| 57 |
|
storageLayout_ = sman_->getStorageLayout(); |
| 58 |
|
ff_ = info_->getForceField(); |
| 59 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
| 60 |
– |
nGroups_ = snap_->getNumberOfCutoffGroups(); |
| 60 |
|
|
| 61 |
+ |
nGroups_ = info_->getNLocalCutoffGroups(); |
| 62 |
|
// gather the information for atomtype IDs (atids): |
| 63 |
< |
identsLocal = info_->getIdentArray(); |
| 63 |
> |
idents = info_->getIdentArray(); |
| 64 |
|
AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
| 65 |
|
cgLocalToGlobal = info_->getGlobalGroupIndices(); |
| 66 |
|
vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
| 67 |
< |
vector<RealType> massFactorsLocal = info_->getMassFactors(); |
| 67 |
> |
|
| 68 |
> |
massFactors = info_->getMassFactors(); |
| 69 |
> |
|
| 70 |
|
PairList excludes = info_->getExcludedInteractions(); |
| 71 |
|
PairList oneTwo = info_->getOneTwoInteractions(); |
| 72 |
|
PairList oneThree = info_->getOneThreeInteractions(); |
| 73 |
|
PairList oneFour = info_->getOneFourInteractions(); |
| 72 |
– |
vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0); |
| 74 |
|
|
| 75 |
|
#ifdef IS_MPI |
| 76 |
|
|
| 78 |
|
AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
| 79 |
|
AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
| 80 |
|
AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
| 81 |
+ |
AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
| 82 |
|
|
| 83 |
|
AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
| 84 |
|
AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
| 85 |
|
AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
| 86 |
|
AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
| 87 |
+ |
AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
| 88 |
|
|
| 89 |
|
cgCommIntRow = new Communicator<Row,int>(nGroups_); |
| 90 |
|
cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
| 105 |
|
cgRowData.setStorageLayout(DataStorage::dslPosition); |
| 106 |
|
cgColData.resize(nGroupsInCol_); |
| 107 |
|
cgColData.setStorageLayout(DataStorage::dslPosition); |
| 108 |
+ |
|
| 109 |
+ |
identsRow.resize(nAtomsInRow_); |
| 110 |
+ |
identsCol.resize(nAtomsInCol_); |
| 111 |
|
|
| 112 |
< |
vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES, |
| 113 |
< |
vector<RealType> (nAtomsInRow_, 0.0)); |
| 108 |
< |
vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES, |
| 109 |
< |
vector<RealType> (nAtomsInCol_, 0.0)); |
| 112 |
> |
AtomCommIntRow->gather(idents, identsRow); |
| 113 |
> |
AtomCommIntColumn->gather(idents, identsCol); |
| 114 |
|
|
| 111 |
– |
identsRow.reserve(nAtomsInRow_); |
| 112 |
– |
identsCol.reserve(nAtomsInCol_); |
| 113 |
– |
|
| 114 |
– |
AtomCommIntRow->gather(identsLocal, identsRow); |
| 115 |
– |
AtomCommIntColumn->gather(identsLocal, identsCol); |
| 116 |
– |
|
| 115 |
|
AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
| 116 |
|
AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
| 117 |
|
|
| 118 |
|
cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
| 119 |
|
cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
| 120 |
|
|
| 121 |
< |
AtomCommRealRow->gather(massFactorsLocal, massFactorsRow); |
| 122 |
< |
AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol); |
| 121 |
> |
AtomCommRealRow->gather(massFactors, massFactorsRow); |
| 122 |
> |
AtomCommRealColumn->gather(massFactors, massFactorsCol); |
| 123 |
|
|
| 124 |
|
groupListRow_.clear(); |
| 125 |
< |
groupListRow_.reserve(nGroupsInRow_); |
| 125 |
> |
groupListRow_.resize(nGroupsInRow_); |
| 126 |
|
for (int i = 0; i < nGroupsInRow_; i++) { |
| 127 |
|
int gid = cgRowToGlobal[i]; |
| 128 |
|
for (int j = 0; j < nAtomsInRow_; j++) { |
| 133 |
|
} |
| 134 |
|
|
| 135 |
|
groupListCol_.clear(); |
| 136 |
< |
groupListCol_.reserve(nGroupsInCol_); |
| 136 |
> |
groupListCol_.resize(nGroupsInCol_); |
| 137 |
|
for (int i = 0; i < nGroupsInCol_; i++) { |
| 138 |
|
int gid = cgColToGlobal[i]; |
| 139 |
|
for (int j = 0; j < nAtomsInCol_; j++) { |
| 143 |
|
} |
| 144 |
|
} |
| 145 |
|
|
| 146 |
< |
skipsForRowAtom.clear(); |
| 147 |
< |
skipsForRowAtom.reserve(nAtomsInRow_); |
| 146 |
> |
skipsForAtom.clear(); |
| 147 |
> |
skipsForAtom.resize(nAtomsInRow_); |
| 148 |
> |
toposForAtom.clear(); |
| 149 |
> |
toposForAtom.resize(nAtomsInRow_); |
| 150 |
> |
topoDist.clear(); |
| 151 |
> |
topoDist.resize(nAtomsInRow_); |
| 152 |
|
for (int i = 0; i < nAtomsInRow_; i++) { |
| 153 |
|
int iglob = AtomRowToGlobal[i]; |
| 152 |
– |
for (int j = 0; j < nAtomsInCol_; j++) { |
| 153 |
– |
int jglob = AtomColToGlobal[j]; |
| 154 |
– |
if (excludes.hasPair(iglob, jglob)) |
| 155 |
– |
skipsForRowAtom[i].push_back(j); |
| 156 |
– |
} |
| 157 |
– |
} |
| 154 |
|
|
| 159 |
– |
toposForRowAtom.clear(); |
| 160 |
– |
toposForRowAtom.reserve(nAtomsInRow_); |
| 161 |
– |
for (int i = 0; i < nAtomsInRow_; i++) { |
| 162 |
– |
int iglob = AtomRowToGlobal[i]; |
| 163 |
– |
int nTopos = 0; |
| 155 |
|
for (int j = 0; j < nAtomsInCol_; j++) { |
| 156 |
< |
int jglob = AtomColToGlobal[j]; |
| 156 |
> |
int jglob = AtomColToGlobal[j]; |
| 157 |
> |
|
| 158 |
> |
if (excludes.hasPair(iglob, jglob)) |
| 159 |
> |
skipsForAtom[i].push_back(j); |
| 160 |
> |
|
| 161 |
|
if (oneTwo.hasPair(iglob, jglob)) { |
| 162 |
< |
toposForRowAtom[i].push_back(j); |
| 163 |
< |
topoDistRow[i][nTopos] = 1; |
| 164 |
< |
nTopos++; |
| 162 |
> |
toposForAtom[i].push_back(j); |
| 163 |
> |
topoDist[i].push_back(1); |
| 164 |
> |
} else { |
| 165 |
> |
if (oneThree.hasPair(iglob, jglob)) { |
| 166 |
> |
toposForAtom[i].push_back(j); |
| 167 |
> |
topoDist[i].push_back(2); |
| 168 |
> |
} else { |
| 169 |
> |
if (oneFour.hasPair(iglob, jglob)) { |
| 170 |
> |
toposForAtom[i].push_back(j); |
| 171 |
> |
topoDist[i].push_back(3); |
| 172 |
> |
} |
| 173 |
> |
} |
| 174 |
|
} |
| 171 |
– |
if (oneThree.hasPair(iglob, jglob)) { |
| 172 |
– |
toposForRowAtom[i].push_back(j); |
| 173 |
– |
topoDistRow[i][nTopos] = 2; |
| 174 |
– |
nTopos++; |
| 175 |
– |
} |
| 176 |
– |
if (oneFour.hasPair(iglob, jglob)) { |
| 177 |
– |
toposForRowAtom[i].push_back(j); |
| 178 |
– |
topoDistRow[i][nTopos] = 3; |
| 179 |
– |
nTopos++; |
| 180 |
– |
} |
| 175 |
|
} |
| 176 |
|
} |
| 177 |
|
|
| 178 |
|
#endif |
| 179 |
|
|
| 180 |
|
groupList_.clear(); |
| 181 |
< |
groupList_.reserve(nGroups_); |
| 181 |
> |
groupList_.resize(nGroups_); |
| 182 |
|
for (int i = 0; i < nGroups_; i++) { |
| 183 |
|
int gid = cgLocalToGlobal[i]; |
| 184 |
|
for (int j = 0; j < nLocal_; j++) { |
| 185 |
|
int aid = AtomLocalToGlobal[j]; |
| 186 |
< |
if (globalGroupMembership[aid] == gid) |
| 186 |
> |
if (globalGroupMembership[aid] == gid) { |
| 187 |
|
groupList_[i].push_back(j); |
| 188 |
+ |
} |
| 189 |
|
} |
| 190 |
|
} |
| 191 |
|
|
| 192 |
< |
skipsForLocalAtom.clear(); |
| 193 |
< |
skipsForLocalAtom.reserve(nLocal_); |
| 192 |
> |
skipsForAtom.clear(); |
| 193 |
> |
skipsForAtom.resize(nLocal_); |
| 194 |
> |
toposForAtom.clear(); |
| 195 |
> |
toposForAtom.resize(nLocal_); |
| 196 |
> |
topoDist.clear(); |
| 197 |
> |
topoDist.resize(nLocal_); |
| 198 |
|
|
| 199 |
|
for (int i = 0; i < nLocal_; i++) { |
| 200 |
|
int iglob = AtomLocalToGlobal[i]; |
| 201 |
+ |
|
| 202 |
|
for (int j = 0; j < nLocal_; j++) { |
| 203 |
< |
int jglob = AtomLocalToGlobal[j]; |
| 203 |
> |
int jglob = AtomLocalToGlobal[j]; |
| 204 |
> |
|
| 205 |
|
if (excludes.hasPair(iglob, jglob)) |
| 206 |
< |
skipsForLocalAtom[i].push_back(j); |
| 206 |
> |
skipsForAtom[i].push_back(j); |
| 207 |
> |
|
| 208 |
> |
if (oneTwo.hasPair(iglob, jglob)) { |
| 209 |
> |
toposForAtom[i].push_back(j); |
| 210 |
> |
topoDist[i].push_back(1); |
| 211 |
> |
} else { |
| 212 |
> |
if (oneThree.hasPair(iglob, jglob)) { |
| 213 |
> |
toposForAtom[i].push_back(j); |
| 214 |
> |
topoDist[i].push_back(2); |
| 215 |
> |
} else { |
| 216 |
> |
if (oneFour.hasPair(iglob, jglob)) { |
| 217 |
> |
toposForAtom[i].push_back(j); |
| 218 |
> |
topoDist[i].push_back(3); |
| 219 |
> |
} |
| 220 |
> |
} |
| 221 |
> |
} |
| 222 |
|
} |
| 223 |
|
} |
| 224 |
+ |
|
| 225 |
+ |
createGtypeCutoffMap(); |
| 226 |
+ |
} |
| 227 |
+ |
|
| 228 |
+ |
void ForceMatrixDecomposition::createGtypeCutoffMap() { |
| 229 |
+ |
|
| 230 |
+ |
RealType tol = 1e-6; |
| 231 |
+ |
RealType rc; |
| 232 |
+ |
int atid; |
| 233 |
+ |
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
| 234 |
+ |
vector<RealType> atypeCutoff; |
| 235 |
+ |
atypeCutoff.resize( atypes.size() ); |
| 236 |
+ |
|
| 237 |
+ |
for (set<AtomType*>::iterator at = atypes.begin(); |
| 238 |
+ |
at != atypes.end(); ++at){ |
| 239 |
+ |
atid = (*at)->getIdent(); |
| 240 |
|
|
| 241 |
< |
toposForLocalAtom.clear(); |
| 242 |
< |
toposForLocalAtom.reserve(nLocal_); |
| 243 |
< |
for (int i = 0; i < nLocal_; i++) { |
| 244 |
< |
int iglob = AtomLocalToGlobal[i]; |
| 245 |
< |
int nTopos = 0; |
| 246 |
< |
for (int j = 0; j < nLocal_; j++) { |
| 247 |
< |
int jglob = AtomLocalToGlobal[j]; |
| 248 |
< |
if (oneTwo.hasPair(iglob, jglob)) { |
| 249 |
< |
toposForLocalAtom[i].push_back(j); |
| 250 |
< |
topoDistLocal[i][nTopos] = 1; |
| 251 |
< |
nTopos++; |
| 252 |
< |
} |
| 253 |
< |
if (oneThree.hasPair(iglob, jglob)) { |
| 254 |
< |
toposForLocalAtom[i].push_back(j); |
| 255 |
< |
topoDistLocal[i][nTopos] = 2; |
| 256 |
< |
nTopos++; |
| 257 |
< |
} |
| 258 |
< |
if (oneFour.hasPair(iglob, jglob)) { |
| 259 |
< |
toposForLocalAtom[i].push_back(j); |
| 260 |
< |
topoDistLocal[i][nTopos] = 3; |
| 261 |
< |
nTopos++; |
| 241 |
> |
if (userChoseCutoff_) |
| 242 |
> |
atypeCutoff[atid] = userCutoff_; |
| 243 |
> |
else |
| 244 |
> |
atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
| 245 |
> |
} |
| 246 |
> |
|
| 247 |
> |
vector<RealType> gTypeCutoffs; |
| 248 |
> |
|
| 249 |
> |
// first we do a single loop over the cutoff groups to find the |
| 250 |
> |
// largest cutoff for any atypes present in this group. |
| 251 |
> |
#ifdef IS_MPI |
| 252 |
> |
vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); |
| 253 |
> |
groupRowToGtype.resize(nGroupsInRow_); |
| 254 |
> |
for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { |
| 255 |
> |
vector<int> atomListRow = getAtomsInGroupRow(cg1); |
| 256 |
> |
for (vector<int>::iterator ia = atomListRow.begin(); |
| 257 |
> |
ia != atomListRow.end(); ++ia) { |
| 258 |
> |
int atom1 = (*ia); |
| 259 |
> |
atid = identsRow[atom1]; |
| 260 |
> |
if (atypeCutoff[atid] > groupCutoffRow[cg1]) { |
| 261 |
> |
groupCutoffRow[cg1] = atypeCutoff[atid]; |
| 262 |
|
} |
| 263 |
+ |
} |
| 264 |
+ |
|
| 265 |
+ |
bool gTypeFound = false; |
| 266 |
+ |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
| 267 |
+ |
if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) { |
| 268 |
+ |
groupRowToGtype[cg1] = gt; |
| 269 |
+ |
gTypeFound = true; |
| 270 |
+ |
} |
| 271 |
+ |
} |
| 272 |
+ |
if (!gTypeFound) { |
| 273 |
+ |
gTypeCutoffs.push_back( groupCutoffRow[cg1] ); |
| 274 |
+ |
groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; |
| 275 |
+ |
} |
| 276 |
+ |
|
| 277 |
+ |
} |
| 278 |
+ |
vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); |
| 279 |
+ |
groupColToGtype.resize(nGroupsInCol_); |
| 280 |
+ |
for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { |
| 281 |
+ |
vector<int> atomListCol = getAtomsInGroupColumn(cg2); |
| 282 |
+ |
for (vector<int>::iterator jb = atomListCol.begin(); |
| 283 |
+ |
jb != atomListCol.end(); ++jb) { |
| 284 |
+ |
int atom2 = (*jb); |
| 285 |
+ |
atid = identsCol[atom2]; |
| 286 |
+ |
if (atypeCutoff[atid] > groupCutoffCol[cg2]) { |
| 287 |
+ |
groupCutoffCol[cg2] = atypeCutoff[atid]; |
| 288 |
+ |
} |
| 289 |
+ |
} |
| 290 |
+ |
bool gTypeFound = false; |
| 291 |
+ |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
| 292 |
+ |
if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) { |
| 293 |
+ |
groupColToGtype[cg2] = gt; |
| 294 |
+ |
gTypeFound = true; |
| 295 |
+ |
} |
| 296 |
+ |
} |
| 297 |
+ |
if (!gTypeFound) { |
| 298 |
+ |
gTypeCutoffs.push_back( groupCutoffCol[cg2] ); |
| 299 |
+ |
groupColToGtype[cg2] = gTypeCutoffs.size() - 1; |
| 300 |
+ |
} |
| 301 |
+ |
} |
| 302 |
+ |
#else |
| 303 |
+ |
|
| 304 |
+ |
vector<RealType> groupCutoff(nGroups_, 0.0); |
| 305 |
+ |
groupToGtype.resize(nGroups_); |
| 306 |
+ |
|
| 307 |
+ |
for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
| 308 |
+ |
|
| 309 |
+ |
groupCutoff[cg1] = 0.0; |
| 310 |
+ |
vector<int> atomList = getAtomsInGroupRow(cg1); |
| 311 |
+ |
|
| 312 |
+ |
for (vector<int>::iterator ia = atomList.begin(); |
| 313 |
+ |
ia != atomList.end(); ++ia) { |
| 314 |
+ |
int atom1 = (*ia); |
| 315 |
+ |
atid = idents[atom1]; |
| 316 |
+ |
if (atypeCutoff[atid] > groupCutoff[cg1]) { |
| 317 |
+ |
groupCutoff[cg1] = atypeCutoff[atid]; |
| 318 |
+ |
} |
| 319 |
+ |
} |
| 320 |
+ |
|
| 321 |
+ |
bool gTypeFound = false; |
| 322 |
+ |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
| 323 |
+ |
if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
| 324 |
+ |
groupToGtype[cg1] = gt; |
| 325 |
+ |
gTypeFound = true; |
| 326 |
+ |
} |
| 327 |
+ |
} |
| 328 |
+ |
if (!gTypeFound) { |
| 329 |
+ |
gTypeCutoffs.push_back( groupCutoff[cg1] ); |
| 330 |
+ |
groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
| 331 |
|
} |
| 332 |
|
} |
| 333 |
+ |
#endif |
| 334 |
+ |
|
| 335 |
+ |
// Now we find the maximum group cutoff value present in the simulation |
| 336 |
+ |
|
| 337 |
+ |
RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); |
| 338 |
+ |
|
| 339 |
+ |
#ifdef IS_MPI |
| 340 |
+ |
MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); |
| 341 |
+ |
#endif |
| 342 |
+ |
|
| 343 |
+ |
RealType tradRcut = groupMax; |
| 344 |
+ |
|
| 345 |
+ |
for (int i = 0; i < gTypeCutoffs.size(); i++) { |
| 346 |
+ |
for (int j = 0; j < gTypeCutoffs.size(); j++) { |
| 347 |
+ |
RealType thisRcut; |
| 348 |
+ |
switch(cutoffPolicy_) { |
| 349 |
+ |
case TRADITIONAL: |
| 350 |
+ |
thisRcut = tradRcut; |
| 351 |
+ |
break; |
| 352 |
+ |
case MIX: |
| 353 |
+ |
thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); |
| 354 |
+ |
break; |
| 355 |
+ |
case MAX: |
| 356 |
+ |
thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); |
| 357 |
+ |
break; |
| 358 |
+ |
default: |
| 359 |
+ |
sprintf(painCave.errMsg, |
| 360 |
+ |
"ForceMatrixDecomposition::createGtypeCutoffMap " |
| 361 |
+ |
"hit an unknown cutoff policy!\n"); |
| 362 |
+ |
painCave.severity = OPENMD_ERROR; |
| 363 |
+ |
painCave.isFatal = 1; |
| 364 |
+ |
simError(); |
| 365 |
+ |
break; |
| 366 |
+ |
} |
| 367 |
+ |
|
| 368 |
+ |
pair<int,int> key = make_pair(i,j); |
| 369 |
+ |
gTypeCutoffMap[key].first = thisRcut; |
| 370 |
+ |
|
| 371 |
+ |
if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
| 372 |
+ |
|
| 373 |
+ |
gTypeCutoffMap[key].second = thisRcut*thisRcut; |
| 374 |
+ |
|
| 375 |
+ |
gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
| 376 |
+ |
|
| 377 |
+ |
// sanity check |
| 378 |
+ |
|
| 379 |
+ |
if (userChoseCutoff_) { |
| 380 |
+ |
if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
| 381 |
+ |
sprintf(painCave.errMsg, |
| 382 |
+ |
"ForceMatrixDecomposition::createGtypeCutoffMap " |
| 383 |
+ |
"user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
| 384 |
+ |
painCave.severity = OPENMD_ERROR; |
| 385 |
+ |
painCave.isFatal = 1; |
| 386 |
+ |
simError(); |
| 387 |
+ |
} |
| 388 |
+ |
} |
| 389 |
+ |
} |
| 390 |
+ |
} |
| 391 |
|
} |
| 392 |
< |
|
| 392 |
> |
|
| 393 |
> |
|
| 394 |
> |
groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
| 395 |
> |
int i, j; |
| 396 |
> |
#ifdef IS_MPI |
| 397 |
> |
i = groupRowToGtype[cg1]; |
| 398 |
> |
j = groupColToGtype[cg2]; |
| 399 |
> |
#else |
| 400 |
> |
i = groupToGtype[cg1]; |
| 401 |
> |
j = groupToGtype[cg2]; |
| 402 |
> |
#endif |
| 403 |
> |
return gTypeCutoffMap[make_pair(i,j)]; |
| 404 |
> |
} |
| 405 |
> |
|
| 406 |
> |
int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
| 407 |
> |
for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
| 408 |
> |
if (toposForAtom[atom1][j] == atom2) |
| 409 |
> |
return topoDist[atom1][j]; |
| 410 |
> |
} |
| 411 |
> |
return 0; |
| 412 |
> |
} |
| 413 |
> |
|
| 414 |
> |
void ForceMatrixDecomposition::zeroWorkArrays() { |
| 415 |
> |
pairwisePot = 0.0; |
| 416 |
> |
embeddingPot = 0.0; |
| 417 |
> |
|
| 418 |
> |
#ifdef IS_MPI |
| 419 |
> |
if (storageLayout_ & DataStorage::dslForce) { |
| 420 |
> |
fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); |
| 421 |
> |
fill(atomColData.force.begin(), atomColData.force.end(), V3Zero); |
| 422 |
> |
} |
| 423 |
> |
|
| 424 |
> |
if (storageLayout_ & DataStorage::dslTorque) { |
| 425 |
> |
fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero); |
| 426 |
> |
fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero); |
| 427 |
> |
} |
| 428 |
> |
|
| 429 |
> |
fill(pot_row.begin(), pot_row.end(), |
| 430 |
> |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
| 431 |
> |
|
| 432 |
> |
fill(pot_col.begin(), pot_col.end(), |
| 433 |
> |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
| 434 |
> |
|
| 435 |
> |
if (storageLayout_ & DataStorage::dslParticlePot) { |
| 436 |
> |
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); |
| 437 |
> |
fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); |
| 438 |
> |
} |
| 439 |
> |
|
| 440 |
> |
if (storageLayout_ & DataStorage::dslDensity) { |
| 441 |
> |
fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0); |
| 442 |
> |
fill(atomColData.density.begin(), atomColData.density.end(), 0.0); |
| 443 |
> |
} |
| 444 |
> |
|
| 445 |
> |
if (storageLayout_ & DataStorage::dslFunctional) { |
| 446 |
> |
fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); |
| 447 |
> |
fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); |
| 448 |
> |
} |
| 449 |
> |
|
| 450 |
> |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
| 451 |
> |
fill(atomRowData.functionalDerivative.begin(), |
| 452 |
> |
atomRowData.functionalDerivative.end(), 0.0); |
| 453 |
> |
fill(atomColData.functionalDerivative.begin(), |
| 454 |
> |
atomColData.functionalDerivative.end(), 0.0); |
| 455 |
> |
} |
| 456 |
> |
|
| 457 |
> |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
| 458 |
> |
fill(atomRowData.skippedCharge.begin(), atomRowData.skippedCharge.end(), 0.0); |
| 459 |
> |
fill(atomColData.skippedCharge.begin(), atomColData.skippedCharge.end(), 0.0); |
| 460 |
> |
} |
| 461 |
> |
|
| 462 |
> |
#else |
| 463 |
> |
|
| 464 |
> |
if (storageLayout_ & DataStorage::dslParticlePot) { |
| 465 |
> |
fill(snap_->atomData.particlePot.begin(), |
| 466 |
> |
snap_->atomData.particlePot.end(), 0.0); |
| 467 |
> |
} |
| 468 |
> |
|
| 469 |
> |
if (storageLayout_ & DataStorage::dslDensity) { |
| 470 |
> |
fill(snap_->atomData.density.begin(), |
| 471 |
> |
snap_->atomData.density.end(), 0.0); |
| 472 |
> |
} |
| 473 |
> |
if (storageLayout_ & DataStorage::dslFunctional) { |
| 474 |
> |
fill(snap_->atomData.functional.begin(), |
| 475 |
> |
snap_->atomData.functional.end(), 0.0); |
| 476 |
> |
} |
| 477 |
> |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
| 478 |
> |
fill(snap_->atomData.functionalDerivative.begin(), |
| 479 |
> |
snap_->atomData.functionalDerivative.end(), 0.0); |
| 480 |
> |
} |
| 481 |
> |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
| 482 |
> |
fill(snap_->atomData.skippedCharge.begin(), |
| 483 |
> |
snap_->atomData.skippedCharge.end(), 0.0); |
| 484 |
> |
} |
| 485 |
> |
#endif |
| 486 |
> |
|
| 487 |
> |
} |
| 488 |
> |
|
| 489 |
> |
|
| 490 |
|
void ForceMatrixDecomposition::distributeData() { |
| 491 |
|
snap_ = sman_->getCurrentSnapshot(); |
| 492 |
|
storageLayout_ = sman_->getStorageLayout(); |
| 522 |
|
#endif |
| 523 |
|
} |
| 524 |
|
|
| 525 |
+ |
/* collects information obtained during the pre-pair loop onto local |
| 526 |
+ |
* data structures. |
| 527 |
+ |
*/ |
| 528 |
|
void ForceMatrixDecomposition::collectIntermediateData() { |
| 529 |
|
snap_ = sman_->getCurrentSnapshot(); |
| 530 |
|
storageLayout_ = sman_->getStorageLayout(); |
| 536 |
|
snap_->atomData.density); |
| 537 |
|
|
| 538 |
|
int n = snap_->atomData.density.size(); |
| 539 |
< |
std::vector<RealType> rho_tmp(n, 0.0); |
| 539 |
> |
vector<RealType> rho_tmp(n, 0.0); |
| 540 |
|
AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
| 541 |
|
for (int i = 0; i < n; i++) |
| 542 |
|
snap_->atomData.density[i] += rho_tmp[i]; |
| 543 |
|
} |
| 544 |
|
#endif |
| 545 |
|
} |
| 546 |
< |
|
| 546 |
> |
|
| 547 |
> |
/* |
| 548 |
> |
* redistributes information obtained during the pre-pair loop out to |
| 549 |
> |
* row and column-indexed data structures |
| 550 |
> |
*/ |
| 551 |
|
void ForceMatrixDecomposition::distributeIntermediateData() { |
| 552 |
|
snap_ = sman_->getCurrentSnapshot(); |
| 553 |
|
storageLayout_ = sman_->getStorageLayout(); |
| 605 |
|
|
| 606 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
| 607 |
|
|
| 608 |
< |
vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES, |
| 609 |
< |
vector<RealType> (nLocal_, 0.0)); |
| 608 |
> |
vector<potVec> pot_temp(nLocal_, |
| 609 |
> |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
| 610 |
> |
|
| 611 |
> |
// scatter/gather pot_row into the members of my column |
| 612 |
> |
|
| 613 |
> |
AtomCommPotRow->scatter(pot_row, pot_temp); |
| 614 |
> |
|
| 615 |
> |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
| 616 |
> |
pairwisePot += pot_temp[ii]; |
| 617 |
|
|
| 618 |
< |
for (int i = 0; i < N_INTERACTION_FAMILIES; i++) { |
| 619 |
< |
AtomCommRealRow->scatter(pot_row[i], pot_temp[i]); |
| 620 |
< |
for (int ii = 0; ii < pot_temp[i].size(); ii++ ) { |
| 621 |
< |
pot_local[i] += pot_temp[i][ii]; |
| 622 |
< |
} |
| 623 |
< |
} |
| 618 |
> |
fill(pot_temp.begin(), pot_temp.end(), |
| 619 |
> |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
| 620 |
> |
|
| 621 |
> |
AtomCommPotColumn->scatter(pot_col, pot_temp); |
| 622 |
> |
|
| 623 |
> |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
| 624 |
> |
pairwisePot += pot_temp[ii]; |
| 625 |
|
#endif |
| 626 |
+ |
|
| 627 |
|
} |
| 628 |
|
|
| 629 |
|
int ForceMatrixDecomposition::getNAtomsInRow() { |
| 698 |
|
#ifdef IS_MPI |
| 699 |
|
return massFactorsRow[atom1]; |
| 700 |
|
#else |
| 701 |
< |
return massFactorsLocal[atom1]; |
| 701 |
> |
return massFactors[atom1]; |
| 702 |
|
#endif |
| 703 |
|
} |
| 704 |
|
|
| 706 |
|
#ifdef IS_MPI |
| 707 |
|
return massFactorsCol[atom2]; |
| 708 |
|
#else |
| 709 |
< |
return massFactorsLocal[atom2]; |
| 709 |
> |
return massFactors[atom2]; |
| 710 |
|
#endif |
| 711 |
|
|
| 712 |
|
} |
| 724 |
|
return d; |
| 725 |
|
} |
| 726 |
|
|
| 727 |
< |
vector<int> ForceMatrixDecomposition::getSkipsForRowAtom(int atom1) { |
| 728 |
< |
#ifdef IS_MPI |
| 458 |
< |
return skipsForRowAtom[atom1]; |
| 459 |
< |
#else |
| 460 |
< |
return skipsForLocalAtom[atom1]; |
| 461 |
< |
#endif |
| 727 |
> |
vector<int> ForceMatrixDecomposition::getSkipsForAtom(int atom1) { |
| 728 |
> |
return skipsForAtom[atom1]; |
| 729 |
|
} |
| 730 |
|
|
| 731 |
|
/** |
| 732 |
< |
* there are a number of reasons to skip a pair or a particle mostly |
| 733 |
< |
* we do this to exclude atoms who are involved in short range |
| 734 |
< |
* interactions (bonds, bends, torsions), but we also need to |
| 735 |
< |
* exclude some overcounted interactions that result from the |
| 736 |
< |
* parallel decomposition. |
| 732 |
> |
* There are a number of reasons to skip a pair or a |
| 733 |
> |
* particle. Mostly we do this to exclude atoms who are involved in |
| 734 |
> |
* short range interactions (bonds, bends, torsions), but we also |
| 735 |
> |
* need to exclude some overcounted interactions that result from |
| 736 |
> |
* the parallel decomposition. |
| 737 |
|
*/ |
| 738 |
|
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
| 739 |
|
int unique_id_1, unique_id_2; |
| 758 |
|
unique_id_2 = atom2; |
| 759 |
|
#endif |
| 760 |
|
|
| 761 |
< |
#ifdef IS_MPI |
| 762 |
< |
for (vector<int>::iterator i = skipsForRowAtom[atom1].begin(); |
| 496 |
< |
i != skipsForRowAtom[atom1].end(); ++i) { |
| 761 |
> |
for (vector<int>::iterator i = skipsForAtom[atom1].begin(); |
| 762 |
> |
i != skipsForAtom[atom1].end(); ++i) { |
| 763 |
|
if ( (*i) == unique_id_2 ) return true; |
| 498 |
– |
} |
| 499 |
– |
#else |
| 500 |
– |
for (vector<int>::iterator i = skipsForLocalAtom[atom1].begin(); |
| 501 |
– |
i != skipsForLocalAtom[atom1].end(); ++i) { |
| 502 |
– |
if ( (*i) == unique_id_2 ) return true; |
| 503 |
– |
} |
| 504 |
– |
#endif |
| 505 |
– |
} |
| 506 |
– |
|
| 507 |
– |
int ForceMatrixDecomposition::getTopoDistance(int atom1, int atom2) { |
| 508 |
– |
|
| 509 |
– |
#ifdef IS_MPI |
| 510 |
– |
for (int i = 0; i < toposForRowAtom[atom1].size(); i++) { |
| 511 |
– |
if ( toposForRowAtom[atom1][i] == atom2 ) return topoDistRow[atom1][i]; |
| 764 |
|
} |
| 513 |
– |
#else |
| 514 |
– |
for (int i = 0; i < toposForLocalAtom[atom1].size(); i++) { |
| 515 |
– |
if ( toposForLocalAtom[atom1][i] == atom2 ) return topoDistLocal[atom1][i]; |
| 516 |
– |
} |
| 517 |
– |
#endif |
| 765 |
|
|
| 766 |
< |
// zero is default for unconnected (i.e. normal) pair interactions |
| 520 |
< |
return 0; |
| 766 |
> |
return false; |
| 767 |
|
} |
| 768 |
|
|
| 769 |
+ |
|
| 770 |
|
void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ |
| 771 |
|
#ifdef IS_MPI |
| 772 |
|
atomRowData.force[atom1] += fg; |
| 784 |
|
} |
| 785 |
|
|
| 786 |
|
// filling interaction blocks with pointers |
| 787 |
< |
InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) { |
| 788 |
< |
InteractionData idat; |
| 542 |
< |
|
| 787 |
> |
void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
| 788 |
> |
int atom1, int atom2) { |
| 789 |
|
#ifdef IS_MPI |
| 790 |
|
|
| 791 |
|
idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
| 792 |
|
ff_->getAtomType(identsCol[atom2]) ); |
| 793 |
< |
|
| 793 |
> |
|
| 794 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
| 795 |
|
idat.A1 = &(atomRowData.aMat[atom1]); |
| 796 |
|
idat.A2 = &(atomColData.aMat[atom2]); |
| 811 |
|
idat.rho2 = &(atomColData.density[atom2]); |
| 812 |
|
} |
| 813 |
|
|
| 814 |
+ |
if (storageLayout_ & DataStorage::dslFunctional) { |
| 815 |
+ |
idat.frho1 = &(atomRowData.functional[atom1]); |
| 816 |
+ |
idat.frho2 = &(atomColData.functional[atom2]); |
| 817 |
+ |
} |
| 818 |
+ |
|
| 819 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
| 820 |
|
idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); |
| 821 |
|
idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); |
| 822 |
|
} |
| 823 |
|
|
| 824 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
| 825 |
+ |
idat.particlePot1 = &(atomRowData.particlePot[atom1]); |
| 826 |
+ |
idat.particlePot2 = &(atomColData.particlePot[atom2]); |
| 827 |
+ |
} |
| 828 |
+ |
|
| 829 |
|
#else |
| 830 |
|
|
| 831 |
< |
idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), |
| 832 |
< |
ff_->getAtomType(identsLocal[atom2]) ); |
| 831 |
> |
idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
| 832 |
> |
ff_->getAtomType(idents[atom2]) ); |
| 833 |
|
|
| 834 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
| 835 |
|
idat.A1 = &(snap_->atomData.aMat[atom1]); |
| 846 |
|
idat.t2 = &(snap_->atomData.torque[atom2]); |
| 847 |
|
} |
| 848 |
|
|
| 849 |
< |
if (storageLayout_ & DataStorage::dslDensity) { |
| 849 |
> |
if (storageLayout_ & DataStorage::dslDensity) { |
| 850 |
|
idat.rho1 = &(snap_->atomData.density[atom1]); |
| 851 |
|
idat.rho2 = &(snap_->atomData.density[atom2]); |
| 852 |
|
} |
| 853 |
|
|
| 854 |
+ |
if (storageLayout_ & DataStorage::dslFunctional) { |
| 855 |
+ |
idat.frho1 = &(snap_->atomData.functional[atom1]); |
| 856 |
+ |
idat.frho2 = &(snap_->atomData.functional[atom2]); |
| 857 |
+ |
} |
| 858 |
+ |
|
| 859 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
| 860 |
|
idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); |
| 861 |
|
idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); |
| 862 |
|
} |
| 863 |
+ |
|
| 864 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
| 865 |
+ |
idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); |
| 866 |
+ |
idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
| 867 |
+ |
} |
| 868 |
+ |
|
| 869 |
|
#endif |
| 603 |
– |
return idat; |
| 870 |
|
} |
| 871 |
|
|
| 872 |
< |
InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ |
| 872 |
> |
|
| 873 |
> |
void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
| 874 |
> |
#ifdef IS_MPI |
| 875 |
> |
pot_row[atom1] += 0.5 * *(idat.pot); |
| 876 |
> |
pot_col[atom2] += 0.5 * *(idat.pot); |
| 877 |
|
|
| 878 |
< |
InteractionData idat; |
| 878 |
> |
atomRowData.force[atom1] += *(idat.f1); |
| 879 |
> |
atomColData.force[atom2] -= *(idat.f1); |
| 880 |
> |
#else |
| 881 |
> |
pairwisePot += *(idat.pot); |
| 882 |
> |
|
| 883 |
> |
snap_->atomData.force[atom1] += *(idat.f1); |
| 884 |
> |
snap_->atomData.force[atom2] -= *(idat.f1); |
| 885 |
> |
#endif |
| 886 |
> |
|
| 887 |
> |
} |
| 888 |
> |
|
| 889 |
> |
|
| 890 |
> |
void ForceMatrixDecomposition::fillSkipData(InteractionData &idat, |
| 891 |
> |
int atom1, int atom2) { |
| 892 |
|
#ifdef IS_MPI |
| 893 |
|
idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
| 894 |
|
ff_->getAtomType(identsCol[atom2]) ); |
| 897 |
|
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
| 898 |
|
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
| 899 |
|
} |
| 900 |
+ |
|
| 901 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
| 902 |
|
idat.t1 = &(atomRowData.torque[atom1]); |
| 903 |
|
idat.t2 = &(atomColData.torque[atom2]); |
| 904 |
|
} |
| 905 |
< |
if (storageLayout_ & DataStorage::dslForce) { |
| 906 |
< |
idat.t1 = &(atomRowData.force[atom1]); |
| 907 |
< |
idat.t2 = &(atomColData.force[atom2]); |
| 905 |
> |
|
| 906 |
> |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
| 907 |
> |
idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
| 908 |
> |
idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
| 909 |
|
} |
| 910 |
|
#else |
| 911 |
< |
idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), |
| 912 |
< |
ff_->getAtomType(identsLocal[atom2]) ); |
| 911 |
> |
idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
| 912 |
> |
ff_->getAtomType(idents[atom2]) ); |
| 913 |
|
|
| 914 |
|
if (storageLayout_ & DataStorage::dslElectroFrame) { |
| 915 |
|
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
| 916 |
|
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
| 917 |
|
} |
| 918 |
+ |
|
| 919 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
| 920 |
|
idat.t1 = &(snap_->atomData.torque[atom1]); |
| 921 |
|
idat.t2 = &(snap_->atomData.torque[atom2]); |
| 922 |
|
} |
| 923 |
< |
if (storageLayout_ & DataStorage::dslForce) { |
| 924 |
< |
idat.t1 = &(snap_->atomData.force[atom1]); |
| 925 |
< |
idat.t2 = &(snap_->atomData.force[atom2]); |
| 923 |
> |
|
| 924 |
> |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
| 925 |
> |
idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
| 926 |
> |
idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
| 927 |
|
} |
| 928 |
|
#endif |
| 929 |
|
} |
| 930 |
|
|
| 931 |
+ |
|
| 932 |
+ |
void ForceMatrixDecomposition::unpackSkipData(InteractionData &idat, int atom1, int atom2) { |
| 933 |
+ |
#ifdef IS_MPI |
| 934 |
+ |
pot_row[atom1] += 0.5 * *(idat.pot); |
| 935 |
+ |
pot_col[atom2] += 0.5 * *(idat.pot); |
| 936 |
+ |
#else |
| 937 |
+ |
pairwisePot += *(idat.pot); |
| 938 |
+ |
#endif |
| 939 |
+ |
|
| 940 |
+ |
} |
| 941 |
+ |
|
| 942 |
+ |
|
| 943 |
|
/* |
| 944 |
|
* buildNeighborList |
| 945 |
|
* |
| 949 |
|
vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { |
| 950 |
|
|
| 951 |
|
vector<pair<int, int> > neighborList; |
| 952 |
+ |
groupCutoffs cuts; |
| 953 |
|
#ifdef IS_MPI |
| 954 |
|
cellListRow_.clear(); |
| 955 |
|
cellListCol_.clear(); |
| 957 |
|
cellList_.clear(); |
| 958 |
|
#endif |
| 959 |
|
|
| 960 |
< |
// dangerous to not do error checking. |
| 661 |
< |
RealType rCut_; |
| 662 |
< |
|
| 663 |
< |
RealType rList_ = (rCut_ + skinThickness_); |
| 960 |
> |
RealType rList_ = (largestRcut_ + skinThickness_); |
| 961 |
|
RealType rl2 = rList_ * rList_; |
| 962 |
|
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
| 963 |
|
Mat3x3d Hmat = snap_->getHmat(); |
| 973 |
|
Vector3d rs, scaled, dr; |
| 974 |
|
Vector3i whichCell; |
| 975 |
|
int cellIndex; |
| 976 |
+ |
int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
| 977 |
|
|
| 978 |
|
#ifdef IS_MPI |
| 979 |
+ |
cellListRow_.resize(nCtot); |
| 980 |
+ |
cellListCol_.resize(nCtot); |
| 981 |
+ |
#else |
| 982 |
+ |
cellList_.resize(nCtot); |
| 983 |
+ |
#endif |
| 984 |
+ |
|
| 985 |
+ |
#ifdef IS_MPI |
| 986 |
|
for (int i = 0; i < nGroupsInRow_; i++) { |
| 987 |
|
rs = cgRowData.position[i]; |
| 988 |
+ |
|
| 989 |
|
// scaled positions relative to the box vectors |
| 990 |
|
scaled = invHmat * rs; |
| 991 |
+ |
|
| 992 |
|
// wrap the vector back into the unit box by subtracting integer box |
| 993 |
|
// numbers |
| 994 |
< |
for (int j = 0; j < 3; j++) |
| 994 |
> |
for (int j = 0; j < 3; j++) { |
| 995 |
|
scaled[j] -= roundMe(scaled[j]); |
| 996 |
+ |
scaled[j] += 0.5; |
| 997 |
+ |
} |
| 998 |
|
|
| 999 |
|
// find xyz-indices of cell that cutoffGroup is in. |
| 1000 |
|
whichCell.x() = nCells_.x() * scaled.x(); |
| 1003 |
|
|
| 1004 |
|
// find single index of this cell: |
| 1005 |
|
cellIndex = Vlinear(whichCell, nCells_); |
| 1006 |
+ |
|
| 1007 |
|
// add this cutoff group to the list of groups in this cell; |
| 1008 |
|
cellListRow_[cellIndex].push_back(i); |
| 1009 |
|
} |
| 1010 |
|
|
| 1011 |
|
for (int i = 0; i < nGroupsInCol_; i++) { |
| 1012 |
|
rs = cgColData.position[i]; |
| 1013 |
+ |
|
| 1014 |
|
// scaled positions relative to the box vectors |
| 1015 |
|
scaled = invHmat * rs; |
| 1016 |
+ |
|
| 1017 |
|
// wrap the vector back into the unit box by subtracting integer box |
| 1018 |
|
// numbers |
| 1019 |
< |
for (int j = 0; j < 3; j++) |
| 1019 |
> |
for (int j = 0; j < 3; j++) { |
| 1020 |
|
scaled[j] -= roundMe(scaled[j]); |
| 1021 |
+ |
scaled[j] += 0.5; |
| 1022 |
+ |
} |
| 1023 |
|
|
| 1024 |
|
// find xyz-indices of cell that cutoffGroup is in. |
| 1025 |
|
whichCell.x() = nCells_.x() * scaled.x(); |
| 1028 |
|
|
| 1029 |
|
// find single index of this cell: |
| 1030 |
|
cellIndex = Vlinear(whichCell, nCells_); |
| 1031 |
+ |
|
| 1032 |
|
// add this cutoff group to the list of groups in this cell; |
| 1033 |
|
cellListCol_[cellIndex].push_back(i); |
| 1034 |
|
} |
| 1035 |
|
#else |
| 1036 |
|
for (int i = 0; i < nGroups_; i++) { |
| 1037 |
|
rs = snap_->cgData.position[i]; |
| 1038 |
+ |
|
| 1039 |
|
// scaled positions relative to the box vectors |
| 1040 |
|
scaled = invHmat * rs; |
| 1041 |
+ |
|
| 1042 |
|
// wrap the vector back into the unit box by subtracting integer box |
| 1043 |
|
// numbers |
| 1044 |
< |
for (int j = 0; j < 3; j++) |
| 1044 |
> |
for (int j = 0; j < 3; j++) { |
| 1045 |
|
scaled[j] -= roundMe(scaled[j]); |
| 1046 |
+ |
scaled[j] += 0.5; |
| 1047 |
+ |
} |
| 1048 |
|
|
| 1049 |
|
// find xyz-indices of cell that cutoffGroup is in. |
| 1050 |
|
whichCell.x() = nCells_.x() * scaled.x(); |
| 1052 |
|
whichCell.z() = nCells_.z() * scaled.z(); |
| 1053 |
|
|
| 1054 |
|
// find single index of this cell: |
| 1055 |
< |
cellIndex = Vlinear(whichCell, nCells_); |
| 1055 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
| 1056 |
> |
|
| 1057 |
|
// add this cutoff group to the list of groups in this cell; |
| 1058 |
|
cellList_[cellIndex].push_back(i); |
| 1059 |
|
} |
| 1060 |
|
#endif |
| 1061 |
|
|
| 742 |
– |
|
| 743 |
– |
|
| 1062 |
|
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
| 1063 |
|
for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
| 1064 |
|
for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
| 1103 |
|
if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
| 1104 |
|
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
| 1105 |
|
snap_->wrapVector(dr); |
| 1106 |
< |
if (dr.lengthSquare() < rl2) { |
| 1106 |
> |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
| 1107 |
> |
if (dr.lengthSquare() < cuts.third) { |
| 1108 |
|
neighborList.push_back(make_pair((*j1), (*j2))); |
| 1109 |
|
} |
| 1110 |
|
} |
| 1111 |
|
} |
| 1112 |
|
} |
| 1113 |
|
#else |
| 1114 |
+ |
|
| 1115 |
|
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
| 1116 |
|
j1 != cellList_[m1].end(); ++j1) { |
| 1117 |
|
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
| 1118 |
|
j2 != cellList_[m2].end(); ++j2) { |
| 1119 |
< |
|
| 1119 |
> |
|
| 1120 |
|
// Always do this if we're in different cells or if |
| 1121 |
|
// we're in the same cell and the global index of the |
| 1122 |
|
// j2 cutoff group is less than the j1 cutoff group |
| 1124 |
|
if (m2 != m1 || (*j2) < (*j1)) { |
| 1125 |
|
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
| 1126 |
|
snap_->wrapVector(dr); |
| 1127 |
< |
if (dr.lengthSquare() < rl2) { |
| 1127 |
> |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
| 1128 |
> |
if (dr.lengthSquare() < cuts.third) { |
| 1129 |
|
neighborList.push_back(make_pair((*j1), (*j2))); |
| 1130 |
|
} |
| 1131 |
|
} |
| 1136 |
|
} |
| 1137 |
|
} |
| 1138 |
|
} |
| 1139 |
< |
|
| 1139 |
> |
|
| 1140 |
|
// save the local cutoff group positions for the check that is |
| 1141 |
|
// done on each loop: |
| 1142 |
|
saved_CG_positions_.clear(); |
| 1143 |
|
for (int i = 0; i < nGroups_; i++) |
| 1144 |
|
saved_CG_positions_.push_back(snap_->cgData.position[i]); |
| 1145 |
< |
|
| 1145 |
> |
|
| 1146 |
|
return neighborList; |
| 1147 |
|
} |
| 1148 |
|
} //end namespace OpenMD |