 | < | if (oneTwo.hasPair(iglob, jglob)) { |
209 | < | toposForLocalAtom[i].push_back(j); |
210 | < | topoDistLocal[i][nTopos] = 1; |
211 | < | nTopos++; |
207 | > | int jglob = AtomLocalToGlobal[j]; |
208 | > | |
209 | > | if (excludes->hasPair(iglob, jglob)) |
210 | > | excludesForAtom[i].push_back(j); |
211 | > | |
212 | > | if (oneTwo->hasPair(iglob, jglob)) { |
213 | > | toposForAtom[i].push_back(j); |
214 | > | topoDist[i].push_back(1); |
215 | > | } else { |
216 | > | if (oneThree->hasPair(iglob, jglob)) { |
217 | > | toposForAtom[i].push_back(j); |
218 | > | topoDist[i].push_back(2); |
219 | > | } else { |
220 | > | if (oneFour->hasPair(iglob, jglob)) { |
221 | > | toposForAtom[i].push_back(j); |
222 | > | topoDist[i].push_back(3); |
223 | > | } |
224 | > | } |
225 | } | |
217 | – | if (oneThree.hasPair(iglob, jglob)) { |
218 | – | toposForLocalAtom[i].push_back(j); |
219 | – | topoDistLocal[i][nTopos] = 2; |
220 | – | nTopos++; |
221 | – | } |
222 | – | if (oneFour.hasPair(iglob, jglob)) { |
223 | – | toposForLocalAtom[i].push_back(j); |
224 | – | topoDistLocal[i][nTopos] = 3; |
225 | – | nTopos++; |
226 | – | } |
226 | } | |
227 | < | } |
227 | > | } |
228 | > | |
229 | > | createGtypeCutoffMap(); |
230 | ||
231 | } | |
232 | ||
233 | void ForceMatrixDecomposition::createGtypeCutoffMap() { | |
234 | < | |
234 | > | |
235 | RealType tol = 1e-6; | |
236 | RealType rc; | |
237 | int atid; | |
238 | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); | |
239 | < | vector<RealType> atypeCutoff; |
240 | < | atypeCutoff.reserve( atypes.size() ); |
241 | < | |
242 | < | for (set<AtomType*>::iterator at = atypes.begin(); at != atypes.end(); ++at){ |
242 | < | rc = interactionMan_->getSuggestedCutoffRadius(*at); |
239 | > | map<int, RealType> atypeCutoff; |
240 | > | |
241 | > | for (set<AtomType*>::iterator at = atypes.begin(); |
242 | > | at != atypes.end(); ++at){ |
243 | atid = (*at)->getIdent(); | |
244 | < | atypeCutoff[atid] = rc; |
244 | > | if (userChoseCutoff_) |
245 | > | atypeCutoff[atid] = userCutoff_; |
246 | > | else |
247 | > | atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
248 | } | |
249 | ||
250 | vector<RealType> gTypeCutoffs; | |
248 | – | |
251 | // first we do a single loop over the cutoff groups to find the | |
252 | // largest cutoff for any atypes present in this group. | |
253 | #ifdef IS_MPI | |
254 | vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); | |
255 | + | groupRowToGtype.resize(nGroupsInRow_); |
256 | for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { | |
257 | vector<int> atomListRow = getAtomsInGroupRow(cg1); | |
258 | for (vector<int>::iterator ia = atomListRow.begin(); | |
# | Line 275 | Line 278 | namespace OpenMD { | |
278 | ||
279 | } | |
280 | vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); | |
281 | + | groupColToGtype.resize(nGroupsInCol_); |
282 | for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { | |
283 | vector<int> atomListCol = getAtomsInGroupColumn(cg2); | |
284 | for (vector<int>::iterator jb = atomListCol.begin(); | |
# | Line 298 | Line 302 | namespace OpenMD { | |
302 | } | |
303 | } | |
304 | #else | |
305 | + | |
306 | vector<RealType> groupCutoff(nGroups_, 0.0); | |
307 | + | groupToGtype.resize(nGroups_); |
308 | for (int cg1 = 0; cg1 < nGroups_; cg1++) { | |
309 | + | |
310 | groupCutoff[cg1] = 0.0; | |
311 | vector<int> atomList = getAtomsInGroupRow(cg1); | |
312 | + | |
313 | for (vector<int>::iterator ia = atomList.begin(); | |
314 | ia != atomList.end(); ++ia) { | |
315 | int atom1 = (*ia); | |
316 | < | atid = identsLocal[atom1]; |
316 | > | atid = idents[atom1]; |
317 | if (atypeCutoff[atid] > groupCutoff[cg1]) { | |
318 | groupCutoff[cg1] = atypeCutoff[atid]; | |
319 | } | |
# | Line 327 | Line 335 | namespace OpenMD { | |
335 | ||
336 | // Now we find the maximum group cutoff value present in the simulation | |
337 | ||
338 | < | vector<RealType>::iterator groupMaxLoc = max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); |
331 | < | RealType groupMax = *groupMaxLoc; |
338 | > | RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); |
339 | ||
340 | #ifdef IS_MPI | |
341 | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); | |
# | Line 337 | Line 344 | namespace OpenMD { | |
344 | RealType tradRcut = groupMax; | |
345 | ||
346 | for (int i = 0; i < gTypeCutoffs.size(); i++) { | |
347 | < | for (int j = 0; j < gTypeCutoffs.size(); j++) { |
341 | < | |
347 | > | for (int j = 0; j < gTypeCutoffs.size(); j++) { |
348 | RealType thisRcut; | |
349 | switch(cutoffPolicy_) { | |
350 | case TRADITIONAL: | |
351 | thisRcut = tradRcut; | |
352 | + | break; |
353 | case MIX: | |
354 | thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); | |
355 | + | break; |
356 | case MAX: | |
357 | thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); | |
358 | + | break; |
359 | default: | |
360 | sprintf(painCave.errMsg, | |
361 | "ForceMatrixDecomposition::createGtypeCutoffMap " | |
362 | "hit an unknown cutoff policy!\n"); | |
363 | painCave.severity = OPENMD_ERROR; | |
364 | painCave.isFatal = 1; | |
365 | < | simError(); |
365 | > | simError(); |
366 | > | break; |
367 | } | |
368 | ||
369 | pair<int,int> key = make_pair(i,j); | |
# | Line 371 | Line 381 | namespace OpenMD { | |
381 | if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { | |
382 | sprintf(painCave.errMsg, | |
383 | "ForceMatrixDecomposition::createGtypeCutoffMap " | |
384 | < | "user-specified rCut does not match computed group Cutoff\n"); |
384 | > | "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
385 | painCave.severity = OPENMD_ERROR; | |
386 | painCave.isFatal = 1; | |
387 | simError(); | |
# | Line 383 | Line 393 | namespace OpenMD { | |
393 | ||
394 | ||
395 | groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { | |
396 | < | int i, j; |
387 | < | |
396 | > | int i, j; |
397 | #ifdef IS_MPI | |
398 | i = groupRowToGtype[cg1]; | |
399 | j = groupColToGtype[cg2]; | |
400 | #else | |
401 | i = groupToGtype[cg1]; | |
402 | j = groupToGtype[cg2]; | |
403 | < | #endif |
395 | < | |
403 | > | #endif |
404 | return gTypeCutoffMap[make_pair(i,j)]; | |
405 | } | |
406 | ||
407 | + | int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
408 | + | for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
409 | + | if (toposForAtom[atom1][j] == atom2) |
410 | + | return topoDist[atom1][j]; |
411 | + | } |
412 | + | return 0; |
413 | + | } |
414 | ||
415 | void ForceMatrixDecomposition::zeroWorkArrays() { | |
416 | + | pairwisePot = 0.0; |
417 | + | embeddingPot = 0.0; |
418 | ||
402 | – | for (int j = 0; j < N_INTERACTION_FAMILIES; j++) { |
403 | – | longRangePot_[j] = 0.0; |
404 | – | } |
405 | – | |
419 | #ifdef IS_MPI | |
420 | if (storageLayout_ & DataStorage::dslForce) { | |
421 | fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); | |
# | Line 418 | Line 431 | namespace OpenMD { | |
431 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
432 | ||
433 | fill(pot_col.begin(), pot_col.end(), | |
434 | < | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
422 | < | |
423 | < | pot_local = Vector<RealType, N_INTERACTION_FAMILIES>(0.0); |
434 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
435 | ||
436 | if (storageLayout_ & DataStorage::dslParticlePot) { | |
437 | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); | |
# | Line 444 | Line 455 | namespace OpenMD { | |
455 | atomColData.functionalDerivative.end(), 0.0); | |
456 | } | |
457 | ||
458 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
459 | + | fill(atomRowData.skippedCharge.begin(), |
460 | + | atomRowData.skippedCharge.end(), 0.0); |
461 | + | fill(atomColData.skippedCharge.begin(), |
462 | + | atomColData.skippedCharge.end(), 0.0); |
463 | + | } |
464 | + | |
465 | #else | |
466 | ||
467 | if (storageLayout_ & DataStorage::dslParticlePot) { | |
# | Line 462 | Line 480 | namespace OpenMD { | |
480 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
481 | fill(snap_->atomData.functionalDerivative.begin(), | |
482 | snap_->atomData.functionalDerivative.end(), 0.0); | |
483 | + | } |
484 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
485 | + | fill(snap_->atomData.skippedCharge.begin(), |
486 | + | snap_->atomData.skippedCharge.end(), 0.0); |
487 | } | |
488 | #endif | |
489 | ||
# | Line 570 | Line 592 | namespace OpenMD { | |
592 | ||
593 | if (storageLayout_ & DataStorage::dslTorque) { | |
594 | ||
595 | < | int nt = snap_->atomData.force.size(); |
595 | > | int nt = snap_->atomData.torque.size(); |
596 | vector<Vector3d> trq_tmp(nt, V3Zero); | |
597 | ||
598 | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); | |
599 | < | for (int i = 0; i < n; i++) { |
599 | > | for (int i = 0; i < nt; i++) { |
600 | snap_->atomData.torque[i] += trq_tmp[i]; | |
601 | trq_tmp[i] = 0.0; | |
602 | } | |
603 | ||
604 | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); | |
605 | < | for (int i = 0; i < n; i++) |
605 | > | for (int i = 0; i < nt; i++) |
606 | snap_->atomData.torque[i] += trq_tmp[i]; | |
607 | } | |
608 | + | |
609 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
610 | + | |
611 | + | int ns = snap_->atomData.skippedCharge.size(); |
612 | + | vector<RealType> skch_tmp(ns, 0.0); |
613 | + | |
614 | + | AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
615 | + | for (int i = 0; i < ns; i++) { |
616 | + | snap_->atomData.skippedCharge[i] = skch_tmp[i]; |
617 | + | skch_tmp[i] = 0.0; |
618 | + | } |
619 | + | |
620 | + | AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
621 | + | for (int i = 0; i < ns; i++) |
622 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
623 | + | } |
624 | ||
625 | nLocal_ = snap_->getNumberOfAtoms(); | |
626 | ||
# | Line 594 | Line 632 | namespace OpenMD { | |
632 | AtomCommPotRow->scatter(pot_row, pot_temp); | |
633 | ||
634 | for (int ii = 0; ii < pot_temp.size(); ii++ ) | |
635 | < | pot_local += pot_temp[ii]; |
635 | > | pairwisePot += pot_temp[ii]; |
636 | ||
637 | fill(pot_temp.begin(), pot_temp.end(), | |
638 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
# | Line 602 | Line 640 | namespace OpenMD { | |
640 | AtomCommPotColumn->scatter(pot_col, pot_temp); | |
641 | ||
642 | for (int ii = 0; ii < pot_temp.size(); ii++ ) | |
643 | < | pot_local += pot_temp[ii]; |
606 | < | |
643 | > | pairwisePot += pot_temp[ii]; |
644 | #endif | |
645 | + | |
646 | } | |
647 | ||
648 | int ForceMatrixDecomposition::getNAtomsInRow() { | |
# | Line 679 | Line 717 | namespace OpenMD { | |
717 | #ifdef IS_MPI | |
718 | return massFactorsRow[atom1]; | |
719 | #else | |
720 | < | return massFactorsLocal[atom1]; |
720 | > | return massFactors[atom1]; |
721 | #endif | |
722 | } | |
723 | ||
# | Line 687 | Line 725 | namespace OpenMD { | |
725 | #ifdef IS_MPI | |
726 | return massFactorsCol[atom2]; | |
727 | #else | |
728 | < | return massFactorsLocal[atom2]; |
728 | > | return massFactors[atom2]; |
729 | #endif | |
730 | ||
731 | } | |
# | Line 705 | Line 743 | namespace OpenMD { | |
743 | return d; | |
744 | } | |
745 | ||
746 | < | vector<int> ForceMatrixDecomposition::getSkipsForRowAtom(int atom1) { |
747 | < | #ifdef IS_MPI |
710 | < | return skipsForRowAtom[atom1]; |
711 | < | #else |
712 | < | return skipsForLocalAtom[atom1]; |
713 | < | #endif |
746 | > | vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
747 | > | return excludesForAtom[atom1]; |
748 | } | |
749 | ||
750 | /** | |
751 | < | * There are a number of reasons to skip a pair or a |
718 | < | * particle. Mostly we do this to exclude atoms who are involved in |
719 | < | * short range interactions (bonds, bends, torsions), but we also |
720 | < | * need to exclude some overcounted interactions that result from |
751 | > | * We need to exclude some overcounted interactions that result from |
752 | * the parallel decomposition. | |
753 | */ | |
754 | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { | |
# | Line 737 | Line 768 | namespace OpenMD { | |
768 | } else { | |
769 | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | |
770 | } | |
740 | – | #else |
741 | – | // in the normal loop, the atom numbers are unique |
742 | – | unique_id_1 = atom1; |
743 | – | unique_id_2 = atom2; |
771 | #endif | |
772 | < | |
746 | < | #ifdef IS_MPI |
747 | < | for (vector<int>::iterator i = skipsForRowAtom[atom1].begin(); |
748 | < | i != skipsForRowAtom[atom1].end(); ++i) { |
749 | < | if ( (*i) == unique_id_2 ) return true; |
750 | < | } |
751 | < | #else |
752 | < | for (vector<int>::iterator i = skipsForLocalAtom[atom1].begin(); |
753 | < | i != skipsForLocalAtom[atom1].end(); ++i) { |
754 | < | if ( (*i) == unique_id_2 ) return true; |
755 | < | } |
756 | < | #endif |
772 | > | return false; |
773 | } | |
774 | ||
775 | < | int ForceMatrixDecomposition::getTopoDistance(int atom1, int atom2) { |
775 | > | /** |
776 | > | * We need to handle the interactions for atoms who are involved in |
777 | > | * the same rigid body as well as some short range interactions |
778 | > | * (bonds, bends, torsions) differently from other interactions. |
779 | > | * We'll still visit the pairwise routines, but with a flag that |
780 | > | * tells those routines to exclude the pair from direct long range |
781 | > | * interactions. Some indirect interactions (notably reaction |
782 | > | * field) must still be handled for these pairs. |
783 | > | */ |
784 | > | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
785 | > | int unique_id_2; |
786 | ||
787 | #ifdef IS_MPI | |
788 | < | for (int i = 0; i < toposForRowAtom[atom1].size(); i++) { |
789 | < | if ( toposForRowAtom[atom1][i] == atom2 ) return topoDistRow[atom1][i]; |
764 | < | } |
788 | > | // in MPI, we have to look up the unique IDs for the row atom. |
789 | > | unique_id_2 = AtomColToGlobal[atom2]; |
790 | #else | |
791 | < | for (int i = 0; i < toposForLocalAtom[atom1].size(); i++) { |
792 | < | if ( toposForLocalAtom[atom1][i] == atom2 ) return topoDistLocal[atom1][i]; |
768 | < | } |
791 | > | // in the normal loop, the atom numbers are unique |
792 | > | unique_id_2 = atom2; |
793 | #endif | |
794 | + | |
795 | + | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
796 | + | i != excludesForAtom[atom1].end(); ++i) { |
797 | + | if ( (*i) == unique_id_2 ) return true; |
798 | + | } |
799 | ||
800 | < | // zero is default for unconnected (i.e. normal) pair interactions |
772 | < | return 0; |
800 | > | return false; |
801 | } | |
802 | ||
803 | + | |
804 | void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ | |
805 | #ifdef IS_MPI | |
806 | atomRowData.force[atom1] += fg; | |
# | Line 789 | Line 818 | namespace OpenMD { | |
818 | } | |
819 | ||
820 | // filling interaction blocks with pointers | |
821 | < | InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) { |
822 | < | InteractionData idat; |
821 | > | void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
822 | > | int atom1, int atom2) { |
823 | ||
824 | + | idat.excluded = excludeAtomPair(atom1, atom2); |
825 | + | |
826 | #ifdef IS_MPI | |
827 | ||
828 | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), | |
829 | ff_->getAtomType(identsCol[atom2]) ); | |
799 | – | |
830 | ||
831 | if (storageLayout_ & DataStorage::dslAmat) { | |
832 | idat.A1 = &(atomRowData.aMat[atom1]); | |
# | Line 833 | Line 863 | namespace OpenMD { | |
863 | idat.particlePot2 = &(atomColData.particlePot[atom2]); | |
864 | } | |
865 | ||
866 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
867 | + | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
868 | + | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
869 | + | } |
870 | + | |
871 | #else | |
872 | ||
873 | < | idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), |
874 | < | ff_->getAtomType(identsLocal[atom2]) ); |
873 | > | idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
874 | > | ff_->getAtomType(idents[atom2]) ); |
875 | ||
876 | if (storageLayout_ & DataStorage::dslAmat) { | |
877 | idat.A1 = &(snap_->atomData.aMat[atom1]); | |
# | Line 853 | Line 888 | namespace OpenMD { | |
888 | idat.t2 = &(snap_->atomData.torque[atom2]); | |
889 | } | |
890 | ||
891 | < | if (storageLayout_ & DataStorage::dslDensity) { |
891 | > | if (storageLayout_ & DataStorage::dslDensity) { |
892 | idat.rho1 = &(snap_->atomData.density[atom1]); | |
893 | idat.rho2 = &(snap_->atomData.density[atom2]); | |
894 | } | |
# | Line 873 | Line 908 | namespace OpenMD { | |
908 | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); | |
909 | } | |
910 | ||
911 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
912 | + | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
913 | + | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
914 | + | } |
915 | #endif | |
877 | – | return idat; |
916 | } | |
917 | ||
918 | ||
919 | < | void ForceMatrixDecomposition::unpackInteractionData(InteractionData idat, int atom1, int atom2) { |
919 | > | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
920 | #ifdef IS_MPI | |
921 | pot_row[atom1] += 0.5 * *(idat.pot); | |
922 | pot_col[atom2] += 0.5 * *(idat.pot); | |
# | Line 886 | Line 924 | namespace OpenMD { | |
924 | atomRowData.force[atom1] += *(idat.f1); | |
925 | atomColData.force[atom2] -= *(idat.f1); | |
926 | #else | |
927 | < | longRangePot_ += *(idat.pot); |
928 | < | |
927 | > | pairwisePot += *(idat.pot); |
928 | > | |
929 | snap_->atomData.force[atom1] += *(idat.f1); | |
930 | snap_->atomData.force[atom2] -= *(idat.f1); | |
931 | #endif | |
932 | < | |
932 | > | |
933 | } | |
934 | ||
897 | – | |
898 | – | InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ |
899 | – | |
900 | – | InteractionData idat; |
901 | – | #ifdef IS_MPI |
902 | – | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
903 | – | ff_->getAtomType(identsCol[atom2]) ); |
904 | – | |
905 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { |
906 | – | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
907 | – | idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
908 | – | } |
909 | – | if (storageLayout_ & DataStorage::dslTorque) { |
910 | – | idat.t1 = &(atomRowData.torque[atom1]); |
911 | – | idat.t2 = &(atomColData.torque[atom2]); |
912 | – | } |
913 | – | #else |
914 | – | idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), |
915 | – | ff_->getAtomType(identsLocal[atom2]) ); |
916 | – | |
917 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { |
918 | – | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
919 | – | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
920 | – | } |
921 | – | if (storageLayout_ & DataStorage::dslTorque) { |
922 | – | idat.t1 = &(snap_->atomData.torque[atom1]); |
923 | – | idat.t2 = &(snap_->atomData.torque[atom2]); |
924 | – | } |
925 | – | #endif |
926 | – | } |
927 | – | |
935 | /* | |
936 | * buildNeighborList | |
937 | * | |
# | Line 935 | Line 942 | namespace OpenMD { | |
942 | ||
943 | vector<pair<int, int> > neighborList; | |
944 | groupCutoffs cuts; | |
945 | + | bool doAllPairs = false; |
946 | + | |
947 | #ifdef IS_MPI | |
948 | cellListRow_.clear(); | |
949 | cellListCol_.clear(); | |
# | Line 954 | Line 963 | namespace OpenMD { | |
963 | nCells_.y() = (int) ( Hy.length() )/ rList_; | |
964 | nCells_.z() = (int) ( Hz.length() )/ rList_; | |
965 | ||
966 | + | // handle small boxes where the cell offsets can end up repeating cells |
967 | + | |
968 | + | if (nCells_.x() < 3) doAllPairs = true; |
969 | + | if (nCells_.y() < 3) doAllPairs = true; |
970 | + | if (nCells_.z() < 3) doAllPairs = true; |
971 | + | |
972 | Mat3x3d invHmat = snap_->getInvHmat(); | |
973 | Vector3d rs, scaled, dr; | |
974 | Vector3i whichCell; | |
975 | int cellIndex; | |
976 | + | int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
977 | ||
978 | #ifdef IS_MPI | |
979 | < | for (int i = 0; i < nGroupsInRow_; i++) { |
980 | < | rs = cgRowData.position[i]; |
965 | < | // scaled positions relative to the box vectors |
966 | < | scaled = invHmat * rs; |
967 | < | // wrap the vector back into the unit box by subtracting integer box |
968 | < | // numbers |
969 | < | for (int j = 0; j < 3; j++) |
970 | < | scaled[j] -= roundMe(scaled[j]); |
971 | < | |
972 | < | // find xyz-indices of cell that cutoffGroup is in. |
973 | < | whichCell.x() = nCells_.x() * scaled.x(); |
974 | < | whichCell.y() = nCells_.y() * scaled.y(); |
975 | < | whichCell.z() = nCells_.z() * scaled.z(); |
976 | < | |
977 | < | // find single index of this cell: |
978 | < | cellIndex = Vlinear(whichCell, nCells_); |
979 | < | // add this cutoff group to the list of groups in this cell; |
980 | < | cellListRow_[cellIndex].push_back(i); |
981 | < | } |
982 | < | |
983 | < | for (int i = 0; i < nGroupsInCol_; i++) { |
984 | < | rs = cgColData.position[i]; |
985 | < | // scaled positions relative to the box vectors |
986 | < | scaled = invHmat * rs; |
987 | < | // wrap the vector back into the unit box by subtracting integer box |
988 | < | // numbers |
989 | < | for (int j = 0; j < 3; j++) |
990 | < | scaled[j] -= roundMe(scaled[j]); |
991 | < | |
992 | < | // find xyz-indices of cell that cutoffGroup is in. |
993 | < | whichCell.x() = nCells_.x() * scaled.x(); |
994 | < | whichCell.y() = nCells_.y() * scaled.y(); |
995 | < | whichCell.z() = nCells_.z() * scaled.z(); |
996 | < | |
997 | < | // find single index of this cell: |
998 | < | cellIndex = Vlinear(whichCell, nCells_); |
999 | < | // add this cutoff group to the list of groups in this cell; |
1000 | < | cellListCol_[cellIndex].push_back(i); |
1001 | < | } |
979 | > | cellListRow_.resize(nCtot); |
980 | > | cellListCol_.resize(nCtot); |
981 | #else | |
982 | < | for (int i = 0; i < nGroups_; i++) { |
983 | < | rs = snap_->cgData.position[i]; |
1005 | < | // scaled positions relative to the box vectors |
1006 | < | scaled = invHmat * rs; |
1007 | < | // wrap the vector back into the unit box by subtracting integer box |
1008 | < | // numbers |
1009 | < | for (int j = 0; j < 3; j++) |
1010 | < | scaled[j] -= roundMe(scaled[j]); |
982 | > | cellList_.resize(nCtot); |
983 | > | #endif |
984 | ||
985 | < | // find xyz-indices of cell that cutoffGroup is in. |
986 | < | whichCell.x() = nCells_.x() * scaled.x(); |
1014 | < | whichCell.y() = nCells_.y() * scaled.y(); |
1015 | < | whichCell.z() = nCells_.z() * scaled.z(); |
985 | > | if (!doAllPairs) { |
986 | > | #ifdef IS_MPI |
987 | ||
988 | < | // find single index of this cell: |
989 | < | cellIndex = Vlinear(whichCell, nCells_); |
990 | < | // add this cutoff group to the list of groups in this cell; |
991 | < | cellList_[cellIndex].push_back(i); |
992 | < | } |
988 | > | for (int i = 0; i < nGroupsInRow_; i++) { |
989 | > | rs = cgRowData.position[i]; |
990 | > | |
991 | > | // scaled positions relative to the box vectors |
992 | > | scaled = invHmat * rs; |
993 | > | |
994 | > | // wrap the vector back into the unit box by subtracting integer box |
995 | > | // numbers |
996 | > | for (int j = 0; j < 3; j++) { |
997 | > | scaled[j] -= roundMe(scaled[j]); |
998 | > | scaled[j] += 0.5; |
999 | > | } |
1000 | > | |
1001 | > | // find xyz-indices of cell that cutoffGroup is in. |
1002 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1003 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1004 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1005 | > | |
1006 | > | // find single index of this cell: |
1007 | > | cellIndex = Vlinear(whichCell, nCells_); |
1008 | > | |
1009 | > | // add this cutoff group to the list of groups in this cell; |
1010 | > | cellListRow_[cellIndex].push_back(i); |
1011 | > | } |
1012 | > | |
1013 | > | for (int i = 0; i < nGroupsInCol_; i++) { |
1014 | > | rs = cgColData.position[i]; |
1015 | > | |
1016 | > | // scaled positions relative to the box vectors |
1017 | > | scaled = invHmat * rs; |
1018 | > | |
1019 | > | // wrap the vector back into the unit box by subtracting integer box |
1020 | > | // numbers |
1021 | > | for (int j = 0; j < 3; j++) { |
1022 | > | scaled[j] -= roundMe(scaled[j]); |
1023 | > | scaled[j] += 0.5; |
1024 | > | } |
1025 | > | |
1026 | > | // find xyz-indices of cell that cutoffGroup is in. |
1027 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1028 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1029 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1030 | > | |
1031 | > | // find single index of this cell: |
1032 | > | cellIndex = Vlinear(whichCell, nCells_); |
1033 | > | |
1034 | > | // add this cutoff group to the list of groups in this cell; |
1035 | > | cellListCol_[cellIndex].push_back(i); |
1036 | > | } |
1037 | > | #else |
1038 | > | for (int i = 0; i < nGroups_; i++) { |
1039 | > | rs = snap_->cgData.position[i]; |
1040 | > | |
1041 | > | // scaled positions relative to the box vectors |
1042 | > | scaled = invHmat * rs; |
1043 | > | |
1044 | > | // wrap the vector back into the unit box by subtracting integer box |
1045 | > | // numbers |
1046 | > | for (int j = 0; j < 3; j++) { |
1047 | > | scaled[j] -= roundMe(scaled[j]); |
1048 | > | scaled[j] += 0.5; |
1049 | > | } |
1050 | > | |
1051 | > | // find xyz-indices of cell that cutoffGroup is in. |
1052 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1053 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1054 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1055 | > | |
1056 | > | // find single index of this cell: |
1057 | > | cellIndex = Vlinear(whichCell, nCells_); |
1058 | > | |
1059 | > | // add this cutoff group to the list of groups in this cell; |
1060 | > | cellList_[cellIndex].push_back(i); |
1061 | > | } |
1062 | #endif | |
1063 | ||
1064 | < | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1065 | < | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1066 | < | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1067 | < | Vector3i m1v(m1x, m1y, m1z); |
1068 | < | int m1 = Vlinear(m1v, nCells_); |
1029 | < | |
1030 | < | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1031 | < | os != cellOffsets_.end(); ++os) { |
1064 | > | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1065 | > | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1066 | > | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1067 | > | Vector3i m1v(m1x, m1y, m1z); |
1068 | > | int m1 = Vlinear(m1v, nCells_); |
1069 | ||
1070 | < | Vector3i m2v = m1v + (*os); |
1071 | < | |
1072 | < | if (m2v.x() >= nCells_.x()) { |
1073 | < | m2v.x() = 0; |
1074 | < | } else if (m2v.x() < 0) { |
1075 | < | m2v.x() = nCells_.x() - 1; |
1076 | < | } |
1077 | < | |
1078 | < | if (m2v.y() >= nCells_.y()) { |
1079 | < | m2v.y() = 0; |
1080 | < | } else if (m2v.y() < 0) { |
1081 | < | m2v.y() = nCells_.y() - 1; |
1082 | < | } |
1083 | < | |
1084 | < | if (m2v.z() >= nCells_.z()) { |
1085 | < | m2v.z() = 0; |
1086 | < | } else if (m2v.z() < 0) { |
1087 | < | m2v.z() = nCells_.z() - 1; |
1088 | < | } |
1089 | < | |
1090 | < | int m2 = Vlinear (m2v, nCells_); |
1091 | < | |
1070 | > | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1071 | > | os != cellOffsets_.end(); ++os) { |
1072 | > | |
1073 | > | Vector3i m2v = m1v + (*os); |
1074 | > | |
1075 | > | if (m2v.x() >= nCells_.x()) { |
1076 | > | m2v.x() = 0; |
1077 | > | } else if (m2v.x() < 0) { |
1078 | > | m2v.x() = nCells_.x() - 1; |
1079 | > | } |
1080 | > | |
1081 | > | if (m2v.y() >= nCells_.y()) { |
1082 | > | m2v.y() = 0; |
1083 | > | } else if (m2v.y() < 0) { |
1084 | > | m2v.y() = nCells_.y() - 1; |
1085 | > | } |
1086 | > | |
1087 | > | if (m2v.z() >= nCells_.z()) { |
1088 | > | m2v.z() = 0; |
1089 | > | } else if (m2v.z() < 0) { |
1090 | > | m2v.z() = nCells_.z() - 1; |
1091 | > | } |
1092 | > | |
1093 | > | int m2 = Vlinear (m2v, nCells_); |
1094 | > | |
1095 | #ifdef IS_MPI | |
1096 | < | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1097 | < | j1 != cellListRow_[m1].end(); ++j1) { |
1098 | < | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1099 | < | j2 != cellListCol_[m2].end(); ++j2) { |
1100 | < | |
1101 | < | // Always do this if we're in different cells or if |
1102 | < | // we're in the same cell and the global index of the |
1103 | < | // j2 cutoff group is less than the j1 cutoff group |
1104 | < | |
1105 | < | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1106 | < | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1107 | < | snap_->wrapVector(dr); |
1108 | < | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1109 | < | if (dr.lengthSquare() < cuts.third) { |
1110 | < | neighborList.push_back(make_pair((*j1), (*j2))); |
1096 | > | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1097 | > | j1 != cellListRow_[m1].end(); ++j1) { |
1098 | > | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1099 | > | j2 != cellListCol_[m2].end(); ++j2) { |
1100 | > | |
1101 | > | // Always do this if we're in different cells or if |
1102 | > | // we're in the same cell and the global index of the |
1103 | > | // j2 cutoff group is less than the j1 cutoff group |
1104 | > | |
1105 | > | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1106 | > | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1107 | > | snap_->wrapVector(dr); |
1108 | > | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1109 | > | if (dr.lengthSquare() < cuts.third) { |
1110 | > | neighborList.push_back(make_pair((*j1), (*j2))); |
1111 | > | } |
1112 | } | |
1113 | } | |
1114 | } | |
1074 | – | } |
1115 | #else | |
1116 | < | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1117 | < | j1 != cellList_[m1].end(); ++j1) { |
1118 | < | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1119 | < | j2 != cellList_[m2].end(); ++j2) { |
1120 | < | |
1121 | < | // Always do this if we're in different cells or if |
1122 | < | // we're in the same cell and the global index of the |
1123 | < | // j2 cutoff group is less than the j1 cutoff group |
1124 | < | |
1125 | < | if (m2 != m1 || (*j2) < (*j1)) { |
1126 | < | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1127 | < | snap_->wrapVector(dr); |
1128 | < | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1129 | < | if (dr.lengthSquare() < cuts.third) { |
1130 | < | neighborList.push_back(make_pair((*j1), (*j2))); |
1116 | > | |
1117 | > | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1118 | > | j1 != cellList_[m1].end(); ++j1) { |
1119 | > | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1120 | > | j2 != cellList_[m2].end(); ++j2) { |
1121 | > | |
1122 | > | // Always do this if we're in different cells or if |
1123 | > | // we're in the same cell and the global index of the |
1124 | > | // j2 cutoff group is less than the j1 cutoff group |
1125 | > | |
1126 | > | if (m2 != m1 || (*j2) < (*j1)) { |
1127 | > | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1128 | > | snap_->wrapVector(dr); |
1129 | > | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1130 | > | if (dr.lengthSquare() < cuts.third) { |
1131 | > | neighborList.push_back(make_pair((*j1), (*j2))); |
1132 | > | } |
1133 | } | |
1134 | } | |
1135 | } | |
1094 | – | } |
1136 | #endif | |
1137 | + | } |
1138 | } | |
1139 | } | |
1140 | } | |
1141 | + | } else { |
1142 | + | // branch to do all cutoff group pairs |
1143 | + | #ifdef IS_MPI |
1144 | + | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1145 | + | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1146 | + | dr = cgColData.position[j2] - cgRowData.position[j1]; |
1147 | + | snap_->wrapVector(dr); |
1148 | + | cuts = getGroupCutoffs( j1, j2 ); |
1149 | + | if (dr.lengthSquare() < cuts.third) { |
1150 | + | neighborList.push_back(make_pair(j1, j2)); |
1151 | + | } |
1152 | + | } |
1153 | + | } |
1154 | + | #else |
1155 | + | for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1156 | + | for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1157 | + | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1158 | + | snap_->wrapVector(dr); |
1159 | + | cuts = getGroupCutoffs( j1, j2 ); |
1160 | + | if (dr.lengthSquare() < cuts.third) { |
1161 | + | neighborList.push_back(make_pair(j1, j2)); |
1162 | + | } |
1163 | + | } |
1164 | + | } |
1165 | + | #endif |
1166 | } | |
1167 | < | |
1167 | > | |
1168 | // save the local cutoff group positions for the check that is | |
1169 | // done on each loop: | |
1170 | saved_CG_positions_.clear(); | |
1171 | for (int i = 0; i < nGroups_; i++) | |
1172 | saved_CG_positions_.push_back(snap_->cgData.position[i]); | |
1173 | < | |
1173 | > | |
1174 | return neighborList; | |
1175 | } | |
1176 | } //end namespace OpenMD |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |