# | Line 38 | Line 38 | |
---|---|---|
38 | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | |
39 | * [4] Vardeman & Gezelter, in progress (2009). | |
40 | */ | |
41 | < | #include "parallel/ForceDecomposition.hpp" |
42 | < | #include "parallel/Communicator.hpp" |
41 | > | #include "parallel/ForceMatrixDecomposition.hpp" |
42 | #include "math/SquareMatrix3.hpp" | |
43 | + | #include "nonbonded/NonBondedInteraction.hpp" |
44 | + | #include "brains/SnapshotManager.hpp" |
45 | + | #include "brains/PairList.hpp" |
46 | ||
47 | + | using namespace std; |
48 | namespace OpenMD { | |
49 | ||
50 | < | void ForceDecomposition::distributeInitialData() { |
50 | > | /** |
51 | > | * distributeInitialData is essentially a copy of the older fortran |
52 | > | * SimulationSetup |
53 | > | */ |
54 | > | |
55 | > | void ForceMatrixDecomposition::distributeInitialData() { |
56 | > | snap_ = sman_->getCurrentSnapshot(); |
57 | > | storageLayout_ = sman_->getStorageLayout(); |
58 | > | ff_ = info_->getForceField(); |
59 | > | nLocal_ = snap_->getNumberOfAtoms(); |
60 | > | |
61 | > | nGroups_ = info_->getNLocalCutoffGroups(); |
62 | > | // gather the information for atomtype IDs (atids): |
63 | > | identsLocal = info_->getIdentArray(); |
64 | > | AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
65 | > | cgLocalToGlobal = info_->getGlobalGroupIndices(); |
66 | > | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
67 | > | vector<RealType> massFactorsLocal = info_->getMassFactors(); |
68 | > | PairList excludes = info_->getExcludedInteractions(); |
69 | > | PairList oneTwo = info_->getOneTwoInteractions(); |
70 | > | PairList oneThree = info_->getOneThreeInteractions(); |
71 | > | PairList oneFour = info_->getOneFourInteractions(); |
72 | > | |
73 | #ifdef IS_MPI | |
74 | + | |
75 | + | AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
76 | + | AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
77 | + | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
78 | + | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
79 | + | AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
80 | ||
81 | < | int nAtoms; |
82 | < | int nGroups; |
81 | > | AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
82 | > | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
83 | > | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
84 | > | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
85 | > | AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
86 | ||
87 | < | AtomCommRealI = new Comm<I,RealType>(nAtoms); |
88 | < | AtomCommVectorI = new Comm<I,Vector3d>(nAtoms); |
89 | < | AtomCommMatrixI = new Comm<I,Mat3x3d>(nAtoms); |
87 | > | cgCommIntRow = new Communicator<Row,int>(nGroups_); |
88 | > | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
89 | > | cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
90 | > | cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
91 | ||
92 | < | AtomCommRealJ = new Comm<J,RealType>(nAtoms); |
93 | < | AtomCommVectorJ = new Comm<J,Vector3d>(nAtoms); |
94 | < | AtomCommMatrixJ = new Comm<J,Mat3x3d>(nAtoms); |
92 | > | nAtomsInRow_ = AtomCommIntRow->getSize(); |
93 | > | nAtomsInCol_ = AtomCommIntColumn->getSize(); |
94 | > | nGroupsInRow_ = cgCommIntRow->getSize(); |
95 | > | nGroupsInCol_ = cgCommIntColumn->getSize(); |
96 | ||
97 | < | cgCommVectorI = new Comm<I,Vector3d>(nGroups); |
98 | < | cgCommVectorJ = new Comm<J,Vector3d>(nGroups); |
99 | < | // more to come |
97 | > | // Modify the data storage objects with the correct layouts and sizes: |
98 | > | atomRowData.resize(nAtomsInRow_); |
99 | > | atomRowData.setStorageLayout(storageLayout_); |
100 | > | atomColData.resize(nAtomsInCol_); |
101 | > | atomColData.setStorageLayout(storageLayout_); |
102 | > | cgRowData.resize(nGroupsInRow_); |
103 | > | cgRowData.setStorageLayout(DataStorage::dslPosition); |
104 | > | cgColData.resize(nGroupsInCol_); |
105 | > | cgColData.setStorageLayout(DataStorage::dslPosition); |
106 | > | |
107 | > | identsRow.resize(nAtomsInRow_); |
108 | > | identsCol.resize(nAtomsInCol_); |
109 | > | |
110 | > | AtomCommIntRow->gather(identsLocal, identsRow); |
111 | > | AtomCommIntColumn->gather(identsLocal, identsCol); |
112 | > | |
113 | > | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
114 | > | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
115 | > | |
116 | > | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
117 | > | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
118 | > | |
119 | > | AtomCommRealRow->gather(massFactorsLocal, massFactorsRow); |
120 | > | AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol); |
121 | > | |
122 | > | groupListRow_.clear(); |
123 | > | groupListRow_.resize(nGroupsInRow_); |
124 | > | for (int i = 0; i < nGroupsInRow_; i++) { |
125 | > | int gid = cgRowToGlobal[i]; |
126 | > | for (int j = 0; j < nAtomsInRow_; j++) { |
127 | > | int aid = AtomRowToGlobal[j]; |
128 | > | if (globalGroupMembership[aid] == gid) |
129 | > | groupListRow_[i].push_back(j); |
130 | > | } |
131 | > | } |
132 | > | |
133 | > | groupListCol_.clear(); |
134 | > | groupListCol_.resize(nGroupsInCol_); |
135 | > | for (int i = 0; i < nGroupsInCol_; i++) { |
136 | > | int gid = cgColToGlobal[i]; |
137 | > | for (int j = 0; j < nAtomsInCol_; j++) { |
138 | > | int aid = AtomColToGlobal[j]; |
139 | > | if (globalGroupMembership[aid] == gid) |
140 | > | groupListCol_[i].push_back(j); |
141 | > | } |
142 | > | } |
143 | > | |
144 | > | skipsForRowAtom.clear(); |
145 | > | skipsForRowAtom.resize(nAtomsInRow_); |
146 | > | for (int i = 0; i < nAtomsInRow_; i++) { |
147 | > | int iglob = AtomRowToGlobal[i]; |
148 | > | for (int j = 0; j < nAtomsInCol_; j++) { |
149 | > | int jglob = AtomColToGlobal[j]; |
150 | > | if (excludes.hasPair(iglob, jglob)) |
151 | > | skipsForRowAtom[i].push_back(j); |
152 | > | } |
153 | > | } |
154 | > | |
155 | > | toposForRowAtom.clear(); |
156 | > | toposForRowAtom.resize(nAtomsInRow_); |
157 | > | for (int i = 0; i < nAtomsInRow_; i++) { |
158 | > | int iglob = AtomRowToGlobal[i]; |
159 | > | int nTopos = 0; |
160 | > | for (int j = 0; j < nAtomsInCol_; j++) { |
161 | > | int jglob = AtomColToGlobal[j]; |
162 | > | if (oneTwo.hasPair(iglob, jglob)) { |
163 | > | toposForRowAtom[i].push_back(j); |
164 | > | topoDistRow[i][nTopos] = 1; |
165 | > | nTopos++; |
166 | > | } |
167 | > | if (oneThree.hasPair(iglob, jglob)) { |
168 | > | toposForRowAtom[i].push_back(j); |
169 | > | topoDistRow[i][nTopos] = 2; |
170 | > | nTopos++; |
171 | > | } |
172 | > | if (oneFour.hasPair(iglob, jglob)) { |
173 | > | toposForRowAtom[i].push_back(j); |
174 | > | topoDistRow[i][nTopos] = 3; |
175 | > | nTopos++; |
176 | > | } |
177 | > | } |
178 | > | } |
179 | > | |
180 | #endif | |
181 | + | groupList_.clear(); |
182 | + | groupList_.resize(nGroups_); |
183 | + | for (int i = 0; i < nGroups_; i++) { |
184 | + | int gid = cgLocalToGlobal[i]; |
185 | + | for (int j = 0; j < nLocal_; j++) { |
186 | + | int aid = AtomLocalToGlobal[j]; |
187 | + | if (globalGroupMembership[aid] == gid) { |
188 | + | groupList_[i].push_back(j); |
189 | + | |
190 | + | } |
191 | + | } |
192 | + | } |
193 | + | |
194 | + | skipsForLocalAtom.clear(); |
195 | + | skipsForLocalAtom.resize(nLocal_); |
196 | + | |
197 | + | for (int i = 0; i < nLocal_; i++) { |
198 | + | int iglob = AtomLocalToGlobal[i]; |
199 | + | for (int j = 0; j < nLocal_; j++) { |
200 | + | int jglob = AtomLocalToGlobal[j]; |
201 | + | if (excludes.hasPair(iglob, jglob)) |
202 | + | skipsForLocalAtom[i].push_back(j); |
203 | + | } |
204 | + | } |
205 | + | toposForLocalAtom.clear(); |
206 | + | toposForLocalAtom.resize(nLocal_); |
207 | + | for (int i = 0; i < nLocal_; i++) { |
208 | + | int iglob = AtomLocalToGlobal[i]; |
209 | + | int nTopos = 0; |
210 | + | for (int j = 0; j < nLocal_; j++) { |
211 | + | int jglob = AtomLocalToGlobal[j]; |
212 | + | if (oneTwo.hasPair(iglob, jglob)) { |
213 | + | toposForLocalAtom[i].push_back(j); |
214 | + | topoDistLocal[i][nTopos] = 1; |
215 | + | nTopos++; |
216 | + | } |
217 | + | if (oneThree.hasPair(iglob, jglob)) { |
218 | + | toposForLocalAtom[i].push_back(j); |
219 | + | topoDistLocal[i][nTopos] = 2; |
220 | + | nTopos++; |
221 | + | } |
222 | + | if (oneFour.hasPair(iglob, jglob)) { |
223 | + | toposForLocalAtom[i].push_back(j); |
224 | + | topoDistLocal[i][nTopos] = 3; |
225 | + | nTopos++; |
226 | + | } |
227 | + | } |
228 | + | } |
229 | + | |
230 | } | |
231 | < | |
231 | > | |
232 | > | void ForceMatrixDecomposition::createGtypeCutoffMap() { |
233 | ||
234 | + | RealType tol = 1e-6; |
235 | + | RealType rc; |
236 | + | int atid; |
237 | + | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
238 | + | vector<RealType> atypeCutoff; |
239 | + | atypeCutoff.resize( atypes.size() ); |
240 | ||
241 | < | void ForceDecomposition::distributeData() { |
241 | > | for (set<AtomType*>::iterator at = atypes.begin(); at != atypes.end(); ++at){ |
242 | > | rc = interactionMan_->getSuggestedCutoffRadius(*at); |
243 | > | atid = (*at)->getIdent(); |
244 | > | atypeCutoff[atid] = rc; |
245 | > | } |
246 | > | |
247 | > | vector<RealType> gTypeCutoffs; |
248 | > | |
249 | > | // first we do a single loop over the cutoff groups to find the |
250 | > | // largest cutoff for any atypes present in this group. |
251 | #ifdef IS_MPI | |
252 | < | Snapshot* snap = sman_->getCurrentSnapshot(); |
252 | > | vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); |
253 | > | for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { |
254 | > | vector<int> atomListRow = getAtomsInGroupRow(cg1); |
255 | > | for (vector<int>::iterator ia = atomListRow.begin(); |
256 | > | ia != atomListRow.end(); ++ia) { |
257 | > | int atom1 = (*ia); |
258 | > | atid = identsRow[atom1]; |
259 | > | if (atypeCutoff[atid] > groupCutoffRow[cg1]) { |
260 | > | groupCutoffRow[cg1] = atypeCutoff[atid]; |
261 | > | } |
262 | > | } |
263 | > | |
264 | > | bool gTypeFound = false; |
265 | > | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
266 | > | if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) { |
267 | > | groupRowToGtype[cg1] = gt; |
268 | > | gTypeFound = true; |
269 | > | } |
270 | > | } |
271 | > | if (!gTypeFound) { |
272 | > | gTypeCutoffs.push_back( groupCutoffRow[cg1] ); |
273 | > | groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; |
274 | > | } |
275 | > | |
276 | > | } |
277 | > | vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); |
278 | > | for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { |
279 | > | vector<int> atomListCol = getAtomsInGroupColumn(cg2); |
280 | > | for (vector<int>::iterator jb = atomListCol.begin(); |
281 | > | jb != atomListCol.end(); ++jb) { |
282 | > | int atom2 = (*jb); |
283 | > | atid = identsCol[atom2]; |
284 | > | if (atypeCutoff[atid] > groupCutoffCol[cg2]) { |
285 | > | groupCutoffCol[cg2] = atypeCutoff[atid]; |
286 | > | } |
287 | > | } |
288 | > | bool gTypeFound = false; |
289 | > | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
290 | > | if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) { |
291 | > | groupColToGtype[cg2] = gt; |
292 | > | gTypeFound = true; |
293 | > | } |
294 | > | } |
295 | > | if (!gTypeFound) { |
296 | > | gTypeCutoffs.push_back( groupCutoffCol[cg2] ); |
297 | > | groupColToGtype[cg2] = gTypeCutoffs.size() - 1; |
298 | > | } |
299 | > | } |
300 | > | #else |
301 | > | vector<RealType> groupCutoff(nGroups_, 0.0); |
302 | > | for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
303 | > | groupCutoff[cg1] = 0.0; |
304 | > | vector<int> atomList = getAtomsInGroupRow(cg1); |
305 | > | for (vector<int>::iterator ia = atomList.begin(); |
306 | > | ia != atomList.end(); ++ia) { |
307 | > | int atom1 = (*ia); |
308 | > | atid = identsLocal[atom1]; |
309 | > | if (atypeCutoff[atid] > groupCutoff[cg1]) { |
310 | > | groupCutoff[cg1] = atypeCutoff[atid]; |
311 | > | } |
312 | > | } |
313 | > | |
314 | > | bool gTypeFound = false; |
315 | > | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
316 | > | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
317 | > | groupToGtype[cg1] = gt; |
318 | > | gTypeFound = true; |
319 | > | } |
320 | > | } |
321 | > | if (!gTypeFound) { |
322 | > | gTypeCutoffs.push_back( groupCutoff[cg1] ); |
323 | > | groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
324 | > | } |
325 | > | } |
326 | > | #endif |
327 | ||
328 | + | // Now we find the maximum group cutoff value present in the simulation |
329 | + | |
330 | + | vector<RealType>::iterator groupMaxLoc = max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); |
331 | + | RealType groupMax = *groupMaxLoc; |
332 | + | |
333 | + | #ifdef IS_MPI |
334 | + | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); |
335 | + | #endif |
336 | + | |
337 | + | RealType tradRcut = groupMax; |
338 | + | |
339 | + | for (int i = 0; i < gTypeCutoffs.size(); i++) { |
340 | + | for (int j = 0; j < gTypeCutoffs.size(); j++) { |
341 | + | |
342 | + | RealType thisRcut; |
343 | + | switch(cutoffPolicy_) { |
344 | + | case TRADITIONAL: |
345 | + | thisRcut = tradRcut; |
346 | + | case MIX: |
347 | + | thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); |
348 | + | case MAX: |
349 | + | thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); |
350 | + | default: |
351 | + | sprintf(painCave.errMsg, |
352 | + | "ForceMatrixDecomposition::createGtypeCutoffMap " |
353 | + | "hit an unknown cutoff policy!\n"); |
354 | + | painCave.severity = OPENMD_ERROR; |
355 | + | painCave.isFatal = 1; |
356 | + | simError(); |
357 | + | } |
358 | + | |
359 | + | pair<int,int> key = make_pair(i,j); |
360 | + | gTypeCutoffMap[key].first = thisRcut; |
361 | + | |
362 | + | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
363 | + | |
364 | + | gTypeCutoffMap[key].second = thisRcut*thisRcut; |
365 | + | |
366 | + | gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
367 | + | |
368 | + | // sanity check |
369 | + | |
370 | + | if (userChoseCutoff_) { |
371 | + | if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
372 | + | sprintf(painCave.errMsg, |
373 | + | "ForceMatrixDecomposition::createGtypeCutoffMap " |
374 | + | "user-specified rCut does not match computed group Cutoff\n"); |
375 | + | painCave.severity = OPENMD_ERROR; |
376 | + | painCave.isFatal = 1; |
377 | + | simError(); |
378 | + | } |
379 | + | } |
380 | + | } |
381 | + | } |
382 | + | } |
383 | + | |
384 | + | |
385 | + | groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
386 | + | int i, j; |
387 | + | |
388 | + | #ifdef IS_MPI |
389 | + | i = groupRowToGtype[cg1]; |
390 | + | j = groupColToGtype[cg2]; |
391 | + | #else |
392 | + | i = groupToGtype[cg1]; |
393 | + | j = groupToGtype[cg2]; |
394 | + | #endif |
395 | + | |
396 | + | return gTypeCutoffMap[make_pair(i,j)]; |
397 | + | } |
398 | + | |
399 | + | |
400 | + | void ForceMatrixDecomposition::zeroWorkArrays() { |
401 | + | |
402 | + | for (int j = 0; j < N_INTERACTION_FAMILIES; j++) { |
403 | + | longRangePot_[j] = 0.0; |
404 | + | } |
405 | + | |
406 | + | #ifdef IS_MPI |
407 | + | if (storageLayout_ & DataStorage::dslForce) { |
408 | + | fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); |
409 | + | fill(atomColData.force.begin(), atomColData.force.end(), V3Zero); |
410 | + | } |
411 | + | |
412 | + | if (storageLayout_ & DataStorage::dslTorque) { |
413 | + | fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero); |
414 | + | fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero); |
415 | + | } |
416 | + | |
417 | + | fill(pot_row.begin(), pot_row.end(), |
418 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
419 | + | |
420 | + | fill(pot_col.begin(), pot_col.end(), |
421 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
422 | + | |
423 | + | pot_local = Vector<RealType, N_INTERACTION_FAMILIES>(0.0); |
424 | + | |
425 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
426 | + | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); |
427 | + | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); |
428 | + | } |
429 | + | |
430 | + | if (storageLayout_ & DataStorage::dslDensity) { |
431 | + | fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0); |
432 | + | fill(atomColData.density.begin(), atomColData.density.end(), 0.0); |
433 | + | } |
434 | + | |
435 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
436 | + | fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); |
437 | + | fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); |
438 | + | } |
439 | + | |
440 | + | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
441 | + | fill(atomRowData.functionalDerivative.begin(), |
442 | + | atomRowData.functionalDerivative.end(), 0.0); |
443 | + | fill(atomColData.functionalDerivative.begin(), |
444 | + | atomColData.functionalDerivative.end(), 0.0); |
445 | + | } |
446 | + | |
447 | + | #else |
448 | + | |
449 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
450 | + | fill(snap_->atomData.particlePot.begin(), |
451 | + | snap_->atomData.particlePot.end(), 0.0); |
452 | + | } |
453 | + | |
454 | + | if (storageLayout_ & DataStorage::dslDensity) { |
455 | + | fill(snap_->atomData.density.begin(), |
456 | + | snap_->atomData.density.end(), 0.0); |
457 | + | } |
458 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
459 | + | fill(snap_->atomData.functional.begin(), |
460 | + | snap_->atomData.functional.end(), 0.0); |
461 | + | } |
462 | + | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
463 | + | fill(snap_->atomData.functionalDerivative.begin(), |
464 | + | snap_->atomData.functionalDerivative.end(), 0.0); |
465 | + | } |
466 | + | #endif |
467 | + | |
468 | + | } |
469 | + | |
470 | + | |
471 | + | void ForceMatrixDecomposition::distributeData() { |
472 | + | snap_ = sman_->getCurrentSnapshot(); |
473 | + | storageLayout_ = sman_->getStorageLayout(); |
474 | + | #ifdef IS_MPI |
475 | + | |
476 | // gather up the atomic positions | |
477 | < | AtomCommVectorI->gather(snap->atomData.position, |
478 | < | snap->atomIData.position); |
479 | < | AtomCommVectorJ->gather(snap->atomData.position, |
480 | < | snap->atomJData.position); |
477 | > | AtomCommVectorRow->gather(snap_->atomData.position, |
478 | > | atomRowData.position); |
479 | > | AtomCommVectorColumn->gather(snap_->atomData.position, |
480 | > | atomColData.position); |
481 | ||
482 | // gather up the cutoff group positions | |
483 | < | cgCommVectorI->gather(snap->cgData.position, |
484 | < | snap->cgIData.position); |
485 | < | cgCommVectorJ->gather(snap->cgData.position, |
486 | < | snap->cgJData.position); |
483 | > | cgCommVectorRow->gather(snap_->cgData.position, |
484 | > | cgRowData.position); |
485 | > | cgCommVectorColumn->gather(snap_->cgData.position, |
486 | > | cgColData.position); |
487 | ||
488 | // if needed, gather the atomic rotation matrices | |
489 | < | if (snap->atomData.getStorageLayout() & DataStorage::dslAmat) { |
490 | < | AtomCommMatrixI->gather(snap->atomData.aMat, |
491 | < | snap->atomIData.aMat); |
492 | < | AtomCommMatrixJ->gather(snap->atomData.aMat, |
493 | < | snap->atomJData.aMat); |
489 | > | if (storageLayout_ & DataStorage::dslAmat) { |
490 | > | AtomCommMatrixRow->gather(snap_->atomData.aMat, |
491 | > | atomRowData.aMat); |
492 | > | AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
493 | > | atomColData.aMat); |
494 | } | |
495 | ||
496 | // if needed, gather the atomic eletrostatic frames | |
497 | < | if (snap->atomData.getStorageLayout() & DataStorage::dslElectroFrame) { |
498 | < | AtomCommMatrixI->gather(snap->atomData.electroFrame, |
499 | < | snap->atomIData.electroFrame); |
500 | < | AtomCommMatrixJ->gather(snap->atomData.electroFrame, |
501 | < | snap->atomJData.electroFrame); |
497 | > | if (storageLayout_ & DataStorage::dslElectroFrame) { |
498 | > | AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
499 | > | atomRowData.electroFrame); |
500 | > | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
501 | > | atomColData.electroFrame); |
502 | } | |
503 | #endif | |
504 | } | |
505 | ||
506 | < | void ForceDecomposition::collectIntermediateData() { |
506 | > | /* collects information obtained during the pre-pair loop onto local |
507 | > | * data structures. |
508 | > | */ |
509 | > | void ForceMatrixDecomposition::collectIntermediateData() { |
510 | > | snap_ = sman_->getCurrentSnapshot(); |
511 | > | storageLayout_ = sman_->getStorageLayout(); |
512 | #ifdef IS_MPI | |
105 | – | Snapshot* snap = sman_->getCurrentSnapshot(); |
106 | – | // gather up the atomic positions |
513 | ||
514 | < | if (snap->atomData.getStorageLayout() & DataStorage::dslDensity) { |
515 | < | AtomCommRealI->scatter(snap->atomIData.density, |
516 | < | snap->atomData.density); |
517 | < | std::vector<RealType> rho_tmp; |
518 | < | int n = snap->getNumberOfAtoms(); |
519 | < | rho_tmp.reserve( n ); |
520 | < | AtomCommRealJ->scatter(snap->atomJData.density, rho_tmp); |
514 | > | if (storageLayout_ & DataStorage::dslDensity) { |
515 | > | |
516 | > | AtomCommRealRow->scatter(atomRowData.density, |
517 | > | snap_->atomData.density); |
518 | > | |
519 | > | int n = snap_->atomData.density.size(); |
520 | > | vector<RealType> rho_tmp(n, 0.0); |
521 | > | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
522 | for (int i = 0; i < n; i++) | |
523 | < | snap->atomData.density[i] += rho_tmp[i]; |
523 | > | snap_->atomData.density[i] += rho_tmp[i]; |
524 | } | |
525 | #endif | |
526 | } | |
527 | < | |
528 | < | void ForceDecomposition::distributeIntermediateData() { |
527 | > | |
528 | > | /* |
529 | > | * redistributes information obtained during the pre-pair loop out to |
530 | > | * row and column-indexed data structures |
531 | > | */ |
532 | > | void ForceMatrixDecomposition::distributeIntermediateData() { |
533 | > | snap_ = sman_->getCurrentSnapshot(); |
534 | > | storageLayout_ = sman_->getStorageLayout(); |
535 | #ifdef IS_MPI | |
536 | < | Snapshot* snap = sman_->getCurrentSnapshot(); |
537 | < | if (snap->atomData.getStorageLayout() & DataStorage::dslFunctional) { |
538 | < | AtomCommRealI->gather(snap->atomData.functional, |
539 | < | snap->atomIData.functional); |
540 | < | AtomCommRealJ->gather(snap->atomData.functional, |
128 | < | snap->atomJData.functional); |
536 | > | if (storageLayout_ & DataStorage::dslFunctional) { |
537 | > | AtomCommRealRow->gather(snap_->atomData.functional, |
538 | > | atomRowData.functional); |
539 | > | AtomCommRealColumn->gather(snap_->atomData.functional, |
540 | > | atomColData.functional); |
541 | } | |
542 | ||
543 | < | if (snap->atomData.getStorageLayout() & DataStorage::dslFunctionalDerivative) { |
544 | < | AtomCommRealI->gather(snap->atomData.functionalDerivative, |
545 | < | snap->atomIData.functionalDerivative); |
546 | < | AtomCommRealJ->gather(snap->atomData.functionalDerivative, |
547 | < | snap->atomJData.functionalDerivative); |
543 | > | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
544 | > | AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
545 | > | atomRowData.functionalDerivative); |
546 | > | AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
547 | > | atomColData.functionalDerivative); |
548 | } | |
549 | #endif | |
550 | } | |
551 | ||
552 | ||
553 | < | void ForceDecomposition::collectData() { |
553 | > | void ForceMatrixDecomposition::collectData() { |
554 | > | snap_ = sman_->getCurrentSnapshot(); |
555 | > | storageLayout_ = sman_->getStorageLayout(); |
556 | > | #ifdef IS_MPI |
557 | > | int n = snap_->atomData.force.size(); |
558 | > | vector<Vector3d> frc_tmp(n, V3Zero); |
559 | > | |
560 | > | AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
561 | > | for (int i = 0; i < n; i++) { |
562 | > | snap_->atomData.force[i] += frc_tmp[i]; |
563 | > | frc_tmp[i] = 0.0; |
564 | > | } |
565 | > | |
566 | > | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
567 | > | for (int i = 0; i < n; i++) |
568 | > | snap_->atomData.force[i] += frc_tmp[i]; |
569 | > | |
570 | > | |
571 | > | if (storageLayout_ & DataStorage::dslTorque) { |
572 | > | |
573 | > | int nt = snap_->atomData.force.size(); |
574 | > | vector<Vector3d> trq_tmp(nt, V3Zero); |
575 | > | |
576 | > | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
577 | > | for (int i = 0; i < n; i++) { |
578 | > | snap_->atomData.torque[i] += trq_tmp[i]; |
579 | > | trq_tmp[i] = 0.0; |
580 | > | } |
581 | > | |
582 | > | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
583 | > | for (int i = 0; i < n; i++) |
584 | > | snap_->atomData.torque[i] += trq_tmp[i]; |
585 | > | } |
586 | > | |
587 | > | nLocal_ = snap_->getNumberOfAtoms(); |
588 | > | |
589 | > | vector<potVec> pot_temp(nLocal_, |
590 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
591 | > | |
592 | > | // scatter/gather pot_row into the members of my column |
593 | > | |
594 | > | AtomCommPotRow->scatter(pot_row, pot_temp); |
595 | > | |
596 | > | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
597 | > | pot_local += pot_temp[ii]; |
598 | > | |
599 | > | fill(pot_temp.begin(), pot_temp.end(), |
600 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
601 | > | |
602 | > | AtomCommPotColumn->scatter(pot_col, pot_temp); |
603 | > | |
604 | > | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
605 | > | pot_local += pot_temp[ii]; |
606 | > | |
607 | > | #endif |
608 | > | } |
609 | > | |
610 | > | int ForceMatrixDecomposition::getNAtomsInRow() { |
611 | #ifdef IS_MPI | |
612 | + | return nAtomsInRow_; |
613 | + | #else |
614 | + | return nLocal_; |
615 | + | #endif |
616 | + | } |
617 | + | |
618 | + | /** |
619 | + | * returns the list of atoms belonging to this group. |
620 | + | */ |
621 | + | vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
622 | + | #ifdef IS_MPI |
623 | + | return groupListRow_[cg1]; |
624 | + | #else |
625 | + | return groupList_[cg1]; |
626 | + | #endif |
627 | + | } |
628 | + | |
629 | + | vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
630 | + | #ifdef IS_MPI |
631 | + | return groupListCol_[cg2]; |
632 | + | #else |
633 | + | return groupList_[cg2]; |
634 | + | #endif |
635 | + | } |
636 | + | |
637 | + | Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ |
638 | + | Vector3d d; |
639 | + | |
640 | + | #ifdef IS_MPI |
641 | + | d = cgColData.position[cg2] - cgRowData.position[cg1]; |
642 | + | #else |
643 | + | d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; |
644 | + | #endif |
645 | + | |
646 | + | snap_->wrapVector(d); |
647 | + | return d; |
648 | + | } |
649 | + | |
650 | + | |
651 | + | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ |
652 | + | |
653 | + | Vector3d d; |
654 | + | |
655 | + | #ifdef IS_MPI |
656 | + | d = cgRowData.position[cg1] - atomRowData.position[atom1]; |
657 | + | #else |
658 | + | d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; |
659 | + | #endif |
660 | + | |
661 | + | snap_->wrapVector(d); |
662 | + | return d; |
663 | + | } |
664 | + | |
665 | + | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){ |
666 | + | Vector3d d; |
667 | + | |
668 | + | #ifdef IS_MPI |
669 | + | d = cgColData.position[cg2] - atomColData.position[atom2]; |
670 | + | #else |
671 | + | d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; |
672 | + | #endif |
673 | + | |
674 | + | snap_->wrapVector(d); |
675 | + | return d; |
676 | + | } |
677 | + | |
678 | + | RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
679 | + | #ifdef IS_MPI |
680 | + | return massFactorsRow[atom1]; |
681 | + | #else |
682 | + | return massFactorsLocal[atom1]; |
683 | + | #endif |
684 | + | } |
685 | + | |
686 | + | RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
687 | + | #ifdef IS_MPI |
688 | + | return massFactorsCol[atom2]; |
689 | + | #else |
690 | + | return massFactorsLocal[atom2]; |
691 | + | #endif |
692 | + | |
693 | + | } |
694 | + | |
695 | + | Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ |
696 | + | Vector3d d; |
697 | + | |
698 | + | #ifdef IS_MPI |
699 | + | d = atomColData.position[atom2] - atomRowData.position[atom1]; |
700 | + | #else |
701 | + | d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; |
702 | + | #endif |
703 | + | |
704 | + | snap_->wrapVector(d); |
705 | + | return d; |
706 | + | } |
707 | + | |
708 | + | vector<int> ForceMatrixDecomposition::getSkipsForRowAtom(int atom1) { |
709 | + | #ifdef IS_MPI |
710 | + | return skipsForRowAtom[atom1]; |
711 | + | #else |
712 | + | return skipsForLocalAtom[atom1]; |
713 | + | #endif |
714 | + | } |
715 | + | |
716 | + | /** |
717 | + | * There are a number of reasons to skip a pair or a |
718 | + | * particle. Mostly we do this to exclude atoms who are involved in |
719 | + | * short range interactions (bonds, bends, torsions), but we also |
720 | + | * need to exclude some overcounted interactions that result from |
721 | + | * the parallel decomposition. |
722 | + | */ |
723 | + | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
724 | + | int unique_id_1, unique_id_2; |
725 | + | |
726 | + | #ifdef IS_MPI |
727 | + | // in MPI, we have to look up the unique IDs for each atom |
728 | + | unique_id_1 = AtomRowToGlobal[atom1]; |
729 | + | unique_id_2 = AtomColToGlobal[atom2]; |
730 | + | |
731 | + | // this situation should only arise in MPI simulations |
732 | + | if (unique_id_1 == unique_id_2) return true; |
733 | + | |
734 | + | // this prevents us from doing the pair on multiple processors |
735 | + | if (unique_id_1 < unique_id_2) { |
736 | + | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
737 | + | } else { |
738 | + | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
739 | + | } |
740 | + | #else |
741 | + | // in the normal loop, the atom numbers are unique |
742 | + | unique_id_1 = atom1; |
743 | + | unique_id_2 = atom2; |
744 | + | #endif |
745 | + | |
746 | + | #ifdef IS_MPI |
747 | + | for (vector<int>::iterator i = skipsForRowAtom[atom1].begin(); |
748 | + | i != skipsForRowAtom[atom1].end(); ++i) { |
749 | + | if ( (*i) == unique_id_2 ) return true; |
750 | + | } |
751 | + | #else |
752 | + | for (vector<int>::iterator i = skipsForLocalAtom[atom1].begin(); |
753 | + | i != skipsForLocalAtom[atom1].end(); ++i) { |
754 | + | if ( (*i) == unique_id_2 ) return true; |
755 | + | } |
756 | + | #endif |
757 | + | } |
758 | + | |
759 | + | int ForceMatrixDecomposition::getTopoDistance(int atom1, int atom2) { |
760 | + | |
761 | + | #ifdef IS_MPI |
762 | + | for (int i = 0; i < toposForRowAtom[atom1].size(); i++) { |
763 | + | if ( toposForRowAtom[atom1][i] == atom2 ) return topoDistRow[atom1][i]; |
764 | + | } |
765 | + | #else |
766 | + | for (int i = 0; i < toposForLocalAtom[atom1].size(); i++) { |
767 | + | if ( toposForLocalAtom[atom1][i] == atom2 ) return topoDistLocal[atom1][i]; |
768 | + | } |
769 | + | #endif |
770 | + | |
771 | + | // zero is default for unconnected (i.e. normal) pair interactions |
772 | + | return 0; |
773 | + | } |
774 | + | |
775 | + | void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ |
776 | + | #ifdef IS_MPI |
777 | + | atomRowData.force[atom1] += fg; |
778 | + | #else |
779 | + | snap_->atomData.force[atom1] += fg; |
780 | + | #endif |
781 | + | } |
782 | + | |
783 | + | void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){ |
784 | + | #ifdef IS_MPI |
785 | + | atomColData.force[atom2] += fg; |
786 | + | #else |
787 | + | snap_->atomData.force[atom2] += fg; |
788 | + | #endif |
789 | + | } |
790 | + | |
791 | + | // filling interaction blocks with pointers |
792 | + | InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) { |
793 | + | InteractionData idat; |
794 | + | |
795 | + | #ifdef IS_MPI |
796 | + | |
797 | + | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
798 | + | ff_->getAtomType(identsCol[atom2]) ); |
799 | + | |
800 | + | |
801 | + | if (storageLayout_ & DataStorage::dslAmat) { |
802 | + | idat.A1 = &(atomRowData.aMat[atom1]); |
803 | + | idat.A2 = &(atomColData.aMat[atom2]); |
804 | + | } |
805 | + | |
806 | + | if (storageLayout_ & DataStorage::dslElectroFrame) { |
807 | + | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
808 | + | idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
809 | + | } |
810 | + | |
811 | + | if (storageLayout_ & DataStorage::dslTorque) { |
812 | + | idat.t1 = &(atomRowData.torque[atom1]); |
813 | + | idat.t2 = &(atomColData.torque[atom2]); |
814 | + | } |
815 | + | |
816 | + | if (storageLayout_ & DataStorage::dslDensity) { |
817 | + | idat.rho1 = &(atomRowData.density[atom1]); |
818 | + | idat.rho2 = &(atomColData.density[atom2]); |
819 | + | } |
820 | + | |
821 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
822 | + | idat.frho1 = &(atomRowData.functional[atom1]); |
823 | + | idat.frho2 = &(atomColData.functional[atom2]); |
824 | + | } |
825 | + | |
826 | + | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
827 | + | idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); |
828 | + | idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); |
829 | + | } |
830 | + | |
831 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
832 | + | idat.particlePot1 = &(atomRowData.particlePot[atom1]); |
833 | + | idat.particlePot2 = &(atomColData.particlePot[atom2]); |
834 | + | } |
835 | + | |
836 | + | #else |
837 | + | |
838 | + | idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), |
839 | + | ff_->getAtomType(identsLocal[atom2]) ); |
840 | + | |
841 | + | if (storageLayout_ & DataStorage::dslAmat) { |
842 | + | idat.A1 = &(snap_->atomData.aMat[atom1]); |
843 | + | idat.A2 = &(snap_->atomData.aMat[atom2]); |
844 | + | } |
845 | + | |
846 | + | if (storageLayout_ & DataStorage::dslElectroFrame) { |
847 | + | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
848 | + | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
849 | + | } |
850 | + | |
851 | + | if (storageLayout_ & DataStorage::dslTorque) { |
852 | + | idat.t1 = &(snap_->atomData.torque[atom1]); |
853 | + | idat.t2 = &(snap_->atomData.torque[atom2]); |
854 | + | } |
855 | + | |
856 | + | if (storageLayout_ & DataStorage::dslDensity) { |
857 | + | idat.rho1 = &(snap_->atomData.density[atom1]); |
858 | + | idat.rho2 = &(snap_->atomData.density[atom2]); |
859 | + | } |
860 | + | |
861 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
862 | + | idat.frho1 = &(snap_->atomData.functional[atom1]); |
863 | + | idat.frho2 = &(snap_->atomData.functional[atom2]); |
864 | + | } |
865 | + | |
866 | + | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
867 | + | idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); |
868 | + | idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); |
869 | + | } |
870 | + | |
871 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
872 | + | idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); |
873 | + | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
874 | + | } |
875 | + | |
876 | #endif | |
877 | + | return idat; |
878 | } | |
879 | + | |
880 | ||
881 | + | void ForceMatrixDecomposition::unpackInteractionData(InteractionData idat, int atom1, int atom2) { |
882 | + | #ifdef IS_MPI |
883 | + | pot_row[atom1] += 0.5 * *(idat.pot); |
884 | + | pot_col[atom2] += 0.5 * *(idat.pot); |
885 | + | |
886 | + | atomRowData.force[atom1] += *(idat.f1); |
887 | + | atomColData.force[atom2] -= *(idat.f1); |
888 | + | #else |
889 | + | longRangePot_ += *(idat.pot); |
890 | + | |
891 | + | snap_->atomData.force[atom1] += *(idat.f1); |
892 | + | snap_->atomData.force[atom2] -= *(idat.f1); |
893 | + | #endif |
894 | + | |
895 | + | } |
896 | + | |
897 | + | |
898 | + | InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ |
899 | + | |
900 | + | InteractionData idat; |
901 | + | #ifdef IS_MPI |
902 | + | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
903 | + | ff_->getAtomType(identsCol[atom2]) ); |
904 | + | |
905 | + | if (storageLayout_ & DataStorage::dslElectroFrame) { |
906 | + | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
907 | + | idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
908 | + | } |
909 | + | if (storageLayout_ & DataStorage::dslTorque) { |
910 | + | idat.t1 = &(atomRowData.torque[atom1]); |
911 | + | idat.t2 = &(atomColData.torque[atom2]); |
912 | + | } |
913 | + | #else |
914 | + | idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), |
915 | + | ff_->getAtomType(identsLocal[atom2]) ); |
916 | + | |
917 | + | if (storageLayout_ & DataStorage::dslElectroFrame) { |
918 | + | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
919 | + | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
920 | + | } |
921 | + | if (storageLayout_ & DataStorage::dslTorque) { |
922 | + | idat.t1 = &(snap_->atomData.torque[atom1]); |
923 | + | idat.t2 = &(snap_->atomData.torque[atom2]); |
924 | + | } |
925 | + | #endif |
926 | + | } |
927 | + | |
928 | + | /* |
929 | + | * buildNeighborList |
930 | + | * |
931 | + | * first element of pair is row-indexed CutoffGroup |
932 | + | * second element of pair is column-indexed CutoffGroup |
933 | + | */ |
934 | + | vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { |
935 | + | |
936 | + | vector<pair<int, int> > neighborList; |
937 | + | groupCutoffs cuts; |
938 | + | #ifdef IS_MPI |
939 | + | cellListRow_.clear(); |
940 | + | cellListCol_.clear(); |
941 | + | #else |
942 | + | cellList_.clear(); |
943 | + | #endif |
944 | + | |
945 | + | RealType rList_ = (largestRcut_ + skinThickness_); |
946 | + | RealType rl2 = rList_ * rList_; |
947 | + | Snapshot* snap_ = sman_->getCurrentSnapshot(); |
948 | + | Mat3x3d Hmat = snap_->getHmat(); |
949 | + | Vector3d Hx = Hmat.getColumn(0); |
950 | + | Vector3d Hy = Hmat.getColumn(1); |
951 | + | Vector3d Hz = Hmat.getColumn(2); |
952 | + | |
953 | + | nCells_.x() = (int) ( Hx.length() )/ rList_; |
954 | + | nCells_.y() = (int) ( Hy.length() )/ rList_; |
955 | + | nCells_.z() = (int) ( Hz.length() )/ rList_; |
956 | + | |
957 | + | Mat3x3d invHmat = snap_->getInvHmat(); |
958 | + | Vector3d rs, scaled, dr; |
959 | + | Vector3i whichCell; |
960 | + | int cellIndex; |
961 | + | |
962 | + | #ifdef IS_MPI |
963 | + | for (int i = 0; i < nGroupsInRow_; i++) { |
964 | + | rs = cgRowData.position[i]; |
965 | + | // scaled positions relative to the box vectors |
966 | + | scaled = invHmat * rs; |
967 | + | // wrap the vector back into the unit box by subtracting integer box |
968 | + | // numbers |
969 | + | for (int j = 0; j < 3; j++) |
970 | + | scaled[j] -= roundMe(scaled[j]); |
971 | + | |
972 | + | // find xyz-indices of cell that cutoffGroup is in. |
973 | + | whichCell.x() = nCells_.x() * scaled.x(); |
974 | + | whichCell.y() = nCells_.y() * scaled.y(); |
975 | + | whichCell.z() = nCells_.z() * scaled.z(); |
976 | + | |
977 | + | // find single index of this cell: |
978 | + | cellIndex = Vlinear(whichCell, nCells_); |
979 | + | // add this cutoff group to the list of groups in this cell; |
980 | + | cellListRow_[cellIndex].push_back(i); |
981 | + | } |
982 | + | |
983 | + | for (int i = 0; i < nGroupsInCol_; i++) { |
984 | + | rs = cgColData.position[i]; |
985 | + | // scaled positions relative to the box vectors |
986 | + | scaled = invHmat * rs; |
987 | + | // wrap the vector back into the unit box by subtracting integer box |
988 | + | // numbers |
989 | + | for (int j = 0; j < 3; j++) |
990 | + | scaled[j] -= roundMe(scaled[j]); |
991 | + | |
992 | + | // find xyz-indices of cell that cutoffGroup is in. |
993 | + | whichCell.x() = nCells_.x() * scaled.x(); |
994 | + | whichCell.y() = nCells_.y() * scaled.y(); |
995 | + | whichCell.z() = nCells_.z() * scaled.z(); |
996 | + | |
997 | + | // find single index of this cell: |
998 | + | cellIndex = Vlinear(whichCell, nCells_); |
999 | + | // add this cutoff group to the list of groups in this cell; |
1000 | + | cellListCol_[cellIndex].push_back(i); |
1001 | + | } |
1002 | + | #else |
1003 | + | for (int i = 0; i < nGroups_; i++) { |
1004 | + | rs = snap_->cgData.position[i]; |
1005 | + | // scaled positions relative to the box vectors |
1006 | + | scaled = invHmat * rs; |
1007 | + | // wrap the vector back into the unit box by subtracting integer box |
1008 | + | // numbers |
1009 | + | for (int j = 0; j < 3; j++) |
1010 | + | scaled[j] -= roundMe(scaled[j]); |
1011 | + | |
1012 | + | // find xyz-indices of cell that cutoffGroup is in. |
1013 | + | whichCell.x() = nCells_.x() * scaled.x(); |
1014 | + | whichCell.y() = nCells_.y() * scaled.y(); |
1015 | + | whichCell.z() = nCells_.z() * scaled.z(); |
1016 | + | |
1017 | + | // find single index of this cell: |
1018 | + | cellIndex = Vlinear(whichCell, nCells_); |
1019 | + | // add this cutoff group to the list of groups in this cell; |
1020 | + | cellList_[cellIndex].push_back(i); |
1021 | + | } |
1022 | + | #endif |
1023 | + | |
1024 | + | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1025 | + | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1026 | + | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1027 | + | Vector3i m1v(m1x, m1y, m1z); |
1028 | + | int m1 = Vlinear(m1v, nCells_); |
1029 | + | |
1030 | + | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1031 | + | os != cellOffsets_.end(); ++os) { |
1032 | + | |
1033 | + | Vector3i m2v = m1v + (*os); |
1034 | + | |
1035 | + | if (m2v.x() >= nCells_.x()) { |
1036 | + | m2v.x() = 0; |
1037 | + | } else if (m2v.x() < 0) { |
1038 | + | m2v.x() = nCells_.x() - 1; |
1039 | + | } |
1040 | + | |
1041 | + | if (m2v.y() >= nCells_.y()) { |
1042 | + | m2v.y() = 0; |
1043 | + | } else if (m2v.y() < 0) { |
1044 | + | m2v.y() = nCells_.y() - 1; |
1045 | + | } |
1046 | + | |
1047 | + | if (m2v.z() >= nCells_.z()) { |
1048 | + | m2v.z() = 0; |
1049 | + | } else if (m2v.z() < 0) { |
1050 | + | m2v.z() = nCells_.z() - 1; |
1051 | + | } |
1052 | + | |
1053 | + | int m2 = Vlinear (m2v, nCells_); |
1054 | + | |
1055 | + | #ifdef IS_MPI |
1056 | + | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1057 | + | j1 != cellListRow_[m1].end(); ++j1) { |
1058 | + | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1059 | + | j2 != cellListCol_[m2].end(); ++j2) { |
1060 | + | |
1061 | + | // Always do this if we're in different cells or if |
1062 | + | // we're in the same cell and the global index of the |
1063 | + | // j2 cutoff group is less than the j1 cutoff group |
1064 | + | |
1065 | + | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1066 | + | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1067 | + | snap_->wrapVector(dr); |
1068 | + | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1069 | + | if (dr.lengthSquare() < cuts.third) { |
1070 | + | neighborList.push_back(make_pair((*j1), (*j2))); |
1071 | + | } |
1072 | + | } |
1073 | + | } |
1074 | + | } |
1075 | + | #else |
1076 | + | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1077 | + | j1 != cellList_[m1].end(); ++j1) { |
1078 | + | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1079 | + | j2 != cellList_[m2].end(); ++j2) { |
1080 | + | |
1081 | + | // Always do this if we're in different cells or if |
1082 | + | // we're in the same cell and the global index of the |
1083 | + | // j2 cutoff group is less than the j1 cutoff group |
1084 | + | |
1085 | + | if (m2 != m1 || (*j2) < (*j1)) { |
1086 | + | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1087 | + | snap_->wrapVector(dr); |
1088 | + | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1089 | + | if (dr.lengthSquare() < cuts.third) { |
1090 | + | neighborList.push_back(make_pair((*j1), (*j2))); |
1091 | + | } |
1092 | + | } |
1093 | + | } |
1094 | + | } |
1095 | + | #endif |
1096 | + | } |
1097 | + | } |
1098 | + | } |
1099 | + | } |
1100 | + | |
1101 | + | // save the local cutoff group positions for the check that is |
1102 | + | // done on each loop: |
1103 | + | saved_CG_positions_.clear(); |
1104 | + | for (int i = 0; i < nGroups_; i++) |
1105 | + | saved_CG_positions_.push_back(snap_->cgData.position[i]); |
1106 | + | |
1107 | + | return neighborList; |
1108 | + | } |
1109 | } //end namespace OpenMD |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |