# | Line 57 | Line 57 | namespace OpenMD { | |
---|---|---|
57 | storageLayout_ = sman_->getStorageLayout(); | |
58 | ff_ = info_->getForceField(); | |
59 | nLocal_ = snap_->getNumberOfAtoms(); | |
60 | < | |
60 | > | |
61 | nGroups_ = info_->getNLocalCutoffGroups(); | |
62 | // gather the information for atomtype IDs (atids): | |
63 | < | identsLocal = info_->getIdentArray(); |
63 | > | idents = info_->getIdentArray(); |
64 | AtomLocalToGlobal = info_->getGlobalAtomIndices(); | |
65 | cgLocalToGlobal = info_->getGlobalGroupIndices(); | |
66 | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); | |
67 | – | vector<RealType> massFactorsLocal = info_->getMassFactors(); |
68 | – | PairList excludes = info_->getExcludedInteractions(); |
69 | – | PairList oneTwo = info_->getOneTwoInteractions(); |
70 | – | PairList oneThree = info_->getOneThreeInteractions(); |
71 | – | PairList oneFour = info_->getOneFourInteractions(); |
67 | ||
68 | + | massFactors = info_->getMassFactors(); |
69 | + | |
70 | + | PairList* excludes = info_->getExcludedInteractions(); |
71 | + | PairList* oneTwo = info_->getOneTwoInteractions(); |
72 | + | PairList* oneThree = info_->getOneThreeInteractions(); |
73 | + | PairList* oneFour = info_->getOneFourInteractions(); |
74 | + | |
75 | #ifdef IS_MPI | |
76 | ||
77 | AtomCommIntRow = new Communicator<Row,int>(nLocal_); | |
# | Line 107 | Line 109 | namespace OpenMD { | |
109 | identsRow.resize(nAtomsInRow_); | |
110 | identsCol.resize(nAtomsInCol_); | |
111 | ||
112 | < | AtomCommIntRow->gather(identsLocal, identsRow); |
113 | < | AtomCommIntColumn->gather(identsLocal, identsCol); |
112 | > | AtomCommIntRow->gather(idents, identsRow); |
113 | > | AtomCommIntColumn->gather(idents, identsCol); |
114 | ||
115 | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | |
116 | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); | |
# | Line 116 | Line 118 | namespace OpenMD { | |
118 | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); | |
119 | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); | |
120 | ||
121 | < | AtomCommRealRow->gather(massFactorsLocal, massFactorsRow); |
122 | < | AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol); |
121 | > | AtomCommRealRow->gather(massFactors, massFactorsRow); |
122 | > | AtomCommRealColumn->gather(massFactors, massFactorsCol); |
123 | ||
124 | groupListRow_.clear(); | |
125 | groupListRow_.resize(nGroupsInRow_); | |
# | Line 141 | Line 143 | namespace OpenMD { | |
143 | } | |
144 | } | |
145 | ||
146 | < | skipsForRowAtom.clear(); |
147 | < | skipsForRowAtom.resize(nAtomsInRow_); |
146 | > | excludesForAtom.clear(); |
147 | > | excludesForAtom.resize(nAtomsInRow_); |
148 | > | toposForAtom.clear(); |
149 | > | toposForAtom.resize(nAtomsInRow_); |
150 | > | topoDist.clear(); |
151 | > | topoDist.resize(nAtomsInRow_); |
152 | for (int i = 0; i < nAtomsInRow_; i++) { | |
153 | int iglob = AtomRowToGlobal[i]; | |
148 | – | for (int j = 0; j < nAtomsInCol_; j++) { |
149 | – | int jglob = AtomColToGlobal[j]; |
150 | – | if (excludes.hasPair(iglob, jglob)) |
151 | – | skipsForRowAtom[i].push_back(j); |
152 | – | } |
153 | – | } |
154 | ||
155 | – | toposForRowAtom.clear(); |
156 | – | toposForRowAtom.resize(nAtomsInRow_); |
157 | – | for (int i = 0; i < nAtomsInRow_; i++) { |
158 | – | int iglob = AtomRowToGlobal[i]; |
159 | – | int nTopos = 0; |
155 | for (int j = 0; j < nAtomsInCol_; j++) { | |
156 | < | int jglob = AtomColToGlobal[j]; |
157 | < | if (oneTwo.hasPair(iglob, jglob)) { |
158 | < | toposForRowAtom[i].push_back(j); |
159 | < | topoDistRow[i][nTopos] = 1; |
160 | < | nTopos++; |
156 | > | int jglob = AtomColToGlobal[j]; |
157 | > | |
158 | > | if (excludes->hasPair(iglob, jglob)) |
159 | > | excludesForAtom[i].push_back(j); |
160 | > | |
161 | > | if (oneTwo->hasPair(iglob, jglob)) { |
162 | > | toposForAtom[i].push_back(j); |
163 | > | topoDist[i].push_back(1); |
164 | > | } else { |
165 | > | if (oneThree->hasPair(iglob, jglob)) { |
166 | > | toposForAtom[i].push_back(j); |
167 | > | topoDist[i].push_back(2); |
168 | > | } else { |
169 | > | if (oneFour->hasPair(iglob, jglob)) { |
170 | > | toposForAtom[i].push_back(j); |
171 | > | topoDist[i].push_back(3); |
172 | > | } |
173 | > | } |
174 | } | |
167 | – | if (oneThree.hasPair(iglob, jglob)) { |
168 | – | toposForRowAtom[i].push_back(j); |
169 | – | topoDistRow[i][nTopos] = 2; |
170 | – | nTopos++; |
171 | – | } |
172 | – | if (oneFour.hasPair(iglob, jglob)) { |
173 | – | toposForRowAtom[i].push_back(j); |
174 | – | topoDistRow[i][nTopos] = 3; |
175 | – | nTopos++; |
176 | – | } |
175 | } | |
176 | } | |
177 | ||
178 | #endif | |
179 | + | |
180 | groupList_.clear(); | |
181 | groupList_.resize(nGroups_); | |
182 | for (int i = 0; i < nGroups_; i++) { | |
# | Line 186 | Line 185 | namespace OpenMD { | |
185 | int aid = AtomLocalToGlobal[j]; | |
186 | if (globalGroupMembership[aid] == gid) { | |
187 | groupList_[i].push_back(j); | |
189 | – | |
188 | } | |
189 | } | |
190 | } | |
191 | ||
192 | < | skipsForLocalAtom.clear(); |
193 | < | skipsForLocalAtom.resize(nLocal_); |
192 | > | excludesForAtom.clear(); |
193 | > | excludesForAtom.resize(nLocal_); |
194 | > | toposForAtom.clear(); |
195 | > | toposForAtom.resize(nLocal_); |
196 | > | topoDist.clear(); |
197 | > | topoDist.resize(nLocal_); |
198 | ||
199 | for (int i = 0; i < nLocal_; i++) { | |
200 | int iglob = AtomLocalToGlobal[i]; | |
201 | + | |
202 | for (int j = 0; j < nLocal_; j++) { | |
203 | < | int jglob = AtomLocalToGlobal[j]; |
204 | < | if (excludes.hasPair(iglob, jglob)) |
205 | < | skipsForLocalAtom[i].push_back(j); |
206 | < | } |
207 | < | } |
208 | < | toposForLocalAtom.clear(); |
209 | < | toposForLocalAtom.resize(nLocal_); |
210 | < | for (int i = 0; i < nLocal_; i++) { |
211 | < | int iglob = AtomLocalToGlobal[i]; |
212 | < | int nTopos = 0; |
213 | < | for (int j = 0; j < nLocal_; j++) { |
214 | < | int jglob = AtomLocalToGlobal[j]; |
215 | < | if (oneTwo.hasPair(iglob, jglob)) { |
216 | < | toposForLocalAtom[i].push_back(j); |
217 | < | topoDistLocal[i][nTopos] = 1; |
218 | < | nTopos++; |
203 | > | int jglob = AtomLocalToGlobal[j]; |
204 | > | |
205 | > | if (excludes->hasPair(iglob, jglob)) |
206 | > | excludesForAtom[i].push_back(j); |
207 | > | |
208 | > | if (oneTwo->hasPair(iglob, jglob)) { |
209 | > | toposForAtom[i].push_back(j); |
210 | > | topoDist[i].push_back(1); |
211 | > | } else { |
212 | > | if (oneThree->hasPair(iglob, jglob)) { |
213 | > | toposForAtom[i].push_back(j); |
214 | > | topoDist[i].push_back(2); |
215 | > | } else { |
216 | > | if (oneFour->hasPair(iglob, jglob)) { |
217 | > | toposForAtom[i].push_back(j); |
218 | > | topoDist[i].push_back(3); |
219 | > | } |
220 | > | } |
221 | } | |
217 | – | if (oneThree.hasPair(iglob, jglob)) { |
218 | – | toposForLocalAtom[i].push_back(j); |
219 | – | topoDistLocal[i][nTopos] = 2; |
220 | – | nTopos++; |
221 | – | } |
222 | – | if (oneFour.hasPair(iglob, jglob)) { |
223 | – | toposForLocalAtom[i].push_back(j); |
224 | – | topoDistLocal[i][nTopos] = 3; |
225 | – | nTopos++; |
226 | – | } |
222 | } | |
223 | < | } |
223 | > | } |
224 | > | |
225 | > | createGtypeCutoffMap(); |
226 | ||
227 | } | |
228 | ||
229 | void ForceMatrixDecomposition::createGtypeCutoffMap() { | |
230 | < | |
230 | > | |
231 | RealType tol = 1e-6; | |
232 | RealType rc; | |
233 | int atid; | |
234 | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); | |
235 | < | vector<RealType> atypeCutoff; |
236 | < | atypeCutoff.resize( atypes.size() ); |
237 | < | |
238 | < | for (set<AtomType*>::iterator at = atypes.begin(); at != atypes.end(); ++at){ |
242 | < | rc = interactionMan_->getSuggestedCutoffRadius(*at); |
235 | > | map<int, RealType> atypeCutoff; |
236 | > | |
237 | > | for (set<AtomType*>::iterator at = atypes.begin(); |
238 | > | at != atypes.end(); ++at){ |
239 | atid = (*at)->getIdent(); | |
240 | < | atypeCutoff[atid] = rc; |
240 | > | if (userChoseCutoff_) |
241 | > | atypeCutoff[atid] = userCutoff_; |
242 | > | else |
243 | > | atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
244 | } | |
245 | ||
246 | vector<RealType> gTypeCutoffs; | |
248 | – | |
247 | // first we do a single loop over the cutoff groups to find the | |
248 | // largest cutoff for any atypes present in this group. | |
249 | #ifdef IS_MPI | |
250 | vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); | |
251 | + | groupRowToGtype.resize(nGroupsInRow_); |
252 | for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { | |
253 | vector<int> atomListRow = getAtomsInGroupRow(cg1); | |
254 | for (vector<int>::iterator ia = atomListRow.begin(); | |
# | Line 275 | Line 274 | namespace OpenMD { | |
274 | ||
275 | } | |
276 | vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); | |
277 | + | groupColToGtype.resize(nGroupsInCol_); |
278 | for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { | |
279 | vector<int> atomListCol = getAtomsInGroupColumn(cg2); | |
280 | for (vector<int>::iterator jb = atomListCol.begin(); | |
# | Line 298 | Line 298 | namespace OpenMD { | |
298 | } | |
299 | } | |
300 | #else | |
301 | + | |
302 | vector<RealType> groupCutoff(nGroups_, 0.0); | |
303 | + | groupToGtype.resize(nGroups_); |
304 | for (int cg1 = 0; cg1 < nGroups_; cg1++) { | |
305 | + | |
306 | groupCutoff[cg1] = 0.0; | |
307 | vector<int> atomList = getAtomsInGroupRow(cg1); | |
308 | + | |
309 | for (vector<int>::iterator ia = atomList.begin(); | |
310 | ia != atomList.end(); ++ia) { | |
311 | int atom1 = (*ia); | |
312 | < | atid = identsLocal[atom1]; |
312 | > | atid = idents[atom1]; |
313 | if (atypeCutoff[atid] > groupCutoff[cg1]) { | |
314 | groupCutoff[cg1] = atypeCutoff[atid]; | |
315 | } | |
# | Line 327 | Line 331 | namespace OpenMD { | |
331 | ||
332 | // Now we find the maximum group cutoff value present in the simulation | |
333 | ||
334 | < | vector<RealType>::iterator groupMaxLoc = max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); |
331 | < | RealType groupMax = *groupMaxLoc; |
334 | > | RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); |
335 | ||
336 | #ifdef IS_MPI | |
337 | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); | |
# | Line 337 | Line 340 | namespace OpenMD { | |
340 | RealType tradRcut = groupMax; | |
341 | ||
342 | for (int i = 0; i < gTypeCutoffs.size(); i++) { | |
343 | < | for (int j = 0; j < gTypeCutoffs.size(); j++) { |
341 | < | |
343 | > | for (int j = 0; j < gTypeCutoffs.size(); j++) { |
344 | RealType thisRcut; | |
345 | switch(cutoffPolicy_) { | |
346 | case TRADITIONAL: | |
347 | thisRcut = tradRcut; | |
348 | + | break; |
349 | case MIX: | |
350 | thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); | |
351 | + | break; |
352 | case MAX: | |
353 | thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); | |
354 | + | break; |
355 | default: | |
356 | sprintf(painCave.errMsg, | |
357 | "ForceMatrixDecomposition::createGtypeCutoffMap " | |
358 | "hit an unknown cutoff policy!\n"); | |
359 | painCave.severity = OPENMD_ERROR; | |
360 | painCave.isFatal = 1; | |
361 | < | simError(); |
361 | > | simError(); |
362 | > | break; |
363 | } | |
364 | ||
365 | pair<int,int> key = make_pair(i,j); | |
# | Line 371 | Line 377 | namespace OpenMD { | |
377 | if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { | |
378 | sprintf(painCave.errMsg, | |
379 | "ForceMatrixDecomposition::createGtypeCutoffMap " | |
380 | < | "user-specified rCut does not match computed group Cutoff\n"); |
380 | > | "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
381 | painCave.severity = OPENMD_ERROR; | |
382 | painCave.isFatal = 1; | |
383 | simError(); | |
# | Line 383 | Line 389 | namespace OpenMD { | |
389 | ||
390 | ||
391 | groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { | |
392 | < | int i, j; |
387 | < | |
392 | > | int i, j; |
393 | #ifdef IS_MPI | |
394 | i = groupRowToGtype[cg1]; | |
395 | j = groupColToGtype[cg2]; | |
396 | #else | |
397 | i = groupToGtype[cg1]; | |
398 | j = groupToGtype[cg2]; | |
399 | < | #endif |
395 | < | |
399 | > | #endif |
400 | return gTypeCutoffMap[make_pair(i,j)]; | |
401 | } | |
402 | ||
403 | + | int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
404 | + | for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
405 | + | if (toposForAtom[atom1][j] == atom2) |
406 | + | return topoDist[atom1][j]; |
407 | + | } |
408 | + | return 0; |
409 | + | } |
410 | ||
411 | void ForceMatrixDecomposition::zeroWorkArrays() { | |
412 | + | pairwisePot = 0.0; |
413 | + | embeddingPot = 0.0; |
414 | ||
402 | – | for (int j = 0; j < N_INTERACTION_FAMILIES; j++) { |
403 | – | longRangePot_[j] = 0.0; |
404 | – | } |
405 | – | |
415 | #ifdef IS_MPI | |
416 | if (storageLayout_ & DataStorage::dslForce) { | |
417 | fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); | |
# | Line 418 | Line 427 | namespace OpenMD { | |
427 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
428 | ||
429 | fill(pot_col.begin(), pot_col.end(), | |
430 | < | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
422 | < | |
423 | < | pot_local = Vector<RealType, N_INTERACTION_FAMILIES>(0.0); |
430 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
431 | ||
432 | if (storageLayout_ & DataStorage::dslParticlePot) { | |
433 | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); | |
# | Line 444 | Line 451 | namespace OpenMD { | |
451 | atomColData.functionalDerivative.end(), 0.0); | |
452 | } | |
453 | ||
454 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
455 | + | fill(atomRowData.skippedCharge.begin(), |
456 | + | atomRowData.skippedCharge.end(), 0.0); |
457 | + | fill(atomColData.skippedCharge.begin(), |
458 | + | atomColData.skippedCharge.end(), 0.0); |
459 | + | } |
460 | + | |
461 | #else | |
462 | ||
463 | if (storageLayout_ & DataStorage::dslParticlePot) { | |
# | Line 463 | Line 477 | namespace OpenMD { | |
477 | fill(snap_->atomData.functionalDerivative.begin(), | |
478 | snap_->atomData.functionalDerivative.end(), 0.0); | |
479 | } | |
480 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
481 | + | fill(snap_->atomData.skippedCharge.begin(), |
482 | + | snap_->atomData.skippedCharge.end(), 0.0); |
483 | + | } |
484 | #endif | |
485 | ||
486 | } | |
# | Line 570 | Line 588 | namespace OpenMD { | |
588 | ||
589 | if (storageLayout_ & DataStorage::dslTorque) { | |
590 | ||
591 | < | int nt = snap_->atomData.force.size(); |
591 | > | int nt = snap_->atomData.torque.size(); |
592 | vector<Vector3d> trq_tmp(nt, V3Zero); | |
593 | ||
594 | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); | |
595 | < | for (int i = 0; i < n; i++) { |
595 | > | for (int i = 0; i < nt; i++) { |
596 | snap_->atomData.torque[i] += trq_tmp[i]; | |
597 | trq_tmp[i] = 0.0; | |
598 | } | |
599 | ||
600 | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); | |
601 | < | for (int i = 0; i < n; i++) |
601 | > | for (int i = 0; i < nt; i++) |
602 | snap_->atomData.torque[i] += trq_tmp[i]; | |
603 | + | } |
604 | + | |
605 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
606 | + | |
607 | + | int ns = snap_->atomData.skippedCharge.size(); |
608 | + | vector<RealType> skch_tmp(ns, 0.0); |
609 | + | |
610 | + | AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
611 | + | for (int i = 0; i < ns; i++) { |
612 | + | snap_->atomData.skippedCharge[i] = skch_tmp[i]; |
613 | + | skch_tmp[i] = 0.0; |
614 | + | } |
615 | + | |
616 | + | AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
617 | + | for (int i = 0; i < ns; i++) |
618 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
619 | } | |
620 | ||
621 | nLocal_ = snap_->getNumberOfAtoms(); | |
# | Line 594 | Line 628 | namespace OpenMD { | |
628 | AtomCommPotRow->scatter(pot_row, pot_temp); | |
629 | ||
630 | for (int ii = 0; ii < pot_temp.size(); ii++ ) | |
631 | < | pot_local += pot_temp[ii]; |
631 | > | pairwisePot += pot_temp[ii]; |
632 | ||
633 | fill(pot_temp.begin(), pot_temp.end(), | |
634 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
# | Line 602 | Line 636 | namespace OpenMD { | |
636 | AtomCommPotColumn->scatter(pot_col, pot_temp); | |
637 | ||
638 | for (int ii = 0; ii < pot_temp.size(); ii++ ) | |
639 | < | pot_local += pot_temp[ii]; |
606 | < | |
639 | > | pairwisePot += pot_temp[ii]; |
640 | #endif | |
641 | + | |
642 | } | |
643 | ||
644 | int ForceMatrixDecomposition::getNAtomsInRow() { | |
# | Line 679 | Line 713 | namespace OpenMD { | |
713 | #ifdef IS_MPI | |
714 | return massFactorsRow[atom1]; | |
715 | #else | |
716 | < | return massFactorsLocal[atom1]; |
716 | > | return massFactors[atom1]; |
717 | #endif | |
718 | } | |
719 | ||
# | Line 687 | Line 721 | namespace OpenMD { | |
721 | #ifdef IS_MPI | |
722 | return massFactorsCol[atom2]; | |
723 | #else | |
724 | < | return massFactorsLocal[atom2]; |
724 | > | return massFactors[atom2]; |
725 | #endif | |
726 | ||
727 | } | |
# | Line 705 | Line 739 | namespace OpenMD { | |
739 | return d; | |
740 | } | |
741 | ||
742 | < | vector<int> ForceMatrixDecomposition::getSkipsForRowAtom(int atom1) { |
743 | < | #ifdef IS_MPI |
710 | < | return skipsForRowAtom[atom1]; |
711 | < | #else |
712 | < | return skipsForLocalAtom[atom1]; |
713 | < | #endif |
742 | > | vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
743 | > | return excludesForAtom[atom1]; |
744 | } | |
745 | ||
746 | /** | |
747 | < | * There are a number of reasons to skip a pair or a |
718 | < | * particle. Mostly we do this to exclude atoms who are involved in |
719 | < | * short range interactions (bonds, bends, torsions), but we also |
720 | < | * need to exclude some overcounted interactions that result from |
747 | > | * We need to exclude some overcounted interactions that result from |
748 | * the parallel decomposition. | |
749 | */ | |
750 | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { | |
# | Line 737 | Line 764 | namespace OpenMD { | |
764 | } else { | |
765 | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | |
766 | } | |
767 | + | #endif |
768 | + | return false; |
769 | + | } |
770 | + | |
771 | + | /** |
772 | + | * We need to handle the interactions for atoms who are involved in |
773 | + | * the same rigid body as well as some short range interactions |
774 | + | * (bonds, bends, torsions) differently from other interactions. |
775 | + | * We'll still visit the pairwise routines, but with a flag that |
776 | + | * tells those routines to exclude the pair from direct long range |
777 | + | * interactions. Some indirect interactions (notably reaction |
778 | + | * field) must still be handled for these pairs. |
779 | + | */ |
780 | + | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
781 | + | int unique_id_2; |
782 | + | |
783 | + | #ifdef IS_MPI |
784 | + | // in MPI, we have to look up the unique IDs for the row atom. |
785 | + | unique_id_2 = AtomColToGlobal[atom2]; |
786 | #else | |
787 | // in the normal loop, the atom numbers are unique | |
742 | – | unique_id_1 = atom1; |
788 | unique_id_2 = atom2; | |
789 | #endif | |
790 | ||
791 | < | #ifdef IS_MPI |
792 | < | for (vector<int>::iterator i = skipsForRowAtom[atom1].begin(); |
748 | < | i != skipsForRowAtom[atom1].end(); ++i) { |
791 | > | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
792 | > | i != excludesForAtom[atom1].end(); ++i) { |
793 | if ( (*i) == unique_id_2 ) return true; | |
750 | – | } |
751 | – | #else |
752 | – | for (vector<int>::iterator i = skipsForLocalAtom[atom1].begin(); |
753 | – | i != skipsForLocalAtom[atom1].end(); ++i) { |
754 | – | if ( (*i) == unique_id_2 ) return true; |
755 | – | } |
756 | – | #endif |
757 | – | } |
758 | – | |
759 | – | int ForceMatrixDecomposition::getTopoDistance(int atom1, int atom2) { |
760 | – | |
761 | – | #ifdef IS_MPI |
762 | – | for (int i = 0; i < toposForRowAtom[atom1].size(); i++) { |
763 | – | if ( toposForRowAtom[atom1][i] == atom2 ) return topoDistRow[atom1][i]; |
794 | } | |
765 | – | #else |
766 | – | for (int i = 0; i < toposForLocalAtom[atom1].size(); i++) { |
767 | – | if ( toposForLocalAtom[atom1][i] == atom2 ) return topoDistLocal[atom1][i]; |
768 | – | } |
769 | – | #endif |
795 | ||
796 | < | // zero is default for unconnected (i.e. normal) pair interactions |
772 | < | return 0; |
796 | > | return false; |
797 | } | |
798 | ||
799 | + | |
800 | void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ | |
801 | #ifdef IS_MPI | |
802 | atomRowData.force[atom1] += fg; | |
# | Line 789 | Line 814 | namespace OpenMD { | |
814 | } | |
815 | ||
816 | // filling interaction blocks with pointers | |
817 | < | InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) { |
818 | < | InteractionData idat; |
817 | > | void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
818 | > | int atom1, int atom2) { |
819 | ||
820 | + | idat.excluded = excludeAtomPair(atom1, atom2); |
821 | + | |
822 | #ifdef IS_MPI | |
823 | ||
824 | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), | |
825 | ff_->getAtomType(identsCol[atom2]) ); | |
799 | – | |
826 | ||
827 | if (storageLayout_ & DataStorage::dslAmat) { | |
828 | idat.A1 = &(atomRowData.aMat[atom1]); | |
# | Line 833 | Line 859 | namespace OpenMD { | |
859 | idat.particlePot2 = &(atomColData.particlePot[atom2]); | |
860 | } | |
861 | ||
862 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
863 | + | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
864 | + | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
865 | + | } |
866 | + | |
867 | #else | |
868 | ||
869 | < | idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), |
870 | < | ff_->getAtomType(identsLocal[atom2]) ); |
869 | > | idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
870 | > | ff_->getAtomType(idents[atom2]) ); |
871 | ||
872 | if (storageLayout_ & DataStorage::dslAmat) { | |
873 | idat.A1 = &(snap_->atomData.aMat[atom1]); | |
# | Line 853 | Line 884 | namespace OpenMD { | |
884 | idat.t2 = &(snap_->atomData.torque[atom2]); | |
885 | } | |
886 | ||
887 | < | if (storageLayout_ & DataStorage::dslDensity) { |
887 | > | if (storageLayout_ & DataStorage::dslDensity) { |
888 | idat.rho1 = &(snap_->atomData.density[atom1]); | |
889 | idat.rho2 = &(snap_->atomData.density[atom2]); | |
890 | } | |
# | Line 873 | Line 904 | namespace OpenMD { | |
904 | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); | |
905 | } | |
906 | ||
907 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
908 | + | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
909 | + | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
910 | + | } |
911 | #endif | |
877 | – | return idat; |
912 | } | |
913 | ||
914 | ||
915 | < | void ForceMatrixDecomposition::unpackInteractionData(InteractionData idat, int atom1, int atom2) { |
915 | > | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
916 | #ifdef IS_MPI | |
917 | pot_row[atom1] += 0.5 * *(idat.pot); | |
918 | pot_col[atom2] += 0.5 * *(idat.pot); | |
# | Line 886 | Line 920 | namespace OpenMD { | |
920 | atomRowData.force[atom1] += *(idat.f1); | |
921 | atomColData.force[atom2] -= *(idat.f1); | |
922 | #else | |
923 | < | longRangePot_ += *(idat.pot); |
924 | < | |
923 | > | pairwisePot += *(idat.pot); |
924 | > | |
925 | snap_->atomData.force[atom1] += *(idat.f1); | |
926 | snap_->atomData.force[atom2] -= *(idat.f1); | |
927 | #endif | |
928 | < | |
895 | < | } |
896 | < | |
897 | < | |
898 | < | InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ |
899 | < | |
900 | < | InteractionData idat; |
901 | < | #ifdef IS_MPI |
902 | < | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
903 | < | ff_->getAtomType(identsCol[atom2]) ); |
904 | < | |
905 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { |
906 | < | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
907 | < | idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
908 | < | } |
909 | < | if (storageLayout_ & DataStorage::dslTorque) { |
910 | < | idat.t1 = &(atomRowData.torque[atom1]); |
911 | < | idat.t2 = &(atomColData.torque[atom2]); |
912 | < | } |
913 | < | #else |
914 | < | idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), |
915 | < | ff_->getAtomType(identsLocal[atom2]) ); |
916 | < | |
917 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { |
918 | < | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
919 | < | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
920 | < | } |
921 | < | if (storageLayout_ & DataStorage::dslTorque) { |
922 | < | idat.t1 = &(snap_->atomData.torque[atom1]); |
923 | < | idat.t2 = &(snap_->atomData.torque[atom2]); |
924 | < | } |
925 | < | #endif |
928 | > | |
929 | } | |
930 | ||
931 | /* | |
# | Line 935 | Line 938 | namespace OpenMD { | |
938 | ||
939 | vector<pair<int, int> > neighborList; | |
940 | groupCutoffs cuts; | |
941 | + | bool doAllPairs = false; |
942 | + | |
943 | #ifdef IS_MPI | |
944 | cellListRow_.clear(); | |
945 | cellListCol_.clear(); | |
# | Line 954 | Line 959 | namespace OpenMD { | |
959 | nCells_.y() = (int) ( Hy.length() )/ rList_; | |
960 | nCells_.z() = (int) ( Hz.length() )/ rList_; | |
961 | ||
962 | + | // handle small boxes where the cell offsets can end up repeating cells |
963 | + | |
964 | + | if (nCells_.x() < 3) doAllPairs = true; |
965 | + | if (nCells_.y() < 3) doAllPairs = true; |
966 | + | if (nCells_.z() < 3) doAllPairs = true; |
967 | + | |
968 | Mat3x3d invHmat = snap_->getInvHmat(); | |
969 | Vector3d rs, scaled, dr; | |
970 | Vector3i whichCell; | |
971 | int cellIndex; | |
972 | + | int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
973 | ||
974 | #ifdef IS_MPI | |
975 | < | for (int i = 0; i < nGroupsInRow_; i++) { |
976 | < | rs = cgRowData.position[i]; |
965 | < | // scaled positions relative to the box vectors |
966 | < | scaled = invHmat * rs; |
967 | < | // wrap the vector back into the unit box by subtracting integer box |
968 | < | // numbers |
969 | < | for (int j = 0; j < 3; j++) |
970 | < | scaled[j] -= roundMe(scaled[j]); |
971 | < | |
972 | < | // find xyz-indices of cell that cutoffGroup is in. |
973 | < | whichCell.x() = nCells_.x() * scaled.x(); |
974 | < | whichCell.y() = nCells_.y() * scaled.y(); |
975 | < | whichCell.z() = nCells_.z() * scaled.z(); |
976 | < | |
977 | < | // find single index of this cell: |
978 | < | cellIndex = Vlinear(whichCell, nCells_); |
979 | < | // add this cutoff group to the list of groups in this cell; |
980 | < | cellListRow_[cellIndex].push_back(i); |
981 | < | } |
982 | < | |
983 | < | for (int i = 0; i < nGroupsInCol_; i++) { |
984 | < | rs = cgColData.position[i]; |
985 | < | // scaled positions relative to the box vectors |
986 | < | scaled = invHmat * rs; |
987 | < | // wrap the vector back into the unit box by subtracting integer box |
988 | < | // numbers |
989 | < | for (int j = 0; j < 3; j++) |
990 | < | scaled[j] -= roundMe(scaled[j]); |
991 | < | |
992 | < | // find xyz-indices of cell that cutoffGroup is in. |
993 | < | whichCell.x() = nCells_.x() * scaled.x(); |
994 | < | whichCell.y() = nCells_.y() * scaled.y(); |
995 | < | whichCell.z() = nCells_.z() * scaled.z(); |
996 | < | |
997 | < | // find single index of this cell: |
998 | < | cellIndex = Vlinear(whichCell, nCells_); |
999 | < | // add this cutoff group to the list of groups in this cell; |
1000 | < | cellListCol_[cellIndex].push_back(i); |
1001 | < | } |
975 | > | cellListRow_.resize(nCtot); |
976 | > | cellListCol_.resize(nCtot); |
977 | #else | |
978 | < | for (int i = 0; i < nGroups_; i++) { |
979 | < | rs = snap_->cgData.position[i]; |
1005 | < | // scaled positions relative to the box vectors |
1006 | < | scaled = invHmat * rs; |
1007 | < | // wrap the vector back into the unit box by subtracting integer box |
1008 | < | // numbers |
1009 | < | for (int j = 0; j < 3; j++) |
1010 | < | scaled[j] -= roundMe(scaled[j]); |
978 | > | cellList_.resize(nCtot); |
979 | > | #endif |
980 | ||
981 | < | // find xyz-indices of cell that cutoffGroup is in. |
982 | < | whichCell.x() = nCells_.x() * scaled.x(); |
1014 | < | whichCell.y() = nCells_.y() * scaled.y(); |
1015 | < | whichCell.z() = nCells_.z() * scaled.z(); |
981 | > | if (!doAllPairs) { |
982 | > | #ifdef IS_MPI |
983 | ||
984 | < | // find single index of this cell: |
985 | < | cellIndex = Vlinear(whichCell, nCells_); |
986 | < | // add this cutoff group to the list of groups in this cell; |
987 | < | cellList_[cellIndex].push_back(i); |
988 | < | } |
984 | > | for (int i = 0; i < nGroupsInRow_; i++) { |
985 | > | rs = cgRowData.position[i]; |
986 | > | |
987 | > | // scaled positions relative to the box vectors |
988 | > | scaled = invHmat * rs; |
989 | > | |
990 | > | // wrap the vector back into the unit box by subtracting integer box |
991 | > | // numbers |
992 | > | for (int j = 0; j < 3; j++) { |
993 | > | scaled[j] -= roundMe(scaled[j]); |
994 | > | scaled[j] += 0.5; |
995 | > | } |
996 | > | |
997 | > | // find xyz-indices of cell that cutoffGroup is in. |
998 | > | whichCell.x() = nCells_.x() * scaled.x(); |
999 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1000 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1001 | > | |
1002 | > | // find single index of this cell: |
1003 | > | cellIndex = Vlinear(whichCell, nCells_); |
1004 | > | |
1005 | > | // add this cutoff group to the list of groups in this cell; |
1006 | > | cellListRow_[cellIndex].push_back(i); |
1007 | > | } |
1008 | > | |
1009 | > | for (int i = 0; i < nGroupsInCol_; i++) { |
1010 | > | rs = cgColData.position[i]; |
1011 | > | |
1012 | > | // scaled positions relative to the box vectors |
1013 | > | scaled = invHmat * rs; |
1014 | > | |
1015 | > | // wrap the vector back into the unit box by subtracting integer box |
1016 | > | // numbers |
1017 | > | for (int j = 0; j < 3; j++) { |
1018 | > | scaled[j] -= roundMe(scaled[j]); |
1019 | > | scaled[j] += 0.5; |
1020 | > | } |
1021 | > | |
1022 | > | // find xyz-indices of cell that cutoffGroup is in. |
1023 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1024 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1025 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1026 | > | |
1027 | > | // find single index of this cell: |
1028 | > | cellIndex = Vlinear(whichCell, nCells_); |
1029 | > | |
1030 | > | // add this cutoff group to the list of groups in this cell; |
1031 | > | cellListCol_[cellIndex].push_back(i); |
1032 | > | } |
1033 | > | #else |
1034 | > | for (int i = 0; i < nGroups_; i++) { |
1035 | > | rs = snap_->cgData.position[i]; |
1036 | > | |
1037 | > | // scaled positions relative to the box vectors |
1038 | > | scaled = invHmat * rs; |
1039 | > | |
1040 | > | // wrap the vector back into the unit box by subtracting integer box |
1041 | > | // numbers |
1042 | > | for (int j = 0; j < 3; j++) { |
1043 | > | scaled[j] -= roundMe(scaled[j]); |
1044 | > | scaled[j] += 0.5; |
1045 | > | } |
1046 | > | |
1047 | > | // find xyz-indices of cell that cutoffGroup is in. |
1048 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1049 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1050 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1051 | > | |
1052 | > | // find single index of this cell: |
1053 | > | cellIndex = Vlinear(whichCell, nCells_); |
1054 | > | |
1055 | > | // add this cutoff group to the list of groups in this cell; |
1056 | > | cellList_[cellIndex].push_back(i); |
1057 | > | } |
1058 | #endif | |
1059 | ||
1060 | < | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1061 | < | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1062 | < | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1063 | < | Vector3i m1v(m1x, m1y, m1z); |
1064 | < | int m1 = Vlinear(m1v, nCells_); |
1029 | < | |
1030 | < | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1031 | < | os != cellOffsets_.end(); ++os) { |
1060 | > | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1061 | > | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1062 | > | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1063 | > | Vector3i m1v(m1x, m1y, m1z); |
1064 | > | int m1 = Vlinear(m1v, nCells_); |
1065 | ||
1066 | < | Vector3i m2v = m1v + (*os); |
1067 | < | |
1068 | < | if (m2v.x() >= nCells_.x()) { |
1069 | < | m2v.x() = 0; |
1070 | < | } else if (m2v.x() < 0) { |
1071 | < | m2v.x() = nCells_.x() - 1; |
1072 | < | } |
1073 | < | |
1074 | < | if (m2v.y() >= nCells_.y()) { |
1075 | < | m2v.y() = 0; |
1076 | < | } else if (m2v.y() < 0) { |
1077 | < | m2v.y() = nCells_.y() - 1; |
1078 | < | } |
1079 | < | |
1080 | < | if (m2v.z() >= nCells_.z()) { |
1081 | < | m2v.z() = 0; |
1082 | < | } else if (m2v.z() < 0) { |
1083 | < | m2v.z() = nCells_.z() - 1; |
1084 | < | } |
1085 | < | |
1086 | < | int m2 = Vlinear (m2v, nCells_); |
1087 | < | |
1066 | > | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1067 | > | os != cellOffsets_.end(); ++os) { |
1068 | > | |
1069 | > | Vector3i m2v = m1v + (*os); |
1070 | > | |
1071 | > | if (m2v.x() >= nCells_.x()) { |
1072 | > | m2v.x() = 0; |
1073 | > | } else if (m2v.x() < 0) { |
1074 | > | m2v.x() = nCells_.x() - 1; |
1075 | > | } |
1076 | > | |
1077 | > | if (m2v.y() >= nCells_.y()) { |
1078 | > | m2v.y() = 0; |
1079 | > | } else if (m2v.y() < 0) { |
1080 | > | m2v.y() = nCells_.y() - 1; |
1081 | > | } |
1082 | > | |
1083 | > | if (m2v.z() >= nCells_.z()) { |
1084 | > | m2v.z() = 0; |
1085 | > | } else if (m2v.z() < 0) { |
1086 | > | m2v.z() = nCells_.z() - 1; |
1087 | > | } |
1088 | > | |
1089 | > | int m2 = Vlinear (m2v, nCells_); |
1090 | > | |
1091 | #ifdef IS_MPI | |
1092 | < | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1093 | < | j1 != cellListRow_[m1].end(); ++j1) { |
1094 | < | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1095 | < | j2 != cellListCol_[m2].end(); ++j2) { |
1096 | < | |
1097 | < | // Always do this if we're in different cells or if |
1098 | < | // we're in the same cell and the global index of the |
1099 | < | // j2 cutoff group is less than the j1 cutoff group |
1100 | < | |
1101 | < | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1102 | < | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1103 | < | snap_->wrapVector(dr); |
1104 | < | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1105 | < | if (dr.lengthSquare() < cuts.third) { |
1106 | < | neighborList.push_back(make_pair((*j1), (*j2))); |
1092 | > | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1093 | > | j1 != cellListRow_[m1].end(); ++j1) { |
1094 | > | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1095 | > | j2 != cellListCol_[m2].end(); ++j2) { |
1096 | > | |
1097 | > | // Always do this if we're in different cells or if |
1098 | > | // we're in the same cell and the global index of the |
1099 | > | // j2 cutoff group is less than the j1 cutoff group |
1100 | > | |
1101 | > | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1102 | > | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1103 | > | snap_->wrapVector(dr); |
1104 | > | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1105 | > | if (dr.lengthSquare() < cuts.third) { |
1106 | > | neighborList.push_back(make_pair((*j1), (*j2))); |
1107 | > | } |
1108 | } | |
1109 | } | |
1110 | } | |
1074 | – | } |
1111 | #else | |
1112 | < | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1113 | < | j1 != cellList_[m1].end(); ++j1) { |
1114 | < | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1115 | < | j2 != cellList_[m2].end(); ++j2) { |
1116 | < | |
1117 | < | // Always do this if we're in different cells or if |
1118 | < | // we're in the same cell and the global index of the |
1119 | < | // j2 cutoff group is less than the j1 cutoff group |
1120 | < | |
1121 | < | if (m2 != m1 || (*j2) < (*j1)) { |
1122 | < | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1123 | < | snap_->wrapVector(dr); |
1124 | < | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1125 | < | if (dr.lengthSquare() < cuts.third) { |
1126 | < | neighborList.push_back(make_pair((*j1), (*j2))); |
1112 | > | |
1113 | > | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1114 | > | j1 != cellList_[m1].end(); ++j1) { |
1115 | > | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1116 | > | j2 != cellList_[m2].end(); ++j2) { |
1117 | > | |
1118 | > | // Always do this if we're in different cells or if |
1119 | > | // we're in the same cell and the global index of the |
1120 | > | // j2 cutoff group is less than the j1 cutoff group |
1121 | > | |
1122 | > | if (m2 != m1 || (*j2) < (*j1)) { |
1123 | > | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1124 | > | snap_->wrapVector(dr); |
1125 | > | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1126 | > | if (dr.lengthSquare() < cuts.third) { |
1127 | > | neighborList.push_back(make_pair((*j1), (*j2))); |
1128 | > | } |
1129 | } | |
1130 | } | |
1131 | } | |
1094 | – | } |
1132 | #endif | |
1133 | + | } |
1134 | } | |
1135 | } | |
1136 | } | |
1137 | + | } else { |
1138 | + | // branch to do all cutoff group pairs |
1139 | + | #ifdef IS_MPI |
1140 | + | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1141 | + | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1142 | + | dr = cgColData.position[j2] - cgRowData.position[j1]; |
1143 | + | snap_->wrapVector(dr); |
1144 | + | cuts = getGroupCutoffs( j1, j2 ); |
1145 | + | if (dr.lengthSquare() < cuts.third) { |
1146 | + | neighborList.push_back(make_pair(j1, j2)); |
1147 | + | } |
1148 | + | } |
1149 | + | } |
1150 | + | #else |
1151 | + | for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1152 | + | for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1153 | + | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1154 | + | snap_->wrapVector(dr); |
1155 | + | cuts = getGroupCutoffs( j1, j2 ); |
1156 | + | if (dr.lengthSquare() < cuts.third) { |
1157 | + | neighborList.push_back(make_pair(j1, j2)); |
1158 | + | } |
1159 | + | } |
1160 | + | } |
1161 | + | #endif |
1162 | } | |
1163 | < | |
1163 | > | |
1164 | // save the local cutoff group positions for the check that is | |
1165 | // done on each loop: | |
1166 | saved_CG_positions_.clear(); | |
1167 | for (int i = 0; i < nGroups_; i++) | |
1168 | saved_CG_positions_.push_back(snap_->cgData.position[i]); | |
1169 | < | |
1169 | > | |
1170 | return neighborList; | |
1171 | } | |
1172 | } //end namespace OpenMD |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |