# | Line 47 | Line 47 | namespace OpenMD { | |
---|---|---|
47 | using namespace std; | |
48 | namespace OpenMD { | |
49 | ||
50 | + | ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { |
51 | + | |
52 | + | // In a parallel computation, row and colum scans must visit all |
53 | + | // surrounding cells (not just the 14 upper triangular blocks that |
54 | + | // are used when the processor can see all pairs) |
55 | + | #ifdef IS_MPI |
56 | + | cellOffsets_.clear(); |
57 | + | cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
58 | + | cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
59 | + | cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
60 | + | cellOffsets_.push_back( Vector3i(-1, 0,-1) ); |
61 | + | cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
62 | + | cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
63 | + | cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
64 | + | cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
65 | + | cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
66 | + | cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
67 | + | cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
68 | + | cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
69 | + | cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
70 | + | cellOffsets_.push_back( Vector3i( 0, 0, 0) ); |
71 | + | cellOffsets_.push_back( Vector3i( 1, 0, 0) ); |
72 | + | cellOffsets_.push_back( Vector3i(-1, 1, 0) ); |
73 | + | cellOffsets_.push_back( Vector3i( 0, 1, 0) ); |
74 | + | cellOffsets_.push_back( Vector3i( 1, 1, 0) ); |
75 | + | cellOffsets_.push_back( Vector3i(-1,-1, 1) ); |
76 | + | cellOffsets_.push_back( Vector3i( 0,-1, 1) ); |
77 | + | cellOffsets_.push_back( Vector3i( 1,-1, 1) ); |
78 | + | cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
79 | + | cellOffsets_.push_back( Vector3i( 0, 0, 1) ); |
80 | + | cellOffsets_.push_back( Vector3i( 1, 0, 1) ); |
81 | + | cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
82 | + | cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
83 | + | cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
84 | + | #endif |
85 | + | } |
86 | + | |
87 | + | |
88 | /** | |
89 | * distributeInitialData is essentially a copy of the older fortran | |
90 | * SimulationSetup | |
91 | */ | |
54 | – | |
92 | void ForceMatrixDecomposition::distributeInitialData() { | |
93 | snap_ = sman_->getCurrentSnapshot(); | |
94 | storageLayout_ = sman_->getStorageLayout(); | |
# | Line 74 | Line 111 | namespace OpenMD { | |
111 | ||
112 | #ifdef IS_MPI | |
113 | ||
114 | < | AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
115 | < | AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
79 | < | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
80 | < | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
81 | < | AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
114 | > | MPI::Intracomm row = rowComm.getComm(); |
115 | > | MPI::Intracomm col = colComm.getComm(); |
116 | ||
117 | < | AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
118 | < | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
119 | < | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
120 | < | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
121 | < | AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
117 | > | AtomPlanIntRow = new Plan<int>(row, nLocal_); |
118 | > | AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
119 | > | AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); |
120 | > | AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); |
121 | > | AtomPlanPotRow = new Plan<potVec>(row, nLocal_); |
122 | ||
123 | < | cgCommIntRow = new Communicator<Row,int>(nGroups_); |
124 | < | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
125 | < | cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
126 | < | cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
123 | > | AtomPlanIntColumn = new Plan<int>(col, nLocal_); |
124 | > | AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); |
125 | > | AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); |
126 | > | AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); |
127 | > | AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); |
128 | ||
129 | < | nAtomsInRow_ = AtomCommIntRow->getSize(); |
130 | < | nAtomsInCol_ = AtomCommIntColumn->getSize(); |
131 | < | nGroupsInRow_ = cgCommIntRow->getSize(); |
132 | < | nGroupsInCol_ = cgCommIntColumn->getSize(); |
129 | > | cgPlanIntRow = new Plan<int>(row, nGroups_); |
130 | > | cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); |
131 | > | cgPlanIntColumn = new Plan<int>(col, nGroups_); |
132 | > | cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); |
133 | ||
134 | + | nAtomsInRow_ = AtomPlanIntRow->getSize(); |
135 | + | nAtomsInCol_ = AtomPlanIntColumn->getSize(); |
136 | + | nGroupsInRow_ = cgPlanIntRow->getSize(); |
137 | + | nGroupsInCol_ = cgPlanIntColumn->getSize(); |
138 | + | |
139 | // Modify the data storage objects with the correct layouts and sizes: | |
140 | atomRowData.resize(nAtomsInRow_); | |
141 | atomRowData.setStorageLayout(storageLayout_); | |
# | Line 109 | Line 149 | namespace OpenMD { | |
149 | identsRow.resize(nAtomsInRow_); | |
150 | identsCol.resize(nAtomsInCol_); | |
151 | ||
152 | < | AtomCommIntRow->gather(idents, identsRow); |
153 | < | AtomCommIntColumn->gather(idents, identsCol); |
152 | > | AtomPlanIntRow->gather(idents, identsRow); |
153 | > | AtomPlanIntColumn->gather(idents, identsCol); |
154 | ||
155 | // allocate memory for the parallel objects | |
156 | atypesRow.resize(nAtomsInRow_); | |
# | Line 126 | Line 166 | namespace OpenMD { | |
166 | ||
167 | AtomRowToGlobal.resize(nAtomsInRow_); | |
168 | AtomColToGlobal.resize(nAtomsInCol_); | |
169 | < | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
170 | < | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
171 | < | |
169 | > | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
170 | > | AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
171 | > | |
172 | cgRowToGlobal.resize(nGroupsInRow_); | |
173 | cgColToGlobal.resize(nGroupsInCol_); | |
174 | < | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
175 | < | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
174 | > | cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
175 | > | cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
176 | ||
177 | massFactorsRow.resize(nAtomsInRow_); | |
178 | massFactorsCol.resize(nAtomsInCol_); | |
179 | < | AtomCommRealRow->gather(massFactors, massFactorsRow); |
180 | < | AtomCommRealColumn->gather(massFactors, massFactorsCol); |
179 | > | AtomPlanRealRow->gather(massFactors, massFactorsRow); |
180 | > | AtomPlanRealColumn->gather(massFactors, massFactorsCol); |
181 | ||
182 | groupListRow_.clear(); | |
183 | groupListRow_.resize(nGroupsInRow_); | |
# | Line 193 | Line 233 | namespace OpenMD { | |
233 | } | |
234 | } | |
235 | ||
236 | < | #endif |
197 | < | |
198 | < | // allocate memory for the parallel objects |
199 | < | atypesLocal.resize(nLocal_); |
200 | < | |
201 | < | for (int i = 0; i < nLocal_; i++) |
202 | < | atypesLocal[i] = ff_->getAtomType(idents[i]); |
203 | < | |
204 | < | groupList_.clear(); |
205 | < | groupList_.resize(nGroups_); |
206 | < | for (int i = 0; i < nGroups_; i++) { |
207 | < | int gid = cgLocalToGlobal[i]; |
208 | < | for (int j = 0; j < nLocal_; j++) { |
209 | < | int aid = AtomLocalToGlobal[j]; |
210 | < | if (globalGroupMembership[aid] == gid) { |
211 | < | groupList_[i].push_back(j); |
212 | < | } |
213 | < | } |
214 | < | } |
215 | < | |
236 | > | #else |
237 | excludesForAtom.clear(); | |
238 | excludesForAtom.resize(nLocal_); | |
239 | toposForAtom.clear(); | |
# | Line 245 | Line 266 | namespace OpenMD { | |
266 | } | |
267 | } | |
268 | } | |
269 | < | |
269 | > | #endif |
270 | > | |
271 | > | // allocate memory for the parallel objects |
272 | > | atypesLocal.resize(nLocal_); |
273 | > | |
274 | > | for (int i = 0; i < nLocal_; i++) |
275 | > | atypesLocal[i] = ff_->getAtomType(idents[i]); |
276 | > | |
277 | > | groupList_.clear(); |
278 | > | groupList_.resize(nGroups_); |
279 | > | for (int i = 0; i < nGroups_; i++) { |
280 | > | int gid = cgLocalToGlobal[i]; |
281 | > | for (int j = 0; j < nLocal_; j++) { |
282 | > | int aid = AtomLocalToGlobal[j]; |
283 | > | if (globalGroupMembership[aid] == gid) { |
284 | > | groupList_[i].push_back(j); |
285 | > | } |
286 | > | } |
287 | > | } |
288 | > | |
289 | > | |
290 | createGtypeCutoffMap(); | |
291 | ||
292 | } | |
# | Line 517 | Line 558 | namespace OpenMD { | |
558 | #ifdef IS_MPI | |
559 | ||
560 | // gather up the atomic positions | |
561 | < | AtomCommVectorRow->gather(snap_->atomData.position, |
561 | > | AtomPlanVectorRow->gather(snap_->atomData.position, |
562 | atomRowData.position); | |
563 | < | AtomCommVectorColumn->gather(snap_->atomData.position, |
563 | > | AtomPlanVectorColumn->gather(snap_->atomData.position, |
564 | atomColData.position); | |
565 | ||
566 | // gather up the cutoff group positions | |
567 | < | cgCommVectorRow->gather(snap_->cgData.position, |
567 | > | |
568 | > | cgPlanVectorRow->gather(snap_->cgData.position, |
569 | cgRowData.position); | |
570 | < | cgCommVectorColumn->gather(snap_->cgData.position, |
570 | > | |
571 | > | cgPlanVectorColumn->gather(snap_->cgData.position, |
572 | cgColData.position); | |
573 | + | |
574 | ||
575 | // if needed, gather the atomic rotation matrices | |
576 | if (storageLayout_ & DataStorage::dslAmat) { | |
577 | < | AtomCommMatrixRow->gather(snap_->atomData.aMat, |
577 | > | AtomPlanMatrixRow->gather(snap_->atomData.aMat, |
578 | atomRowData.aMat); | |
579 | < | AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
579 | > | AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
580 | atomColData.aMat); | |
581 | } | |
582 | ||
583 | // if needed, gather the atomic eletrostatic frames | |
584 | if (storageLayout_ & DataStorage::dslElectroFrame) { | |
585 | < | AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
585 | > | AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
586 | atomRowData.electroFrame); | |
587 | < | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
587 | > | AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
588 | atomColData.electroFrame); | |
589 | } | |
590 | ||
# | Line 557 | Line 601 | namespace OpenMD { | |
601 | ||
602 | if (storageLayout_ & DataStorage::dslDensity) { | |
603 | ||
604 | < | AtomCommRealRow->scatter(atomRowData.density, |
604 | > | AtomPlanRealRow->scatter(atomRowData.density, |
605 | snap_->atomData.density); | |
606 | ||
607 | int n = snap_->atomData.density.size(); | |
608 | vector<RealType> rho_tmp(n, 0.0); | |
609 | < | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
609 | > | AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); |
610 | for (int i = 0; i < n; i++) | |
611 | snap_->atomData.density[i] += rho_tmp[i]; | |
612 | } | |
# | Line 578 | Line 622 | namespace OpenMD { | |
622 | storageLayout_ = sman_->getStorageLayout(); | |
623 | #ifdef IS_MPI | |
624 | if (storageLayout_ & DataStorage::dslFunctional) { | |
625 | < | AtomCommRealRow->gather(snap_->atomData.functional, |
625 | > | AtomPlanRealRow->gather(snap_->atomData.functional, |
626 | atomRowData.functional); | |
627 | < | AtomCommRealColumn->gather(snap_->atomData.functional, |
627 | > | AtomPlanRealColumn->gather(snap_->atomData.functional, |
628 | atomColData.functional); | |
629 | } | |
630 | ||
631 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
632 | < | AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
632 | > | AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, |
633 | atomRowData.functionalDerivative); | |
634 | < | AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
634 | > | AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, |
635 | atomColData.functionalDerivative); | |
636 | } | |
637 | #endif | |
# | Line 601 | Line 645 | namespace OpenMD { | |
645 | int n = snap_->atomData.force.size(); | |
646 | vector<Vector3d> frc_tmp(n, V3Zero); | |
647 | ||
648 | < | AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
648 | > | AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); |
649 | for (int i = 0; i < n; i++) { | |
650 | snap_->atomData.force[i] += frc_tmp[i]; | |
651 | frc_tmp[i] = 0.0; | |
652 | } | |
653 | ||
654 | < | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
655 | < | for (int i = 0; i < n; i++) |
654 | > | AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); |
655 | > | for (int i = 0; i < n; i++) { |
656 | snap_->atomData.force[i] += frc_tmp[i]; | |
657 | + | } |
658 | ||
659 | if (storageLayout_ & DataStorage::dslTorque) { | |
660 | ||
661 | int nt = snap_->atomData.torque.size(); | |
662 | vector<Vector3d> trq_tmp(nt, V3Zero); | |
663 | ||
664 | < | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
664 | > | AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); |
665 | for (int i = 0; i < nt; i++) { | |
666 | snap_->atomData.torque[i] += trq_tmp[i]; | |
667 | trq_tmp[i] = 0.0; | |
668 | } | |
669 | ||
670 | < | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
670 | > | AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); |
671 | for (int i = 0; i < nt; i++) | |
672 | snap_->atomData.torque[i] += trq_tmp[i]; | |
673 | } | |
# | Line 632 | Line 677 | namespace OpenMD { | |
677 | int ns = snap_->atomData.skippedCharge.size(); | |
678 | vector<RealType> skch_tmp(ns, 0.0); | |
679 | ||
680 | < | AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
680 | > | AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
681 | for (int i = 0; i < ns; i++) { | |
682 | snap_->atomData.skippedCharge[i] += skch_tmp[i]; | |
683 | skch_tmp[i] = 0.0; | |
684 | } | |
685 | ||
686 | < | AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
687 | < | for (int i = 0; i < ns; i++) |
686 | > | AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
687 | > | for (int i = 0; i < ns; i++) |
688 | snap_->atomData.skippedCharge[i] += skch_tmp[i]; | |
689 | + | |
690 | } | |
691 | ||
692 | nLocal_ = snap_->getNumberOfAtoms(); | |
# | Line 650 | Line 696 | namespace OpenMD { | |
696 | ||
697 | // scatter/gather pot_row into the members of my column | |
698 | ||
699 | < | AtomCommPotRow->scatter(pot_row, pot_temp); |
699 | > | AtomPlanPotRow->scatter(pot_row, pot_temp); |
700 | ||
701 | for (int ii = 0; ii < pot_temp.size(); ii++ ) | |
702 | pairwisePot += pot_temp[ii]; | |
# | Line 658 | Line 704 | namespace OpenMD { | |
704 | fill(pot_temp.begin(), pot_temp.end(), | |
705 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
706 | ||
707 | < | AtomCommPotColumn->scatter(pot_col, pot_temp); |
707 | > | AtomPlanPotColumn->scatter(pot_col, pot_temp); |
708 | ||
709 | for (int ii = 0; ii < pot_temp.size(); ii++ ) | |
710 | pairwisePot += pot_temp[ii]; | |
711 | + | |
712 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
713 | + | RealType ploc1 = pairwisePot[ii]; |
714 | + | RealType ploc2 = 0.0; |
715 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
716 | + | pairwisePot[ii] = ploc2; |
717 | + | } |
718 | + | |
719 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
720 | + | RealType ploc1 = embeddingPot[ii]; |
721 | + | RealType ploc2 = 0.0; |
722 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
723 | + | embeddingPot[ii] = ploc2; |
724 | + | } |
725 | + | |
726 | #endif | |
727 | ||
728 | } | |
# | Line 774 | Line 835 | namespace OpenMD { | |
835 | */ | |
836 | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { | |
837 | int unique_id_1, unique_id_2; | |
838 | < | |
838 | > | |
839 | #ifdef IS_MPI | |
840 | // in MPI, we have to look up the unique IDs for each atom | |
841 | unique_id_1 = AtomRowToGlobal[atom1]; | |
842 | unique_id_2 = AtomColToGlobal[atom2]; | |
843 | + | #else |
844 | + | unique_id_1 = AtomLocalToGlobal[atom1]; |
845 | + | unique_id_2 = AtomLocalToGlobal[atom2]; |
846 | + | #endif |
847 | ||
783 | – | // this situation should only arise in MPI simulations |
848 | if (unique_id_1 == unique_id_2) return true; | |
849 | < | |
849 | > | |
850 | > | #ifdef IS_MPI |
851 | // this prevents us from doing the pair on multiple processors | |
852 | if (unique_id_1 < unique_id_2) { | |
853 | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; | |
854 | } else { | |
855 | < | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
855 | > | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
856 | } | |
857 | #endif | |
858 | + | |
859 | return false; | |
860 | } | |
861 | ||
# | Line 803 | Line 869 | namespace OpenMD { | |
869 | * field) must still be handled for these pairs. | |
870 | */ | |
871 | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { | |
872 | < | int unique_id_2; |
873 | < | |
874 | < | #ifdef IS_MPI |
809 | < | // in MPI, we have to look up the unique IDs for the row atom. |
810 | < | unique_id_2 = AtomColToGlobal[atom2]; |
811 | < | #else |
812 | < | // in the normal loop, the atom numbers are unique |
813 | < | unique_id_2 = atom2; |
814 | < | #endif |
872 | > | |
873 | > | // excludesForAtom was constructed to use row/column indices in the MPI |
874 | > | // version, and to use local IDs in the non-MPI version: |
875 | ||
876 | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); | |
877 | i != excludesForAtom[atom1].end(); ++i) { | |
878 | < | if ( (*i) == unique_id_2 ) return true; |
878 | > | if ( (*i) == atom2 ) return true; |
879 | } | |
880 | ||
881 | return false; | |
# | Line 1031 | Line 1091 | namespace OpenMD { | |
1091 | // add this cutoff group to the list of groups in this cell; | |
1092 | cellListRow_[cellIndex].push_back(i); | |
1093 | } | |
1034 | – | |
1094 | for (int i = 0; i < nGroupsInCol_; i++) { | |
1095 | rs = cgColData.position[i]; | |
1096 | ||
# | Line 1056 | Line 1115 | namespace OpenMD { | |
1115 | // add this cutoff group to the list of groups in this cell; | |
1116 | cellListCol_[cellIndex].push_back(i); | |
1117 | } | |
1118 | + | |
1119 | #else | |
1120 | for (int i = 0; i < nGroups_; i++) { | |
1121 | rs = snap_->cgData.position[i]; | |
# | Line 1076 | Line 1136 | namespace OpenMD { | |
1136 | whichCell.z() = nCells_.z() * scaled.z(); | |
1137 | ||
1138 | // find single index of this cell: | |
1139 | < | cellIndex = Vlinear(whichCell, nCells_); |
1139 | > | cellIndex = Vlinear(whichCell, nCells_); |
1140 | ||
1141 | // add this cutoff group to the list of groups in this cell; | |
1142 | cellList_[cellIndex].push_back(i); | |
1143 | } | |
1144 | + | |
1145 | #endif | |
1146 | ||
1147 | for (int m1z = 0; m1z < nCells_.z(); m1z++) { | |
# | Line 1093 | Line 1154 | namespace OpenMD { | |
1154 | os != cellOffsets_.end(); ++os) { | |
1155 | ||
1156 | Vector3i m2v = m1v + (*os); | |
1157 | < | |
1157 | > | |
1158 | > | |
1159 | if (m2v.x() >= nCells_.x()) { | |
1160 | m2v.x() = 0; | |
1161 | } else if (m2v.x() < 0) { | |
# | Line 1111 | Line 1173 | namespace OpenMD { | |
1173 | } else if (m2v.z() < 0) { | |
1174 | m2v.z() = nCells_.z() - 1; | |
1175 | } | |
1176 | < | |
1176 | > | |
1177 | int m2 = Vlinear (m2v, nCells_); | |
1178 | ||
1179 | #ifdef IS_MPI | |
# | Line 1119 | Line 1181 | namespace OpenMD { | |
1181 | j1 != cellListRow_[m1].end(); ++j1) { | |
1182 | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); | |
1183 | j2 != cellListCol_[m2].end(); ++j2) { | |
1122 | – | |
1123 | – | // Always do this if we're in different cells or if |
1124 | – | // we're in the same cell and the global index of the |
1125 | – | // j2 cutoff group is less than the j1 cutoff group |
1184 | ||
1185 | < | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1186 | < | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1187 | < | snap_->wrapVector(dr); |
1188 | < | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1189 | < | if (dr.lengthSquare() < cuts.third) { |
1190 | < | neighborList.push_back(make_pair((*j1), (*j2))); |
1191 | < | } |
1192 | < | } |
1185 | > | // In parallel, we need to visit *all* pairs of row |
1186 | > | // & column indicies and will divide labor in the |
1187 | > | // force evaluation later. |
1188 | > | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1189 | > | snap_->wrapVector(dr); |
1190 | > | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1191 | > | if (dr.lengthSquare() < cuts.third) { |
1192 | > | neighborList.push_back(make_pair((*j1), (*j2))); |
1193 | > | } |
1194 | } | |
1195 | } | |
1196 | #else | |
1138 | – | |
1197 | for (vector<int>::iterator j1 = cellList_[m1].begin(); | |
1198 | j1 != cellList_[m1].end(); ++j1) { | |
1199 | for (vector<int>::iterator j2 = cellList_[m2].begin(); | |
1200 | j2 != cellList_[m2].end(); ++j2) { | |
1201 | < | |
1201 | > | |
1202 | // Always do this if we're in different cells or if | |
1203 | < | // we're in the same cell and the global index of the |
1204 | < | // j2 cutoff group is less than the j1 cutoff group |
1205 | < | |
1206 | < | if (m2 != m1 || (*j2) < (*j1)) { |
1203 | > | // we're in the same cell and the global index of |
1204 | > | // the j2 cutoff group is greater than or equal to |
1205 | > | // the j1 cutoff group. Note that Rappaport's code |
1206 | > | // has a "less than" conditional here, but that |
1207 | > | // deals with atom-by-atom computation. OpenMD |
1208 | > | // allows atoms within a single cutoff group to |
1209 | > | // interact with each other. |
1210 | > | |
1211 | > | |
1212 | > | |
1213 | > | if (m2 != m1 || (*j2) >= (*j1) ) { |
1214 | > | |
1215 | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | |
1216 | snap_->wrapVector(dr); | |
1217 | cuts = getGroupCutoffs( (*j1), (*j2) ); | |
# | Line 1164 | Line 1230 | namespace OpenMD { | |
1230 | // branch to do all cutoff group pairs | |
1231 | #ifdef IS_MPI | |
1232 | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { | |
1233 | < | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1233 | > | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1234 | dr = cgColData.position[j2] - cgRowData.position[j1]; | |
1235 | snap_->wrapVector(dr); | |
1236 | cuts = getGroupCutoffs( j1, j2 ); | |
# | Line 1172 | Line 1238 | namespace OpenMD { | |
1238 | neighborList.push_back(make_pair(j1, j2)); | |
1239 | } | |
1240 | } | |
1241 | < | } |
1241 | > | } |
1242 | #else | |
1243 | < | for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1244 | < | for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1243 | > | // include all groups here. |
1244 | > | for (int j1 = 0; j1 < nGroups_; j1++) { |
1245 | > | // include self group interactions j2 == j1 |
1246 | > | for (int j2 = j1; j2 < nGroups_; j2++) { |
1247 | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; | |
1248 | snap_->wrapVector(dr); | |
1249 | cuts = getGroupCutoffs( j1, j2 ); | |
1250 | if (dr.lengthSquare() < cuts.third) { | |
1251 | neighborList.push_back(make_pair(j1, j2)); | |
1252 | } | |
1253 | < | } |
1254 | < | } |
1253 | > | } |
1254 | > | } |
1255 | #endif | |
1256 | } | |
1257 |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |