# | Line 42 | Line 42 | |
---|---|---|
42 | #include "math/SquareMatrix3.hpp" | |
43 | #include "nonbonded/NonBondedInteraction.hpp" | |
44 | #include "brains/SnapshotManager.hpp" | |
45 | + | #include "brains/PairList.hpp" |
46 | ||
47 | using namespace std; | |
48 | namespace OpenMD { | |
# | Line 54 | Line 55 | namespace OpenMD { | |
55 | void ForceMatrixDecomposition::distributeInitialData() { | |
56 | snap_ = sman_->getCurrentSnapshot(); | |
57 | storageLayout_ = sman_->getStorageLayout(); | |
58 | + | ff_ = info_->getForceField(); |
59 | nLocal_ = snap_->getNumberOfAtoms(); | |
60 | < | nGroups_ = snap_->getNumberOfCutoffGroups(); |
60 | > | |
61 | > | nGroups_ = info_->getNLocalCutoffGroups(); |
62 | > | // gather the information for atomtype IDs (atids): |
63 | > | idents = info_->getIdentArray(); |
64 | > | AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
65 | > | cgLocalToGlobal = info_->getGlobalGroupIndices(); |
66 | > | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
67 | ||
68 | + | massFactors = info_->getMassFactors(); |
69 | + | |
70 | + | PairList* excludes = info_->getExcludedInteractions(); |
71 | + | PairList* oneTwo = info_->getOneTwoInteractions(); |
72 | + | PairList* oneThree = info_->getOneThreeInteractions(); |
73 | + | PairList* oneFour = info_->getOneFourInteractions(); |
74 | + | |
75 | #ifdef IS_MPI | |
76 | ||
77 | AtomCommIntRow = new Communicator<Row,int>(nLocal_); | |
78 | AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); | |
79 | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); | |
80 | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); | |
81 | + | AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
82 | ||
83 | AtomCommIntColumn = new Communicator<Column,int>(nLocal_); | |
84 | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); | |
85 | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); | |
86 | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); | |
87 | + | AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
88 | ||
89 | cgCommIntRow = new Communicator<Row,int>(nGroups_); | |
90 | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); | |
# | Line 88 | Line 105 | namespace OpenMD { | |
105 | cgRowData.setStorageLayout(DataStorage::dslPosition); | |
106 | cgColData.resize(nGroupsInCol_); | |
107 | cgColData.setStorageLayout(DataStorage::dslPosition); | |
108 | + | |
109 | + | identsRow.resize(nAtomsInRow_); |
110 | + | identsCol.resize(nAtomsInCol_); |
111 | ||
112 | < | vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES, |
113 | < | vector<RealType> (nAtomsInRow_, 0.0)); |
114 | < | vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES, |
115 | < | vector<RealType> (nAtomsInCol_, 0.0)); |
112 | > | AtomCommIntRow->gather(idents, identsRow); |
113 | > | AtomCommIntColumn->gather(idents, identsCol); |
114 | > | |
115 | > | // allocate memory for the parallel objects |
116 | > | atypesRow.resize(nAtomsInRow_); |
117 | > | atypesCol.resize(nAtomsInCol_); |
118 | ||
119 | + | for (int i = 0; i < nAtomsInRow_; i++) |
120 | + | atypesRow[i] = ff_->getAtomType(identsRow[i]); |
121 | + | for (int i = 0; i < nAtomsInCol_; i++) |
122 | + | atypesCol[i] = ff_->getAtomType(identsCol[i]); |
123 | ||
124 | < | vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0); |
125 | < | |
126 | < | // gather the information for atomtype IDs (atids): |
127 | < | vector<int> identsLocal = info_->getIdentArray(); |
128 | < | identsRow.reserve(nAtomsInRow_); |
103 | < | identsCol.reserve(nAtomsInCol_); |
104 | < | |
105 | < | AtomCommIntRow->gather(identsLocal, identsRow); |
106 | < | AtomCommIntColumn->gather(identsLocal, identsCol); |
107 | < | |
108 | < | AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
124 | > | pot_row.resize(nAtomsInRow_); |
125 | > | pot_col.resize(nAtomsInCol_); |
126 | > | |
127 | > | AtomRowToGlobal.resize(nAtomsInRow_); |
128 | > | AtomColToGlobal.resize(nAtomsInCol_); |
129 | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | |
130 | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); | |
131 | ||
132 | < | cgLocalToGlobal = info_->getGlobalGroupIndices(); |
132 | > | cgRowToGlobal.resize(nGroupsInRow_); |
133 | > | cgColToGlobal.resize(nGroupsInCol_); |
134 | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); | |
135 | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); | |
136 | ||
137 | < | // still need: |
138 | < | // topoDist |
139 | < | // exclude |
137 | > | massFactorsRow.resize(nAtomsInRow_); |
138 | > | massFactorsCol.resize(nAtomsInCol_); |
139 | > | AtomCommRealRow->gather(massFactors, massFactorsRow); |
140 | > | AtomCommRealColumn->gather(massFactors, massFactorsCol); |
141 | > | |
142 | > | groupListRow_.clear(); |
143 | > | groupListRow_.resize(nGroupsInRow_); |
144 | > | for (int i = 0; i < nGroupsInRow_; i++) { |
145 | > | int gid = cgRowToGlobal[i]; |
146 | > | for (int j = 0; j < nAtomsInRow_; j++) { |
147 | > | int aid = AtomRowToGlobal[j]; |
148 | > | if (globalGroupMembership[aid] == gid) |
149 | > | groupListRow_[i].push_back(j); |
150 | > | } |
151 | > | } |
152 | > | |
153 | > | groupListCol_.clear(); |
154 | > | groupListCol_.resize(nGroupsInCol_); |
155 | > | for (int i = 0; i < nGroupsInCol_; i++) { |
156 | > | int gid = cgColToGlobal[i]; |
157 | > | for (int j = 0; j < nAtomsInCol_; j++) { |
158 | > | int aid = AtomColToGlobal[j]; |
159 | > | if (globalGroupMembership[aid] == gid) |
160 | > | groupListCol_[i].push_back(j); |
161 | > | } |
162 | > | } |
163 | > | |
164 | > | excludesForAtom.clear(); |
165 | > | excludesForAtom.resize(nAtomsInRow_); |
166 | > | toposForAtom.clear(); |
167 | > | toposForAtom.resize(nAtomsInRow_); |
168 | > | topoDist.clear(); |
169 | > | topoDist.resize(nAtomsInRow_); |
170 | > | for (int i = 0; i < nAtomsInRow_; i++) { |
171 | > | int iglob = AtomRowToGlobal[i]; |
172 | > | |
173 | > | for (int j = 0; j < nAtomsInCol_; j++) { |
174 | > | int jglob = AtomColToGlobal[j]; |
175 | > | |
176 | > | if (excludes->hasPair(iglob, jglob)) |
177 | > | excludesForAtom[i].push_back(j); |
178 | > | |
179 | > | if (oneTwo->hasPair(iglob, jglob)) { |
180 | > | toposForAtom[i].push_back(j); |
181 | > | topoDist[i].push_back(1); |
182 | > | } else { |
183 | > | if (oneThree->hasPair(iglob, jglob)) { |
184 | > | toposForAtom[i].push_back(j); |
185 | > | topoDist[i].push_back(2); |
186 | > | } else { |
187 | > | if (oneFour->hasPair(iglob, jglob)) { |
188 | > | toposForAtom[i].push_back(j); |
189 | > | topoDist[i].push_back(3); |
190 | > | } |
191 | > | } |
192 | > | } |
193 | > | } |
194 | > | } |
195 | > | |
196 | #endif | |
197 | + | |
198 | + | // allocate memory for the parallel objects |
199 | + | atypesLocal.resize(nLocal_); |
200 | + | |
201 | + | for (int i = 0; i < nLocal_; i++) |
202 | + | atypesLocal[i] = ff_->getAtomType(idents[i]); |
203 | + | |
204 | + | groupList_.clear(); |
205 | + | groupList_.resize(nGroups_); |
206 | + | for (int i = 0; i < nGroups_; i++) { |
207 | + | int gid = cgLocalToGlobal[i]; |
208 | + | for (int j = 0; j < nLocal_; j++) { |
209 | + | int aid = AtomLocalToGlobal[j]; |
210 | + | if (globalGroupMembership[aid] == gid) { |
211 | + | groupList_[i].push_back(j); |
212 | + | } |
213 | + | } |
214 | + | } |
215 | + | |
216 | + | excludesForAtom.clear(); |
217 | + | excludesForAtom.resize(nLocal_); |
218 | + | toposForAtom.clear(); |
219 | + | toposForAtom.resize(nLocal_); |
220 | + | topoDist.clear(); |
221 | + | topoDist.resize(nLocal_); |
222 | + | |
223 | + | for (int i = 0; i < nLocal_; i++) { |
224 | + | int iglob = AtomLocalToGlobal[i]; |
225 | + | |
226 | + | for (int j = 0; j < nLocal_; j++) { |
227 | + | int jglob = AtomLocalToGlobal[j]; |
228 | + | |
229 | + | if (excludes->hasPair(iglob, jglob)) |
230 | + | excludesForAtom[i].push_back(j); |
231 | + | |
232 | + | if (oneTwo->hasPair(iglob, jglob)) { |
233 | + | toposForAtom[i].push_back(j); |
234 | + | topoDist[i].push_back(1); |
235 | + | } else { |
236 | + | if (oneThree->hasPair(iglob, jglob)) { |
237 | + | toposForAtom[i].push_back(j); |
238 | + | topoDist[i].push_back(2); |
239 | + | } else { |
240 | + | if (oneFour->hasPair(iglob, jglob)) { |
241 | + | toposForAtom[i].push_back(j); |
242 | + | topoDist[i].push_back(3); |
243 | + | } |
244 | + | } |
245 | + | } |
246 | + | } |
247 | + | } |
248 | + | |
249 | + | createGtypeCutoffMap(); |
250 | + | |
251 | } | |
252 | + | |
253 | + | void ForceMatrixDecomposition::createGtypeCutoffMap() { |
254 | ||
255 | + | RealType tol = 1e-6; |
256 | + | RealType rc; |
257 | + | int atid; |
258 | + | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
259 | + | map<int, RealType> atypeCutoff; |
260 | + | |
261 | + | for (set<AtomType*>::iterator at = atypes.begin(); |
262 | + | at != atypes.end(); ++at){ |
263 | + | atid = (*at)->getIdent(); |
264 | + | if (userChoseCutoff_) |
265 | + | atypeCutoff[atid] = userCutoff_; |
266 | + | else |
267 | + | atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
268 | + | } |
269 | ||
270 | + | vector<RealType> gTypeCutoffs; |
271 | + | // first we do a single loop over the cutoff groups to find the |
272 | + | // largest cutoff for any atypes present in this group. |
273 | + | #ifdef IS_MPI |
274 | + | vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); |
275 | + | groupRowToGtype.resize(nGroupsInRow_); |
276 | + | for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { |
277 | + | vector<int> atomListRow = getAtomsInGroupRow(cg1); |
278 | + | for (vector<int>::iterator ia = atomListRow.begin(); |
279 | + | ia != atomListRow.end(); ++ia) { |
280 | + | int atom1 = (*ia); |
281 | + | atid = identsRow[atom1]; |
282 | + | if (atypeCutoff[atid] > groupCutoffRow[cg1]) { |
283 | + | groupCutoffRow[cg1] = atypeCutoff[atid]; |
284 | + | } |
285 | + | } |
286 | ||
287 | + | bool gTypeFound = false; |
288 | + | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
289 | + | if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) { |
290 | + | groupRowToGtype[cg1] = gt; |
291 | + | gTypeFound = true; |
292 | + | } |
293 | + | } |
294 | + | if (!gTypeFound) { |
295 | + | gTypeCutoffs.push_back( groupCutoffRow[cg1] ); |
296 | + | groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; |
297 | + | } |
298 | + | |
299 | + | } |
300 | + | vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); |
301 | + | groupColToGtype.resize(nGroupsInCol_); |
302 | + | for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { |
303 | + | vector<int> atomListCol = getAtomsInGroupColumn(cg2); |
304 | + | for (vector<int>::iterator jb = atomListCol.begin(); |
305 | + | jb != atomListCol.end(); ++jb) { |
306 | + | int atom2 = (*jb); |
307 | + | atid = identsCol[atom2]; |
308 | + | if (atypeCutoff[atid] > groupCutoffCol[cg2]) { |
309 | + | groupCutoffCol[cg2] = atypeCutoff[atid]; |
310 | + | } |
311 | + | } |
312 | + | bool gTypeFound = false; |
313 | + | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
314 | + | if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) { |
315 | + | groupColToGtype[cg2] = gt; |
316 | + | gTypeFound = true; |
317 | + | } |
318 | + | } |
319 | + | if (!gTypeFound) { |
320 | + | gTypeCutoffs.push_back( groupCutoffCol[cg2] ); |
321 | + | groupColToGtype[cg2] = gTypeCutoffs.size() - 1; |
322 | + | } |
323 | + | } |
324 | + | #else |
325 | + | |
326 | + | vector<RealType> groupCutoff(nGroups_, 0.0); |
327 | + | groupToGtype.resize(nGroups_); |
328 | + | for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
329 | + | |
330 | + | groupCutoff[cg1] = 0.0; |
331 | + | vector<int> atomList = getAtomsInGroupRow(cg1); |
332 | + | |
333 | + | for (vector<int>::iterator ia = atomList.begin(); |
334 | + | ia != atomList.end(); ++ia) { |
335 | + | int atom1 = (*ia); |
336 | + | atid = idents[atom1]; |
337 | + | if (atypeCutoff[atid] > groupCutoff[cg1]) { |
338 | + | groupCutoff[cg1] = atypeCutoff[atid]; |
339 | + | } |
340 | + | } |
341 | + | |
342 | + | bool gTypeFound = false; |
343 | + | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
344 | + | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
345 | + | groupToGtype[cg1] = gt; |
346 | + | gTypeFound = true; |
347 | + | } |
348 | + | } |
349 | + | if (!gTypeFound) { |
350 | + | gTypeCutoffs.push_back( groupCutoff[cg1] ); |
351 | + | groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
352 | + | } |
353 | + | } |
354 | + | #endif |
355 | + | |
356 | + | // Now we find the maximum group cutoff value present in the simulation |
357 | + | |
358 | + | RealType groupMax = *max_element(gTypeCutoffs.begin(), |
359 | + | gTypeCutoffs.end()); |
360 | + | |
361 | + | #ifdef IS_MPI |
362 | + | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, |
363 | + | MPI::MAX); |
364 | + | #endif |
365 | + | |
366 | + | RealType tradRcut = groupMax; |
367 | + | |
368 | + | for (int i = 0; i < gTypeCutoffs.size(); i++) { |
369 | + | for (int j = 0; j < gTypeCutoffs.size(); j++) { |
370 | + | RealType thisRcut; |
371 | + | switch(cutoffPolicy_) { |
372 | + | case TRADITIONAL: |
373 | + | thisRcut = tradRcut; |
374 | + | break; |
375 | + | case MIX: |
376 | + | thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); |
377 | + | break; |
378 | + | case MAX: |
379 | + | thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); |
380 | + | break; |
381 | + | default: |
382 | + | sprintf(painCave.errMsg, |
383 | + | "ForceMatrixDecomposition::createGtypeCutoffMap " |
384 | + | "hit an unknown cutoff policy!\n"); |
385 | + | painCave.severity = OPENMD_ERROR; |
386 | + | painCave.isFatal = 1; |
387 | + | simError(); |
388 | + | break; |
389 | + | } |
390 | + | |
391 | + | pair<int,int> key = make_pair(i,j); |
392 | + | gTypeCutoffMap[key].first = thisRcut; |
393 | + | |
394 | + | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
395 | + | |
396 | + | gTypeCutoffMap[key].second = thisRcut*thisRcut; |
397 | + | |
398 | + | gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
399 | + | |
400 | + | // sanity check |
401 | + | |
402 | + | if (userChoseCutoff_) { |
403 | + | if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
404 | + | sprintf(painCave.errMsg, |
405 | + | "ForceMatrixDecomposition::createGtypeCutoffMap " |
406 | + | "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
407 | + | painCave.severity = OPENMD_ERROR; |
408 | + | painCave.isFatal = 1; |
409 | + | simError(); |
410 | + | } |
411 | + | } |
412 | + | } |
413 | + | } |
414 | + | } |
415 | + | |
416 | + | |
417 | + | groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
418 | + | int i, j; |
419 | + | #ifdef IS_MPI |
420 | + | i = groupRowToGtype[cg1]; |
421 | + | j = groupColToGtype[cg2]; |
422 | + | #else |
423 | + | i = groupToGtype[cg1]; |
424 | + | j = groupToGtype[cg2]; |
425 | + | #endif |
426 | + | return gTypeCutoffMap[make_pair(i,j)]; |
427 | + | } |
428 | + | |
429 | + | int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
430 | + | for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
431 | + | if (toposForAtom[atom1][j] == atom2) |
432 | + | return topoDist[atom1][j]; |
433 | + | } |
434 | + | return 0; |
435 | + | } |
436 | + | |
437 | + | void ForceMatrixDecomposition::zeroWorkArrays() { |
438 | + | pairwisePot = 0.0; |
439 | + | embeddingPot = 0.0; |
440 | + | |
441 | + | #ifdef IS_MPI |
442 | + | if (storageLayout_ & DataStorage::dslForce) { |
443 | + | fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); |
444 | + | fill(atomColData.force.begin(), atomColData.force.end(), V3Zero); |
445 | + | } |
446 | + | |
447 | + | if (storageLayout_ & DataStorage::dslTorque) { |
448 | + | fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero); |
449 | + | fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero); |
450 | + | } |
451 | + | |
452 | + | fill(pot_row.begin(), pot_row.end(), |
453 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
454 | + | |
455 | + | fill(pot_col.begin(), pot_col.end(), |
456 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
457 | + | |
458 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
459 | + | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
460 | + | 0.0); |
461 | + | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), |
462 | + | 0.0); |
463 | + | } |
464 | + | |
465 | + | if (storageLayout_ & DataStorage::dslDensity) { |
466 | + | fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0); |
467 | + | fill(atomColData.density.begin(), atomColData.density.end(), 0.0); |
468 | + | } |
469 | + | |
470 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
471 | + | fill(atomRowData.functional.begin(), atomRowData.functional.end(), |
472 | + | 0.0); |
473 | + | fill(atomColData.functional.begin(), atomColData.functional.end(), |
474 | + | 0.0); |
475 | + | } |
476 | + | |
477 | + | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
478 | + | fill(atomRowData.functionalDerivative.begin(), |
479 | + | atomRowData.functionalDerivative.end(), 0.0); |
480 | + | fill(atomColData.functionalDerivative.begin(), |
481 | + | atomColData.functionalDerivative.end(), 0.0); |
482 | + | } |
483 | + | |
484 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
485 | + | fill(atomRowData.skippedCharge.begin(), |
486 | + | atomRowData.skippedCharge.end(), 0.0); |
487 | + | fill(atomColData.skippedCharge.begin(), |
488 | + | atomColData.skippedCharge.end(), 0.0); |
489 | + | } |
490 | + | |
491 | + | #endif |
492 | + | // even in parallel, we need to zero out the local arrays: |
493 | + | |
494 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
495 | + | fill(snap_->atomData.particlePot.begin(), |
496 | + | snap_->atomData.particlePot.end(), 0.0); |
497 | + | } |
498 | + | |
499 | + | if (storageLayout_ & DataStorage::dslDensity) { |
500 | + | fill(snap_->atomData.density.begin(), |
501 | + | snap_->atomData.density.end(), 0.0); |
502 | + | } |
503 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
504 | + | fill(snap_->atomData.functional.begin(), |
505 | + | snap_->atomData.functional.end(), 0.0); |
506 | + | } |
507 | + | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
508 | + | fill(snap_->atomData.functionalDerivative.begin(), |
509 | + | snap_->atomData.functionalDerivative.end(), 0.0); |
510 | + | } |
511 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
512 | + | fill(snap_->atomData.skippedCharge.begin(), |
513 | + | snap_->atomData.skippedCharge.end(), 0.0); |
514 | + | } |
515 | + | |
516 | + | } |
517 | + | |
518 | + | |
519 | void ForceMatrixDecomposition::distributeData() { | |
520 | snap_ = sman_->getCurrentSnapshot(); | |
521 | storageLayout_ = sman_->getStorageLayout(); | |
# | Line 153 | Line 548 | namespace OpenMD { | |
548 | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, | |
549 | atomColData.electroFrame); | |
550 | } | |
551 | + | |
552 | #endif | |
553 | } | |
554 | ||
555 | + | /* collects information obtained during the pre-pair loop onto local |
556 | + | * data structures. |
557 | + | */ |
558 | void ForceMatrixDecomposition::collectIntermediateData() { | |
559 | snap_ = sman_->getCurrentSnapshot(); | |
560 | storageLayout_ = sman_->getStorageLayout(); | |
# | Line 167 | Line 566 | namespace OpenMD { | |
566 | snap_->atomData.density); | |
567 | ||
568 | int n = snap_->atomData.density.size(); | |
569 | < | std::vector<RealType> rho_tmp(n, 0.0); |
569 | > | vector<RealType> rho_tmp(n, 0.0); |
570 | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); | |
571 | for (int i = 0; i < n; i++) | |
572 | snap_->atomData.density[i] += rho_tmp[i]; | |
573 | } | |
574 | #endif | |
575 | } | |
576 | < | |
576 | > | |
577 | > | /* |
578 | > | * redistributes information obtained during the pre-pair loop out to |
579 | > | * row and column-indexed data structures |
580 | > | */ |
581 | void ForceMatrixDecomposition::distributeIntermediateData() { | |
582 | snap_ = sman_->getCurrentSnapshot(); | |
583 | storageLayout_ = sman_->getStorageLayout(); | |
# | Line 212 | Line 615 | namespace OpenMD { | |
615 | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); | |
616 | for (int i = 0; i < n; i++) | |
617 | snap_->atomData.force[i] += frc_tmp[i]; | |
618 | < | |
216 | < | |
618 | > | |
619 | if (storageLayout_ & DataStorage::dslTorque) { | |
620 | ||
621 | < | int nt = snap_->atomData.force.size(); |
621 | > | int nt = snap_->atomData.torque.size(); |
622 | vector<Vector3d> trq_tmp(nt, V3Zero); | |
623 | ||
624 | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); | |
625 | < | for (int i = 0; i < n; i++) { |
625 | > | for (int i = 0; i < nt; i++) { |
626 | snap_->atomData.torque[i] += trq_tmp[i]; | |
627 | trq_tmp[i] = 0.0; | |
628 | } | |
629 | ||
630 | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); | |
631 | < | for (int i = 0; i < n; i++) |
631 | > | for (int i = 0; i < nt; i++) |
632 | snap_->atomData.torque[i] += trq_tmp[i]; | |
633 | } | |
634 | + | |
635 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
636 | + | |
637 | + | int ns = snap_->atomData.skippedCharge.size(); |
638 | + | vector<RealType> skch_tmp(ns, 0.0); |
639 | + | |
640 | + | AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
641 | + | for (int i = 0; i < ns; i++) { |
642 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
643 | + | skch_tmp[i] = 0.0; |
644 | + | } |
645 | + | |
646 | + | AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
647 | + | for (int i = 0; i < ns; i++) |
648 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
649 | + | } |
650 | ||
651 | nLocal_ = snap_->getNumberOfAtoms(); | |
652 | ||
653 | < | vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES, |
654 | < | vector<RealType> (nLocal_, 0.0)); |
653 | > | vector<potVec> pot_temp(nLocal_, |
654 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
655 | > | |
656 | > | // scatter/gather pot_row into the members of my column |
657 | > | |
658 | > | AtomCommPotRow->scatter(pot_row, pot_temp); |
659 | > | |
660 | > | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
661 | > | pairwisePot += pot_temp[ii]; |
662 | ||
663 | < | for (int i = 0; i < N_INTERACTION_FAMILIES; i++) { |
664 | < | AtomCommRealRow->scatter(pot_row[i], pot_temp[i]); |
665 | < | for (int ii = 0; ii < pot_temp[i].size(); ii++ ) { |
666 | < | pot_local[i] += pot_temp[i][ii]; |
667 | < | } |
668 | < | } |
663 | > | fill(pot_temp.begin(), pot_temp.end(), |
664 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
665 | > | |
666 | > | AtomCommPotColumn->scatter(pot_col, pot_temp); |
667 | > | |
668 | > | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
669 | > | pairwisePot += pot_temp[ii]; |
670 | > | #endif |
671 | > | |
672 | > | } |
673 | > | |
674 | > | int ForceMatrixDecomposition::getNAtomsInRow() { |
675 | > | #ifdef IS_MPI |
676 | > | return nAtomsInRow_; |
677 | > | #else |
678 | > | return nLocal_; |
679 | > | #endif |
680 | > | } |
681 | > | |
682 | > | /** |
683 | > | * returns the list of atoms belonging to this group. |
684 | > | */ |
685 | > | vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
686 | > | #ifdef IS_MPI |
687 | > | return groupListRow_[cg1]; |
688 | > | #else |
689 | > | return groupList_[cg1]; |
690 | #endif | |
691 | } | |
692 | ||
693 | + | vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
694 | + | #ifdef IS_MPI |
695 | + | return groupListCol_[cg2]; |
696 | + | #else |
697 | + | return groupList_[cg2]; |
698 | + | #endif |
699 | + | } |
700 | ||
701 | Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ | |
702 | Vector3d d; | |
# | Line 285 | Line 738 | namespace OpenMD { | |
738 | snap_->wrapVector(d); | |
739 | return d; | |
740 | } | |
741 | + | |
742 | + | RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
743 | + | #ifdef IS_MPI |
744 | + | return massFactorsRow[atom1]; |
745 | + | #else |
746 | + | return massFactors[atom1]; |
747 | + | #endif |
748 | + | } |
749 | + | |
750 | + | RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
751 | + | #ifdef IS_MPI |
752 | + | return massFactorsCol[atom2]; |
753 | + | #else |
754 | + | return massFactors[atom2]; |
755 | + | #endif |
756 | + | |
757 | + | } |
758 | ||
759 | Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ | |
760 | Vector3d d; | |
# | Line 299 | Line 769 | namespace OpenMD { | |
769 | return d; | |
770 | } | |
771 | ||
772 | + | vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
773 | + | return excludesForAtom[atom1]; |
774 | + | } |
775 | + | |
776 | + | /** |
777 | + | * We need to exclude some overcounted interactions that result from |
778 | + | * the parallel decomposition. |
779 | + | */ |
780 | + | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
781 | + | int unique_id_1, unique_id_2; |
782 | + | |
783 | + | #ifdef IS_MPI |
784 | + | // in MPI, we have to look up the unique IDs for each atom |
785 | + | unique_id_1 = AtomRowToGlobal[atom1]; |
786 | + | unique_id_2 = AtomColToGlobal[atom2]; |
787 | + | |
788 | + | // this situation should only arise in MPI simulations |
789 | + | if (unique_id_1 == unique_id_2) return true; |
790 | + | |
791 | + | // this prevents us from doing the pair on multiple processors |
792 | + | if (unique_id_1 < unique_id_2) { |
793 | + | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
794 | + | } else { |
795 | + | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
796 | + | } |
797 | + | #endif |
798 | + | return false; |
799 | + | } |
800 | + | |
801 | + | /** |
802 | + | * We need to handle the interactions for atoms who are involved in |
803 | + | * the same rigid body as well as some short range interactions |
804 | + | * (bonds, bends, torsions) differently from other interactions. |
805 | + | * We'll still visit the pairwise routines, but with a flag that |
806 | + | * tells those routines to exclude the pair from direct long range |
807 | + | * interactions. Some indirect interactions (notably reaction |
808 | + | * field) must still be handled for these pairs. |
809 | + | */ |
810 | + | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
811 | + | int unique_id_2; |
812 | + | |
813 | + | #ifdef IS_MPI |
814 | + | // in MPI, we have to look up the unique IDs for the row atom. |
815 | + | unique_id_2 = AtomColToGlobal[atom2]; |
816 | + | #else |
817 | + | // in the normal loop, the atom numbers are unique |
818 | + | unique_id_2 = atom2; |
819 | + | #endif |
820 | + | |
821 | + | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
822 | + | i != excludesForAtom[atom1].end(); ++i) { |
823 | + | if ( (*i) == unique_id_2 ) return true; |
824 | + | } |
825 | + | |
826 | + | return false; |
827 | + | } |
828 | + | |
829 | + | |
830 | void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ | |
831 | #ifdef IS_MPI | |
832 | atomRowData.force[atom1] += fg; | |
# | Line 316 | Line 844 | namespace OpenMD { | |
844 | } | |
845 | ||
846 | // filling interaction blocks with pointers | |
847 | < | InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) { |
848 | < | InteractionData idat; |
847 | > | void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
848 | > | int atom1, int atom2) { |
849 | ||
850 | + | idat.excluded = excludeAtomPair(atom1, atom2); |
851 | + | |
852 | #ifdef IS_MPI | |
853 | + | idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
854 | + | //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
855 | + | // ff_->getAtomType(identsCol[atom2]) ); |
856 | + | |
857 | if (storageLayout_ & DataStorage::dslAmat) { | |
858 | idat.A1 = &(atomRowData.aMat[atom1]); | |
859 | idat.A2 = &(atomColData.aMat[atom2]); | |
# | Line 340 | Line 874 | namespace OpenMD { | |
874 | idat.rho2 = &(atomColData.density[atom2]); | |
875 | } | |
876 | ||
877 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
878 | + | idat.frho1 = &(atomRowData.functional[atom1]); |
879 | + | idat.frho2 = &(atomColData.functional[atom2]); |
880 | + | } |
881 | + | |
882 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
883 | idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); | |
884 | idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); | |
885 | } | |
886 | + | |
887 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
888 | + | idat.particlePot1 = &(atomRowData.particlePot[atom1]); |
889 | + | idat.particlePot2 = &(atomColData.particlePot[atom2]); |
890 | + | } |
891 | + | |
892 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
893 | + | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
894 | + | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
895 | + | } |
896 | + | |
897 | #else | |
898 | + | |
899 | + | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
900 | + | //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
901 | + | // ff_->getAtomType(idents[atom2]) ); |
902 | + | |
903 | if (storageLayout_ & DataStorage::dslAmat) { | |
904 | idat.A1 = &(snap_->atomData.aMat[atom1]); | |
905 | idat.A2 = &(snap_->atomData.aMat[atom2]); | |
# | Line 360 | Line 915 | namespace OpenMD { | |
915 | idat.t2 = &(snap_->atomData.torque[atom2]); | |
916 | } | |
917 | ||
918 | < | if (storageLayout_ & DataStorage::dslDensity) { |
918 | > | if (storageLayout_ & DataStorage::dslDensity) { |
919 | idat.rho1 = &(snap_->atomData.density[atom1]); | |
920 | idat.rho2 = &(snap_->atomData.density[atom2]); | |
921 | } | |
922 | ||
923 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
924 | + | idat.frho1 = &(snap_->atomData.functional[atom1]); |
925 | + | idat.frho2 = &(snap_->atomData.functional[atom2]); |
926 | + | } |
927 | + | |
928 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
929 | idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); | |
930 | idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); | |
931 | } | |
932 | + | |
933 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
934 | + | idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); |
935 | + | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
936 | + | } |
937 | + | |
938 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
939 | + | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
940 | + | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
941 | + | } |
942 | #endif | |
373 | – | return idat; |
943 | } | |
944 | ||
945 | < | InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ |
946 | < | |
378 | < | InteractionData idat; |
945 | > | |
946 | > | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
947 | #ifdef IS_MPI | |
948 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { |
949 | < | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
950 | < | idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
951 | < | } |
952 | < | if (storageLayout_ & DataStorage::dslTorque) { |
385 | < | idat.t1 = &(atomRowData.torque[atom1]); |
386 | < | idat.t2 = &(atomColData.torque[atom2]); |
387 | < | } |
388 | < | if (storageLayout_ & DataStorage::dslForce) { |
389 | < | idat.t1 = &(atomRowData.force[atom1]); |
390 | < | idat.t2 = &(atomColData.force[atom2]); |
391 | < | } |
948 | > | pot_row[atom1] += 0.5 * *(idat.pot); |
949 | > | pot_col[atom2] += 0.5 * *(idat.pot); |
950 | > | |
951 | > | atomRowData.force[atom1] += *(idat.f1); |
952 | > | atomColData.force[atom2] -= *(idat.f1); |
953 | #else | |
954 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { |
955 | < | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
956 | < | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
957 | < | } |
397 | < | if (storageLayout_ & DataStorage::dslTorque) { |
398 | < | idat.t1 = &(snap_->atomData.torque[atom1]); |
399 | < | idat.t2 = &(snap_->atomData.torque[atom2]); |
400 | < | } |
401 | < | if (storageLayout_ & DataStorage::dslForce) { |
402 | < | idat.t1 = &(snap_->atomData.force[atom1]); |
403 | < | idat.t2 = &(snap_->atomData.force[atom2]); |
404 | < | } |
954 | > | pairwisePot += *(idat.pot); |
955 | > | |
956 | > | snap_->atomData.force[atom1] += *(idat.f1); |
957 | > | snap_->atomData.force[atom2] -= *(idat.f1); |
958 | #endif | |
959 | ||
960 | } | |
961 | ||
409 | – | |
410 | – | |
411 | – | |
962 | /* | |
963 | * buildNeighborList | |
964 | * | |
# | Line 418 | Line 968 | namespace OpenMD { | |
968 | vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { | |
969 | ||
970 | vector<pair<int, int> > neighborList; | |
971 | + | groupCutoffs cuts; |
972 | + | bool doAllPairs = false; |
973 | + | |
974 | #ifdef IS_MPI | |
975 | cellListRow_.clear(); | |
976 | cellListCol_.clear(); | |
# | Line 425 | Line 978 | namespace OpenMD { | |
978 | cellList_.clear(); | |
979 | #endif | |
980 | ||
981 | < | // dangerous to not do error checking. |
429 | < | RealType rCut_; |
430 | < | |
431 | < | RealType rList_ = (rCut_ + skinThickness_); |
981 | > | RealType rList_ = (largestRcut_ + skinThickness_); |
982 | RealType rl2 = rList_ * rList_; | |
983 | Snapshot* snap_ = sman_->getCurrentSnapshot(); | |
984 | Mat3x3d Hmat = snap_->getHmat(); | |
# | Line 440 | Line 990 | namespace OpenMD { | |
990 | nCells_.y() = (int) ( Hy.length() )/ rList_; | |
991 | nCells_.z() = (int) ( Hz.length() )/ rList_; | |
992 | ||
993 | + | // handle small boxes where the cell offsets can end up repeating cells |
994 | + | |
995 | + | if (nCells_.x() < 3) doAllPairs = true; |
996 | + | if (nCells_.y() < 3) doAllPairs = true; |
997 | + | if (nCells_.z() < 3) doAllPairs = true; |
998 | + | |
999 | Mat3x3d invHmat = snap_->getInvHmat(); | |
1000 | Vector3d rs, scaled, dr; | |
1001 | Vector3i whichCell; | |
1002 | int cellIndex; | |
1003 | + | int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
1004 | ||
1005 | #ifdef IS_MPI | |
1006 | < | for (int i = 0; i < nGroupsInRow_; i++) { |
1007 | < | rs = cgRowData.position[i]; |
1008 | < | // scaled positions relative to the box vectors |
1009 | < | scaled = invHmat * rs; |
1010 | < | // wrap the vector back into the unit box by subtracting integer box |
454 | < | // numbers |
455 | < | for (int j = 0; j < 3; j++) |
456 | < | scaled[j] -= roundMe(scaled[j]); |
457 | < | |
458 | < | // find xyz-indices of cell that cutoffGroup is in. |
459 | < | whichCell.x() = nCells_.x() * scaled.x(); |
460 | < | whichCell.y() = nCells_.y() * scaled.y(); |
461 | < | whichCell.z() = nCells_.z() * scaled.z(); |
1006 | > | cellListRow_.resize(nCtot); |
1007 | > | cellListCol_.resize(nCtot); |
1008 | > | #else |
1009 | > | cellList_.resize(nCtot); |
1010 | > | #endif |
1011 | ||
1012 | < | // find single index of this cell: |
1013 | < | cellIndex = Vlinear(whichCell, nCells_); |
465 | < | // add this cutoff group to the list of groups in this cell; |
466 | < | cellListRow_[cellIndex].push_back(i); |
467 | < | } |
1012 | > | if (!doAllPairs) { |
1013 | > | #ifdef IS_MPI |
1014 | ||
1015 | < | for (int i = 0; i < nGroupsInCol_; i++) { |
1016 | < | rs = cgColData.position[i]; |
1017 | < | // scaled positions relative to the box vectors |
1018 | < | scaled = invHmat * rs; |
1019 | < | // wrap the vector back into the unit box by subtracting integer box |
1020 | < | // numbers |
1021 | < | for (int j = 0; j < 3; j++) |
1022 | < | scaled[j] -= roundMe(scaled[j]); |
1023 | < | |
1024 | < | // find xyz-indices of cell that cutoffGroup is in. |
1025 | < | whichCell.x() = nCells_.x() * scaled.x(); |
1026 | < | whichCell.y() = nCells_.y() * scaled.y(); |
1027 | < | whichCell.z() = nCells_.z() * scaled.z(); |
1028 | < | |
1029 | < | // find single index of this cell: |
1030 | < | cellIndex = Vlinear(whichCell, nCells_); |
1031 | < | // add this cutoff group to the list of groups in this cell; |
1032 | < | cellListCol_[cellIndex].push_back(i); |
1033 | < | } |
1015 | > | for (int i = 0; i < nGroupsInRow_; i++) { |
1016 | > | rs = cgRowData.position[i]; |
1017 | > | |
1018 | > | // scaled positions relative to the box vectors |
1019 | > | scaled = invHmat * rs; |
1020 | > | |
1021 | > | // wrap the vector back into the unit box by subtracting integer box |
1022 | > | // numbers |
1023 | > | for (int j = 0; j < 3; j++) { |
1024 | > | scaled[j] -= roundMe(scaled[j]); |
1025 | > | scaled[j] += 0.5; |
1026 | > | } |
1027 | > | |
1028 | > | // find xyz-indices of cell that cutoffGroup is in. |
1029 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1030 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1031 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1032 | > | |
1033 | > | // find single index of this cell: |
1034 | > | cellIndex = Vlinear(whichCell, nCells_); |
1035 | > | |
1036 | > | // add this cutoff group to the list of groups in this cell; |
1037 | > | cellListRow_[cellIndex].push_back(i); |
1038 | > | } |
1039 | > | |
1040 | > | for (int i = 0; i < nGroupsInCol_; i++) { |
1041 | > | rs = cgColData.position[i]; |
1042 | > | |
1043 | > | // scaled positions relative to the box vectors |
1044 | > | scaled = invHmat * rs; |
1045 | > | |
1046 | > | // wrap the vector back into the unit box by subtracting integer box |
1047 | > | // numbers |
1048 | > | for (int j = 0; j < 3; j++) { |
1049 | > | scaled[j] -= roundMe(scaled[j]); |
1050 | > | scaled[j] += 0.5; |
1051 | > | } |
1052 | > | |
1053 | > | // find xyz-indices of cell that cutoffGroup is in. |
1054 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1055 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1056 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1057 | > | |
1058 | > | // find single index of this cell: |
1059 | > | cellIndex = Vlinear(whichCell, nCells_); |
1060 | > | |
1061 | > | // add this cutoff group to the list of groups in this cell; |
1062 | > | cellListCol_[cellIndex].push_back(i); |
1063 | > | } |
1064 | #else | |
1065 | < | for (int i = 0; i < nGroups_; i++) { |
1066 | < | rs = snap_->cgData.position[i]; |
1067 | < | // scaled positions relative to the box vectors |
1068 | < | scaled = invHmat * rs; |
1069 | < | // wrap the vector back into the unit box by subtracting integer box |
1070 | < | // numbers |
1071 | < | for (int j = 0; j < 3; j++) |
1072 | < | scaled[j] -= roundMe(scaled[j]); |
1073 | < | |
1074 | < | // find xyz-indices of cell that cutoffGroup is in. |
1075 | < | whichCell.x() = nCells_.x() * scaled.x(); |
1076 | < | whichCell.y() = nCells_.y() * scaled.y(); |
1077 | < | whichCell.z() = nCells_.z() * scaled.z(); |
1078 | < | |
1079 | < | // find single index of this cell: |
1080 | < | cellIndex = Vlinear(whichCell, nCells_); |
1081 | < | // add this cutoff group to the list of groups in this cell; |
1082 | < | cellList_[cellIndex].push_back(i); |
1083 | < | } |
1065 | > | for (int i = 0; i < nGroups_; i++) { |
1066 | > | rs = snap_->cgData.position[i]; |
1067 | > | |
1068 | > | // scaled positions relative to the box vectors |
1069 | > | scaled = invHmat * rs; |
1070 | > | |
1071 | > | // wrap the vector back into the unit box by subtracting integer box |
1072 | > | // numbers |
1073 | > | for (int j = 0; j < 3; j++) { |
1074 | > | scaled[j] -= roundMe(scaled[j]); |
1075 | > | scaled[j] += 0.5; |
1076 | > | } |
1077 | > | |
1078 | > | // find xyz-indices of cell that cutoffGroup is in. |
1079 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1080 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1081 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1082 | > | |
1083 | > | // find single index of this cell: |
1084 | > | cellIndex = Vlinear(whichCell, nCells_); |
1085 | > | |
1086 | > | // add this cutoff group to the list of groups in this cell; |
1087 | > | cellList_[cellIndex].push_back(i); |
1088 | > | } |
1089 | #endif | |
1090 | ||
1091 | < | |
1092 | < | |
1093 | < | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1094 | < | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1095 | < | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
515 | < | Vector3i m1v(m1x, m1y, m1z); |
516 | < | int m1 = Vlinear(m1v, nCells_); |
517 | < | |
518 | < | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
519 | < | os != cellOffsets_.end(); ++os) { |
1091 | > | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1092 | > | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1093 | > | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1094 | > | Vector3i m1v(m1x, m1y, m1z); |
1095 | > | int m1 = Vlinear(m1v, nCells_); |
1096 | ||
1097 | < | Vector3i m2v = m1v + (*os); |
1098 | < | |
1099 | < | if (m2v.x() >= nCells_.x()) { |
1100 | < | m2v.x() = 0; |
1101 | < | } else if (m2v.x() < 0) { |
1102 | < | m2v.x() = nCells_.x() - 1; |
1103 | < | } |
1104 | < | |
1105 | < | if (m2v.y() >= nCells_.y()) { |
1106 | < | m2v.y() = 0; |
1107 | < | } else if (m2v.y() < 0) { |
1108 | < | m2v.y() = nCells_.y() - 1; |
1109 | < | } |
1110 | < | |
1111 | < | if (m2v.z() >= nCells_.z()) { |
1112 | < | m2v.z() = 0; |
1113 | < | } else if (m2v.z() < 0) { |
1114 | < | m2v.z() = nCells_.z() - 1; |
1115 | < | } |
1116 | < | |
1117 | < | int m2 = Vlinear (m2v, nCells_); |
1118 | < | |
1097 | > | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1098 | > | os != cellOffsets_.end(); ++os) { |
1099 | > | |
1100 | > | Vector3i m2v = m1v + (*os); |
1101 | > | |
1102 | > | if (m2v.x() >= nCells_.x()) { |
1103 | > | m2v.x() = 0; |
1104 | > | } else if (m2v.x() < 0) { |
1105 | > | m2v.x() = nCells_.x() - 1; |
1106 | > | } |
1107 | > | |
1108 | > | if (m2v.y() >= nCells_.y()) { |
1109 | > | m2v.y() = 0; |
1110 | > | } else if (m2v.y() < 0) { |
1111 | > | m2v.y() = nCells_.y() - 1; |
1112 | > | } |
1113 | > | |
1114 | > | if (m2v.z() >= nCells_.z()) { |
1115 | > | m2v.z() = 0; |
1116 | > | } else if (m2v.z() < 0) { |
1117 | > | m2v.z() = nCells_.z() - 1; |
1118 | > | } |
1119 | > | |
1120 | > | int m2 = Vlinear (m2v, nCells_); |
1121 | > | |
1122 | #ifdef IS_MPI | |
1123 | < | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1124 | < | j1 != cellListRow_[m1].end(); ++j1) { |
1125 | < | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1126 | < | j2 != cellListCol_[m2].end(); ++j2) { |
1127 | < | |
1128 | < | // Always do this if we're in different cells or if |
1129 | < | // we're in the same cell and the global index of the |
1130 | < | // j2 cutoff group is less than the j1 cutoff group |
1131 | < | |
1132 | < | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1133 | < | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1134 | < | snap_->wrapVector(dr); |
1135 | < | if (dr.lengthSquare() < rl2) { |
1136 | < | neighborList.push_back(make_pair((*j1), (*j2))); |
1123 | > | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1124 | > | j1 != cellListRow_[m1].end(); ++j1) { |
1125 | > | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1126 | > | j2 != cellListCol_[m2].end(); ++j2) { |
1127 | > | |
1128 | > | // Always do this if we're in different cells or if |
1129 | > | // we're in the same cell and the global index of the |
1130 | > | // j2 cutoff group is less than the j1 cutoff group |
1131 | > | |
1132 | > | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1133 | > | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1134 | > | snap_->wrapVector(dr); |
1135 | > | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1136 | > | if (dr.lengthSquare() < cuts.third) { |
1137 | > | neighborList.push_back(make_pair((*j1), (*j2))); |
1138 | > | } |
1139 | } | |
1140 | } | |
1141 | } | |
561 | – | } |
1142 | #else | |
1143 | < | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1144 | < | j1 != cellList_[m1].end(); ++j1) { |
1145 | < | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1146 | < | j2 != cellList_[m2].end(); ++j2) { |
1147 | < | |
1148 | < | // Always do this if we're in different cells or if |
1149 | < | // we're in the same cell and the global index of the |
1150 | < | // j2 cutoff group is less than the j1 cutoff group |
1151 | < | |
1152 | < | if (m2 != m1 || (*j2) < (*j1)) { |
1153 | < | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1154 | < | snap_->wrapVector(dr); |
1155 | < | if (dr.lengthSquare() < rl2) { |
1156 | < | neighborList.push_back(make_pair((*j1), (*j2))); |
1143 | > | |
1144 | > | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1145 | > | j1 != cellList_[m1].end(); ++j1) { |
1146 | > | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1147 | > | j2 != cellList_[m2].end(); ++j2) { |
1148 | > | |
1149 | > | // Always do this if we're in different cells or if |
1150 | > | // we're in the same cell and the global index of the |
1151 | > | // j2 cutoff group is less than the j1 cutoff group |
1152 | > | |
1153 | > | if (m2 != m1 || (*j2) < (*j1)) { |
1154 | > | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1155 | > | snap_->wrapVector(dr); |
1156 | > | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1157 | > | if (dr.lengthSquare() < cuts.third) { |
1158 | > | neighborList.push_back(make_pair((*j1), (*j2))); |
1159 | > | } |
1160 | } | |
1161 | } | |
1162 | } | |
580 | – | } |
1163 | #endif | |
1164 | + | } |
1165 | } | |
1166 | } | |
1167 | } | |
1168 | + | } else { |
1169 | + | // branch to do all cutoff group pairs |
1170 | + | #ifdef IS_MPI |
1171 | + | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1172 | + | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1173 | + | dr = cgColData.position[j2] - cgRowData.position[j1]; |
1174 | + | snap_->wrapVector(dr); |
1175 | + | cuts = getGroupCutoffs( j1, j2 ); |
1176 | + | if (dr.lengthSquare() < cuts.third) { |
1177 | + | neighborList.push_back(make_pair(j1, j2)); |
1178 | + | } |
1179 | + | } |
1180 | + | } |
1181 | + | #else |
1182 | + | for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1183 | + | for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1184 | + | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1185 | + | snap_->wrapVector(dr); |
1186 | + | cuts = getGroupCutoffs( j1, j2 ); |
1187 | + | if (dr.lengthSquare() < cuts.third) { |
1188 | + | neighborList.push_back(make_pair(j1, j2)); |
1189 | + | } |
1190 | + | } |
1191 | + | } |
1192 | + | #endif |
1193 | } | |
1194 | < | |
1194 | > | |
1195 | // save the local cutoff group positions for the check that is | |
1196 | // done on each loop: | |
1197 | saved_CG_positions_.clear(); | |
1198 | for (int i = 0; i < nGroups_; i++) | |
1199 | saved_CG_positions_.push_back(snap_->cgData.position[i]); | |
1200 | < | |
1200 | > | |
1201 | return neighborList; | |
1202 | } | |
1203 | } //end namespace OpenMD |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |