# | Line 36 | Line 36 | |
---|---|---|
36 | * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | |
37 | * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | |
38 | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | |
39 | < | * [4] Vardeman & Gezelter, in progress (2009). |
39 | > | * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 | > | * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 | */ | |
42 | #include "parallel/ForceMatrixDecomposition.hpp" | |
43 | #include "math/SquareMatrix3.hpp" | |
# | Line 47 | Line 48 | namespace OpenMD { | |
48 | using namespace std; | |
49 | namespace OpenMD { | |
50 | ||
51 | + | ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { |
52 | + | |
53 | + | // In a parallel computation, row and colum scans must visit all |
54 | + | // surrounding cells (not just the 14 upper triangular blocks that |
55 | + | // are used when the processor can see all pairs) |
56 | + | #ifdef IS_MPI |
57 | + | cellOffsets_.clear(); |
58 | + | cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
59 | + | cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
60 | + | cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
61 | + | cellOffsets_.push_back( Vector3i(-1, 0,-1) ); |
62 | + | cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
63 | + | cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
64 | + | cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
65 | + | cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
66 | + | cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
67 | + | cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
68 | + | cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
69 | + | cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
70 | + | cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
71 | + | cellOffsets_.push_back( Vector3i( 0, 0, 0) ); |
72 | + | cellOffsets_.push_back( Vector3i( 1, 0, 0) ); |
73 | + | cellOffsets_.push_back( Vector3i(-1, 1, 0) ); |
74 | + | cellOffsets_.push_back( Vector3i( 0, 1, 0) ); |
75 | + | cellOffsets_.push_back( Vector3i( 1, 1, 0) ); |
76 | + | cellOffsets_.push_back( Vector3i(-1,-1, 1) ); |
77 | + | cellOffsets_.push_back( Vector3i( 0,-1, 1) ); |
78 | + | cellOffsets_.push_back( Vector3i( 1,-1, 1) ); |
79 | + | cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
80 | + | cellOffsets_.push_back( Vector3i( 0, 0, 1) ); |
81 | + | cellOffsets_.push_back( Vector3i( 1, 0, 1) ); |
82 | + | cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
83 | + | cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
84 | + | cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
85 | + | #endif |
86 | + | } |
87 | + | |
88 | + | |
89 | /** | |
90 | * distributeInitialData is essentially a copy of the older fortran | |
91 | * SimulationSetup | |
92 | */ | |
54 | – | |
93 | void ForceMatrixDecomposition::distributeInitialData() { | |
94 | snap_ = sman_->getCurrentSnapshot(); | |
95 | storageLayout_ = sman_->getStorageLayout(); | |
# | Line 74 | Line 112 | namespace OpenMD { | |
112 | ||
113 | #ifdef IS_MPI | |
114 | ||
115 | < | AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
116 | < | AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
79 | < | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
80 | < | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
81 | < | AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
115 | > | MPI::Intracomm row = rowComm.getComm(); |
116 | > | MPI::Intracomm col = colComm.getComm(); |
117 | ||
118 | < | AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
119 | < | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
120 | < | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
121 | < | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
122 | < | AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
118 | > | AtomPlanIntRow = new Plan<int>(row, nLocal_); |
119 | > | AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
120 | > | AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); |
121 | > | AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); |
122 | > | AtomPlanPotRow = new Plan<potVec>(row, nLocal_); |
123 | ||
124 | < | cgCommIntRow = new Communicator<Row,int>(nGroups_); |
125 | < | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
126 | < | cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
127 | < | cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
124 | > | AtomPlanIntColumn = new Plan<int>(col, nLocal_); |
125 | > | AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); |
126 | > | AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); |
127 | > | AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); |
128 | > | AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); |
129 | ||
130 | < | nAtomsInRow_ = AtomCommIntRow->getSize(); |
131 | < | nAtomsInCol_ = AtomCommIntColumn->getSize(); |
132 | < | nGroupsInRow_ = cgCommIntRow->getSize(); |
133 | < | nGroupsInCol_ = cgCommIntColumn->getSize(); |
130 | > | cgPlanIntRow = new Plan<int>(row, nGroups_); |
131 | > | cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); |
132 | > | cgPlanIntColumn = new Plan<int>(col, nGroups_); |
133 | > | cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); |
134 | ||
135 | + | nAtomsInRow_ = AtomPlanIntRow->getSize(); |
136 | + | nAtomsInCol_ = AtomPlanIntColumn->getSize(); |
137 | + | nGroupsInRow_ = cgPlanIntRow->getSize(); |
138 | + | nGroupsInCol_ = cgPlanIntColumn->getSize(); |
139 | + | |
140 | // Modify the data storage objects with the correct layouts and sizes: | |
141 | atomRowData.resize(nAtomsInRow_); | |
142 | atomRowData.setStorageLayout(storageLayout_); | |
# | Line 109 | Line 150 | namespace OpenMD { | |
150 | identsRow.resize(nAtomsInRow_); | |
151 | identsCol.resize(nAtomsInCol_); | |
152 | ||
153 | < | AtomCommIntRow->gather(idents, identsRow); |
154 | < | AtomCommIntColumn->gather(idents, identsCol); |
153 | > | AtomPlanIntRow->gather(idents, identsRow); |
154 | > | AtomPlanIntColumn->gather(idents, identsCol); |
155 | ||
156 | // allocate memory for the parallel objects | |
157 | atypesRow.resize(nAtomsInRow_); | |
# | Line 126 | Line 167 | namespace OpenMD { | |
167 | ||
168 | AtomRowToGlobal.resize(nAtomsInRow_); | |
169 | AtomColToGlobal.resize(nAtomsInCol_); | |
170 | < | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
171 | < | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
172 | < | |
170 | > | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
171 | > | AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
172 | > | |
173 | cgRowToGlobal.resize(nGroupsInRow_); | |
174 | cgColToGlobal.resize(nGroupsInCol_); | |
175 | < | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
176 | < | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
175 | > | cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
176 | > | cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
177 | ||
178 | massFactorsRow.resize(nAtomsInRow_); | |
179 | massFactorsCol.resize(nAtomsInCol_); | |
180 | < | AtomCommRealRow->gather(massFactors, massFactorsRow); |
181 | < | AtomCommRealColumn->gather(massFactors, massFactorsCol); |
180 | > | AtomPlanRealRow->gather(massFactors, massFactorsRow); |
181 | > | AtomPlanRealColumn->gather(massFactors, massFactorsCol); |
182 | ||
183 | groupListRow_.clear(); | |
184 | groupListRow_.resize(nGroupsInRow_); | |
# | Line 193 | Line 234 | namespace OpenMD { | |
234 | } | |
235 | } | |
236 | ||
237 | < | #endif |
197 | < | |
198 | < | // allocate memory for the parallel objects |
199 | < | atypesLocal.resize(nLocal_); |
200 | < | |
201 | < | for (int i = 0; i < nLocal_; i++) |
202 | < | atypesLocal[i] = ff_->getAtomType(idents[i]); |
203 | < | |
204 | < | groupList_.clear(); |
205 | < | groupList_.resize(nGroups_); |
206 | < | for (int i = 0; i < nGroups_; i++) { |
207 | < | int gid = cgLocalToGlobal[i]; |
208 | < | for (int j = 0; j < nLocal_; j++) { |
209 | < | int aid = AtomLocalToGlobal[j]; |
210 | < | if (globalGroupMembership[aid] == gid) { |
211 | < | groupList_[i].push_back(j); |
212 | < | } |
213 | < | } |
214 | < | } |
215 | < | |
237 | > | #else |
238 | excludesForAtom.clear(); | |
239 | excludesForAtom.resize(nLocal_); | |
240 | toposForAtom.clear(); | |
# | Line 245 | Line 267 | namespace OpenMD { | |
267 | } | |
268 | } | |
269 | } | |
270 | < | |
270 | > | #endif |
271 | > | |
272 | > | // allocate memory for the parallel objects |
273 | > | atypesLocal.resize(nLocal_); |
274 | > | |
275 | > | for (int i = 0; i < nLocal_; i++) |
276 | > | atypesLocal[i] = ff_->getAtomType(idents[i]); |
277 | > | |
278 | > | groupList_.clear(); |
279 | > | groupList_.resize(nGroups_); |
280 | > | for (int i = 0; i < nGroups_; i++) { |
281 | > | int gid = cgLocalToGlobal[i]; |
282 | > | for (int j = 0; j < nLocal_; j++) { |
283 | > | int aid = AtomLocalToGlobal[j]; |
284 | > | if (globalGroupMembership[aid] == gid) { |
285 | > | groupList_[i].push_back(j); |
286 | > | } |
287 | > | } |
288 | > | } |
289 | > | |
290 | > | |
291 | createGtypeCutoffMap(); | |
292 | ||
293 | } | |
# | Line 253 | Line 295 | namespace OpenMD { | |
295 | void ForceMatrixDecomposition::createGtypeCutoffMap() { | |
296 | ||
297 | RealType tol = 1e-6; | |
298 | + | largestRcut_ = 0.0; |
299 | RealType rc; | |
300 | int atid; | |
301 | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); | |
302 | + | |
303 | map<int, RealType> atypeCutoff; | |
304 | ||
305 | for (set<AtomType*>::iterator at = atypes.begin(); | |
# | Line 263 | Line 307 | namespace OpenMD { | |
307 | atid = (*at)->getIdent(); | |
308 | if (userChoseCutoff_) | |
309 | atypeCutoff[atid] = userCutoff_; | |
310 | < | else |
310 | > | else |
311 | atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); | |
312 | } | |
313 | < | |
313 | > | |
314 | vector<RealType> gTypeCutoffs; | |
315 | // first we do a single loop over the cutoff groups to find the | |
316 | // largest cutoff for any atypes present in this group. | |
# | Line 326 | Line 370 | namespace OpenMD { | |
370 | vector<RealType> groupCutoff(nGroups_, 0.0); | |
371 | groupToGtype.resize(nGroups_); | |
372 | for (int cg1 = 0; cg1 < nGroups_; cg1++) { | |
329 | – | |
373 | groupCutoff[cg1] = 0.0; | |
374 | vector<int> atomList = getAtomsInGroupRow(cg1); | |
332 | – | |
375 | for (vector<int>::iterator ia = atomList.begin(); | |
376 | ia != atomList.end(); ++ia) { | |
377 | int atom1 = (*ia); | |
378 | atid = idents[atom1]; | |
379 | < | if (atypeCutoff[atid] > groupCutoff[cg1]) { |
379 | > | if (atypeCutoff[atid] > groupCutoff[cg1]) |
380 | groupCutoff[cg1] = atypeCutoff[atid]; | |
339 | – | } |
381 | } | |
382 | < | |
382 | > | |
383 | bool gTypeFound = false; | |
384 | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { | |
385 | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { | |
# | Line 346 | Line 387 | namespace OpenMD { | |
387 | gTypeFound = true; | |
388 | } | |
389 | } | |
390 | < | if (!gTypeFound) { |
390 | > | if (!gTypeFound) { |
391 | gTypeCutoffs.push_back( groupCutoff[cg1] ); | |
392 | groupToGtype[cg1] = gTypeCutoffs.size() - 1; | |
393 | } | |
# | Line 390 | Line 431 | namespace OpenMD { | |
431 | ||
432 | pair<int,int> key = make_pair(i,j); | |
433 | gTypeCutoffMap[key].first = thisRcut; | |
393 | – | |
434 | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; | |
395 | – | |
435 | gTypeCutoffMap[key].second = thisRcut*thisRcut; | |
397 | – | |
436 | gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); | |
399 | – | |
437 | // sanity check | |
438 | ||
439 | if (userChoseCutoff_) { | |
# | Line 488 | Line 525 | namespace OpenMD { | |
525 | atomColData.skippedCharge.end(), 0.0); | |
526 | } | |
527 | ||
528 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
529 | + | fill(atomRowData.flucQFrc.begin(), |
530 | + | atomRowData.flucQFrc.end(), 0.0); |
531 | + | fill(atomColData.flucQFrc.begin(), |
532 | + | atomColData.flucQFrc.end(), 0.0); |
533 | + | } |
534 | + | |
535 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
536 | + | fill(atomRowData.electricField.begin(), |
537 | + | atomRowData.electricField.end(), V3Zero); |
538 | + | fill(atomColData.electricField.begin(), |
539 | + | atomColData.electricField.end(), V3Zero); |
540 | + | } |
541 | + | |
542 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
543 | + | fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), |
544 | + | 0.0); |
545 | + | fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), |
546 | + | 0.0); |
547 | + | } |
548 | + | |
549 | #endif | |
550 | // even in parallel, we need to zero out the local arrays: | |
551 | ||
# | Line 500 | Line 558 | namespace OpenMD { | |
558 | fill(snap_->atomData.density.begin(), | |
559 | snap_->atomData.density.end(), 0.0); | |
560 | } | |
561 | + | |
562 | if (storageLayout_ & DataStorage::dslFunctional) { | |
563 | fill(snap_->atomData.functional.begin(), | |
564 | snap_->atomData.functional.end(), 0.0); | |
565 | } | |
566 | + | |
567 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
568 | fill(snap_->atomData.functionalDerivative.begin(), | |
569 | snap_->atomData.functionalDerivative.end(), 0.0); | |
570 | } | |
571 | + | |
572 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | |
573 | fill(snap_->atomData.skippedCharge.begin(), | |
574 | snap_->atomData.skippedCharge.end(), 0.0); | |
575 | } | |
576 | < | |
576 | > | |
577 | > | if (storageLayout_ & DataStorage::dslElectricField) { |
578 | > | fill(snap_->atomData.electricField.begin(), |
579 | > | snap_->atomData.electricField.end(), V3Zero); |
580 | > | } |
581 | } | |
582 | ||
583 | ||
# | Line 522 | Line 587 | namespace OpenMD { | |
587 | #ifdef IS_MPI | |
588 | ||
589 | // gather up the atomic positions | |
590 | < | AtomCommVectorRow->gather(snap_->atomData.position, |
590 | > | AtomPlanVectorRow->gather(snap_->atomData.position, |
591 | atomRowData.position); | |
592 | < | AtomCommVectorColumn->gather(snap_->atomData.position, |
592 | > | AtomPlanVectorColumn->gather(snap_->atomData.position, |
593 | atomColData.position); | |
594 | ||
595 | // gather up the cutoff group positions | |
596 | < | cgCommVectorRow->gather(snap_->cgData.position, |
596 | > | |
597 | > | cgPlanVectorRow->gather(snap_->cgData.position, |
598 | cgRowData.position); | |
599 | < | cgCommVectorColumn->gather(snap_->cgData.position, |
599 | > | |
600 | > | cgPlanVectorColumn->gather(snap_->cgData.position, |
601 | cgColData.position); | |
602 | + | |
603 | ||
604 | // if needed, gather the atomic rotation matrices | |
605 | if (storageLayout_ & DataStorage::dslAmat) { | |
606 | < | AtomCommMatrixRow->gather(snap_->atomData.aMat, |
606 | > | AtomPlanMatrixRow->gather(snap_->atomData.aMat, |
607 | atomRowData.aMat); | |
608 | < | AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
608 | > | AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
609 | atomColData.aMat); | |
610 | } | |
611 | ||
612 | // if needed, gather the atomic eletrostatic frames | |
613 | if (storageLayout_ & DataStorage::dslElectroFrame) { | |
614 | < | AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
614 | > | AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
615 | atomRowData.electroFrame); | |
616 | < | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
616 | > | AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
617 | atomColData.electroFrame); | |
618 | } | |
619 | ||
620 | + | // if needed, gather the atomic fluctuating charge values |
621 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
622 | + | AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
623 | + | atomRowData.flucQPos); |
624 | + | AtomPlanRealColumn->gather(snap_->atomData.flucQPos, |
625 | + | atomColData.flucQPos); |
626 | + | } |
627 | + | |
628 | #endif | |
629 | } | |
630 | ||
# | Line 562 | Line 638 | namespace OpenMD { | |
638 | ||
639 | if (storageLayout_ & DataStorage::dslDensity) { | |
640 | ||
641 | < | AtomCommRealRow->scatter(atomRowData.density, |
641 | > | AtomPlanRealRow->scatter(atomRowData.density, |
642 | snap_->atomData.density); | |
643 | ||
644 | int n = snap_->atomData.density.size(); | |
645 | vector<RealType> rho_tmp(n, 0.0); | |
646 | < | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
646 | > | AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); |
647 | for (int i = 0; i < n; i++) | |
648 | snap_->atomData.density[i] += rho_tmp[i]; | |
649 | } | |
650 | + | |
651 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
652 | + | |
653 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, |
654 | + | snap_->atomData.electricField); |
655 | + | |
656 | + | int n = snap_->atomData.electricField.size(); |
657 | + | vector<Vector3d> field_tmp(n, V3Zero); |
658 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); |
659 | + | for (int i = 0; i < n; i++) |
660 | + | snap_->atomData.electricField[i] += field_tmp[i]; |
661 | + | } |
662 | #endif | |
663 | } | |
664 | ||
# | Line 583 | Line 671 | namespace OpenMD { | |
671 | storageLayout_ = sman_->getStorageLayout(); | |
672 | #ifdef IS_MPI | |
673 | if (storageLayout_ & DataStorage::dslFunctional) { | |
674 | < | AtomCommRealRow->gather(snap_->atomData.functional, |
674 | > | AtomPlanRealRow->gather(snap_->atomData.functional, |
675 | atomRowData.functional); | |
676 | < | AtomCommRealColumn->gather(snap_->atomData.functional, |
676 | > | AtomPlanRealColumn->gather(snap_->atomData.functional, |
677 | atomColData.functional); | |
678 | } | |
679 | ||
680 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
681 | < | AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
681 | > | AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, |
682 | atomRowData.functionalDerivative); | |
683 | < | AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
683 | > | AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, |
684 | atomColData.functionalDerivative); | |
685 | } | |
686 | #endif | |
# | Line 606 | Line 694 | namespace OpenMD { | |
694 | int n = snap_->atomData.force.size(); | |
695 | vector<Vector3d> frc_tmp(n, V3Zero); | |
696 | ||
697 | < | AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
697 | > | AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); |
698 | for (int i = 0; i < n; i++) { | |
699 | snap_->atomData.force[i] += frc_tmp[i]; | |
700 | frc_tmp[i] = 0.0; | |
701 | } | |
702 | ||
703 | < | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
704 | < | for (int i = 0; i < n; i++) |
703 | > | AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); |
704 | > | for (int i = 0; i < n; i++) { |
705 | snap_->atomData.force[i] += frc_tmp[i]; | |
706 | + | } |
707 | ||
708 | if (storageLayout_ & DataStorage::dslTorque) { | |
709 | ||
710 | int nt = snap_->atomData.torque.size(); | |
711 | vector<Vector3d> trq_tmp(nt, V3Zero); | |
712 | ||
713 | < | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
713 | > | AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); |
714 | for (int i = 0; i < nt; i++) { | |
715 | snap_->atomData.torque[i] += trq_tmp[i]; | |
716 | trq_tmp[i] = 0.0; | |
717 | } | |
718 | ||
719 | < | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
719 | > | AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); |
720 | for (int i = 0; i < nt; i++) | |
721 | snap_->atomData.torque[i] += trq_tmp[i]; | |
722 | } | |
# | Line 637 | Line 726 | namespace OpenMD { | |
726 | int ns = snap_->atomData.skippedCharge.size(); | |
727 | vector<RealType> skch_tmp(ns, 0.0); | |
728 | ||
729 | < | AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
729 | > | AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
730 | for (int i = 0; i < ns; i++) { | |
731 | snap_->atomData.skippedCharge[i] += skch_tmp[i]; | |
732 | skch_tmp[i] = 0.0; | |
733 | } | |
734 | ||
735 | < | AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
736 | < | for (int i = 0; i < ns; i++) |
735 | > | AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
736 | > | for (int i = 0; i < ns; i++) |
737 | snap_->atomData.skippedCharge[i] += skch_tmp[i]; | |
738 | + | |
739 | } | |
740 | ||
741 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
742 | + | |
743 | + | int nq = snap_->atomData.flucQFrc.size(); |
744 | + | vector<RealType> fqfrc_tmp(nq, 0.0); |
745 | + | |
746 | + | AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); |
747 | + | for (int i = 0; i < nq; i++) { |
748 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
749 | + | fqfrc_tmp[i] = 0.0; |
750 | + | } |
751 | + | |
752 | + | AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); |
753 | + | for (int i = 0; i < nq; i++) |
754 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
755 | + | |
756 | + | } |
757 | + | |
758 | nLocal_ = snap_->getNumberOfAtoms(); | |
759 | ||
760 | vector<potVec> pot_temp(nLocal_, | |
# | Line 655 | Line 762 | namespace OpenMD { | |
762 | ||
763 | // scatter/gather pot_row into the members of my column | |
764 | ||
765 | < | AtomCommPotRow->scatter(pot_row, pot_temp); |
765 | > | AtomPlanPotRow->scatter(pot_row, pot_temp); |
766 | ||
767 | for (int ii = 0; ii < pot_temp.size(); ii++ ) | |
768 | pairwisePot += pot_temp[ii]; | |
# | Line 663 | Line 770 | namespace OpenMD { | |
770 | fill(pot_temp.begin(), pot_temp.end(), | |
771 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
772 | ||
773 | < | AtomCommPotColumn->scatter(pot_col, pot_temp); |
773 | > | AtomPlanPotColumn->scatter(pot_col, pot_temp); |
774 | ||
775 | for (int ii = 0; ii < pot_temp.size(); ii++ ) | |
776 | pairwisePot += pot_temp[ii]; | |
777 | + | |
778 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
779 | + | RealType ploc1 = pairwisePot[ii]; |
780 | + | RealType ploc2 = 0.0; |
781 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
782 | + | pairwisePot[ii] = ploc2; |
783 | + | } |
784 | + | |
785 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
786 | + | RealType ploc1 = embeddingPot[ii]; |
787 | + | RealType ploc2 = 0.0; |
788 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
789 | + | embeddingPot[ii] = ploc2; |
790 | + | } |
791 | + | |
792 | #endif | |
793 | ||
794 | } | |
# | Line 779 | Line 901 | namespace OpenMD { | |
901 | */ | |
902 | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { | |
903 | int unique_id_1, unique_id_2; | |
904 | < | |
904 | > | |
905 | #ifdef IS_MPI | |
906 | // in MPI, we have to look up the unique IDs for each atom | |
907 | unique_id_1 = AtomRowToGlobal[atom1]; | |
908 | unique_id_2 = AtomColToGlobal[atom2]; | |
909 | + | #else |
910 | + | unique_id_1 = AtomLocalToGlobal[atom1]; |
911 | + | unique_id_2 = AtomLocalToGlobal[atom2]; |
912 | + | #endif |
913 | ||
788 | – | // this situation should only arise in MPI simulations |
914 | if (unique_id_1 == unique_id_2) return true; | |
915 | < | |
915 | > | |
916 | > | #ifdef IS_MPI |
917 | // this prevents us from doing the pair on multiple processors | |
918 | if (unique_id_1 < unique_id_2) { | |
919 | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; | |
920 | } else { | |
921 | < | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
921 | > | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
922 | } | |
923 | #endif | |
924 | + | |
925 | return false; | |
926 | } | |
927 | ||
# | Line 808 | Line 935 | namespace OpenMD { | |
935 | * field) must still be handled for these pairs. | |
936 | */ | |
937 | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { | |
938 | < | int unique_id_2; |
938 | > | |
939 | > | // excludesForAtom was constructed to use row/column indices in the MPI |
940 | > | // version, and to use local IDs in the non-MPI version: |
941 | ||
813 | – | #ifdef IS_MPI |
814 | – | // in MPI, we have to look up the unique IDs for the row atom. |
815 | – | unique_id_2 = AtomColToGlobal[atom2]; |
816 | – | #else |
817 | – | // in the normal loop, the atom numbers are unique |
818 | – | unique_id_2 = atom2; |
819 | – | #endif |
820 | – | |
942 | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); | |
943 | i != excludesForAtom[atom1].end(); ++i) { | |
944 | < | if ( (*i) == unique_id_2 ) return true; |
944 | > | if ( (*i) == atom2 ) return true; |
945 | } | |
946 | ||
947 | return false; | |
# | Line 894 | Line 1015 | namespace OpenMD { | |
1015 | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); | |
1016 | } | |
1017 | ||
1018 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1019 | + | idat.flucQ1 = &(atomRowData.flucQPos[atom1]); |
1020 | + | idat.flucQ2 = &(atomColData.flucQPos[atom2]); |
1021 | + | } |
1022 | + | |
1023 | #else | |
1024 | + | |
1025 | ||
1026 | + | // cerr << "atoms = " << atom1 << " " << atom2 << "\n"; |
1027 | + | // cerr << "pos1 = " << snap_->atomData.position[atom1] << "\n"; |
1028 | + | // cerr << "pos2 = " << snap_->atomData.position[atom2] << "\n"; |
1029 | + | |
1030 | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); | |
1031 | //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), | |
1032 | // ff_->getAtomType(idents[atom2]) ); | |
# | Line 939 | Line 1070 | namespace OpenMD { | |
1070 | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); | |
1071 | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); | |
1072 | } | |
1073 | + | |
1074 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1075 | + | idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); |
1076 | + | idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); |
1077 | + | } |
1078 | + | |
1079 | #endif | |
1080 | } | |
1081 | ||
1082 | ||
1083 | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { | |
1084 | #ifdef IS_MPI | |
1085 | < | pot_row[atom1] += 0.5 * *(idat.pot); |
1086 | < | pot_col[atom2] += 0.5 * *(idat.pot); |
1085 | > | pot_row[atom1] += RealType(0.5) * *(idat.pot); |
1086 | > | pot_col[atom2] += RealType(0.5) * *(idat.pot); |
1087 | ||
1088 | atomRowData.force[atom1] += *(idat.f1); | |
1089 | atomColData.force[atom2] -= *(idat.f1); | |
1090 | + | |
1091 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
1092 | + | atomRowData.flucQFrc[atom1] += *(idat.dVdFQ1); |
1093 | + | atomColData.flucQFrc[atom2] += *(idat.dVdFQ2); |
1094 | + | } |
1095 | + | |
1096 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
1097 | + | atomRowData.electricField[atom1] += *(idat.eField1); |
1098 | + | atomColData.electricField[atom2] += *(idat.eField2); |
1099 | + | } |
1100 | + | |
1101 | + | // should particle pot be done here also? |
1102 | #else | |
1103 | pairwisePot += *(idat.pot); | |
1104 | ||
1105 | snap_->atomData.force[atom1] += *(idat.f1); | |
1106 | snap_->atomData.force[atom2] -= *(idat.f1); | |
1107 | + | |
1108 | + | if (idat.doParticlePot) { |
1109 | + | snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); |
1110 | + | snap_->atomData.particlePot[atom2] -= *(idat.vpair) * *(idat.sw); |
1111 | + | } |
1112 | + | |
1113 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
1114 | + | snap_->atomData.flucQFrc[atom1] += *(idat.dVdFQ1); |
1115 | + | snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1116 | + | } |
1117 | + | |
1118 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
1119 | + | snap_->atomData.electricField[atom1] += *(idat.eField1); |
1120 | + | snap_->atomData.electricField[atom2] += *(idat.eField2); |
1121 | + | } |
1122 | + | |
1123 | #endif | |
1124 | ||
1125 | } | |
# | Line 1036 | Line 1201 | namespace OpenMD { | |
1201 | // add this cutoff group to the list of groups in this cell; | |
1202 | cellListRow_[cellIndex].push_back(i); | |
1203 | } | |
1039 | – | |
1204 | for (int i = 0; i < nGroupsInCol_; i++) { | |
1205 | rs = cgColData.position[i]; | |
1206 | ||
# | Line 1061 | Line 1225 | namespace OpenMD { | |
1225 | // add this cutoff group to the list of groups in this cell; | |
1226 | cellListCol_[cellIndex].push_back(i); | |
1227 | } | |
1228 | + | |
1229 | #else | |
1230 | for (int i = 0; i < nGroups_; i++) { | |
1231 | rs = snap_->cgData.position[i]; | |
# | Line 1081 | Line 1246 | namespace OpenMD { | |
1246 | whichCell.z() = nCells_.z() * scaled.z(); | |
1247 | ||
1248 | // find single index of this cell: | |
1249 | < | cellIndex = Vlinear(whichCell, nCells_); |
1249 | > | cellIndex = Vlinear(whichCell, nCells_); |
1250 | ||
1251 | // add this cutoff group to the list of groups in this cell; | |
1252 | cellList_[cellIndex].push_back(i); | |
1253 | } | |
1254 | + | |
1255 | #endif | |
1256 | ||
1257 | for (int m1z = 0; m1z < nCells_.z(); m1z++) { | |
# | Line 1098 | Line 1264 | namespace OpenMD { | |
1264 | os != cellOffsets_.end(); ++os) { | |
1265 | ||
1266 | Vector3i m2v = m1v + (*os); | |
1267 | < | |
1267 | > | |
1268 | > | |
1269 | if (m2v.x() >= nCells_.x()) { | |
1270 | m2v.x() = 0; | |
1271 | } else if (m2v.x() < 0) { | |
# | Line 1116 | Line 1283 | namespace OpenMD { | |
1283 | } else if (m2v.z() < 0) { | |
1284 | m2v.z() = nCells_.z() - 1; | |
1285 | } | |
1286 | < | |
1286 | > | |
1287 | int m2 = Vlinear (m2v, nCells_); | |
1288 | ||
1289 | #ifdef IS_MPI | |
# | Line 1125 | Line 1292 | namespace OpenMD { | |
1292 | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); | |
1293 | j2 != cellListCol_[m2].end(); ++j2) { | |
1294 | ||
1295 | < | // Always do this if we're in different cells or if |
1296 | < | // we're in the same cell and the global index of the |
1297 | < | // j2 cutoff group is less than the j1 cutoff group |
1298 | < | |
1299 | < | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1300 | < | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1301 | < | snap_->wrapVector(dr); |
1302 | < | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1303 | < | if (dr.lengthSquare() < cuts.third) { |
1137 | < | neighborList.push_back(make_pair((*j1), (*j2))); |
1138 | < | } |
1139 | < | } |
1295 | > | // In parallel, we need to visit *all* pairs of row |
1296 | > | // & column indicies and will divide labor in the |
1297 | > | // force evaluation later. |
1298 | > | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1299 | > | snap_->wrapVector(dr); |
1300 | > | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1301 | > | if (dr.lengthSquare() < cuts.third) { |
1302 | > | neighborList.push_back(make_pair((*j1), (*j2))); |
1303 | > | } |
1304 | } | |
1305 | } | |
1306 | #else | |
1143 | – | |
1307 | for (vector<int>::iterator j1 = cellList_[m1].begin(); | |
1308 | j1 != cellList_[m1].end(); ++j1) { | |
1309 | for (vector<int>::iterator j2 = cellList_[m2].begin(); | |
1310 | j2 != cellList_[m2].end(); ++j2) { | |
1311 | < | |
1311 | > | |
1312 | // Always do this if we're in different cells or if | |
1313 | < | // we're in the same cell and the global index of the |
1314 | < | // j2 cutoff group is less than the j1 cutoff group |
1315 | < | |
1316 | < | if (m2 != m1 || (*j2) < (*j1)) { |
1313 | > | // we're in the same cell and the global index of |
1314 | > | // the j2 cutoff group is greater than or equal to |
1315 | > | // the j1 cutoff group. Note that Rappaport's code |
1316 | > | // has a "less than" conditional here, but that |
1317 | > | // deals with atom-by-atom computation. OpenMD |
1318 | > | // allows atoms within a single cutoff group to |
1319 | > | // interact with each other. |
1320 | > | |
1321 | > | |
1322 | > | |
1323 | > | if (m2 != m1 || (*j2) >= (*j1) ) { |
1324 | > | |
1325 | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | |
1326 | snap_->wrapVector(dr); | |
1327 | cuts = getGroupCutoffs( (*j1), (*j2) ); | |
# | Line 1169 | Line 1340 | namespace OpenMD { | |
1340 | // branch to do all cutoff group pairs | |
1341 | #ifdef IS_MPI | |
1342 | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { | |
1343 | < | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1343 | > | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1344 | dr = cgColData.position[j2] - cgRowData.position[j1]; | |
1345 | snap_->wrapVector(dr); | |
1346 | cuts = getGroupCutoffs( j1, j2 ); | |
# | Line 1177 | Line 1348 | namespace OpenMD { | |
1348 | neighborList.push_back(make_pair(j1, j2)); | |
1349 | } | |
1350 | } | |
1351 | < | } |
1351 | > | } |
1352 | #else | |
1353 | < | for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1354 | < | for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1353 | > | // include all groups here. |
1354 | > | for (int j1 = 0; j1 < nGroups_; j1++) { |
1355 | > | // include self group interactions j2 == j1 |
1356 | > | for (int j2 = j1; j2 < nGroups_; j2++) { |
1357 | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; | |
1358 | snap_->wrapVector(dr); | |
1359 | cuts = getGroupCutoffs( j1, j2 ); | |
1360 | if (dr.lengthSquare() < cuts.third) { | |
1361 | neighborList.push_back(make_pair(j1, j2)); | |
1362 | } | |
1363 | < | } |
1364 | < | } |
1363 | > | } |
1364 | > | } |
1365 | #endif | |
1366 | } | |
1367 |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |