# | Line 53 | Line 53 | namespace OpenMD { | |
---|---|---|
53 | // surrounding cells (not just the 14 upper triangular blocks that | |
54 | // are used when the processor can see all pairs) | |
55 | #ifdef IS_MPI | |
56 | < | cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
57 | < | cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
58 | < | cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
59 | < | cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
60 | < | cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
61 | < | cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
56 | > | cellOffsets_.clear(); |
57 | cellOffsets_.push_back( Vector3i(-1,-1,-1) ); | |
58 | cellOffsets_.push_back( Vector3i( 0,-1,-1) ); | |
59 | < | cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
59 | > | cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
60 | > | cellOffsets_.push_back( Vector3i(-1, 0,-1) ); |
61 | > | cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
62 | cellOffsets_.push_back( Vector3i( 1, 0,-1) ); | |
66 | – | cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
67 | – | cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
63 | cellOffsets_.push_back( Vector3i(-1, 1,-1) ); | |
64 | + | cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
65 | + | cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
66 | + | cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
67 | + | cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
68 | + | cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
69 | + | cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
70 | + | cellOffsets_.push_back( Vector3i( 0, 0, 0) ); |
71 | + | cellOffsets_.push_back( Vector3i( 1, 0, 0) ); |
72 | + | cellOffsets_.push_back( Vector3i(-1, 1, 0) ); |
73 | + | cellOffsets_.push_back( Vector3i( 0, 1, 0) ); |
74 | + | cellOffsets_.push_back( Vector3i( 1, 1, 0) ); |
75 | + | cellOffsets_.push_back( Vector3i(-1,-1, 1) ); |
76 | + | cellOffsets_.push_back( Vector3i( 0,-1, 1) ); |
77 | + | cellOffsets_.push_back( Vector3i( 1,-1, 1) ); |
78 | + | cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
79 | + | cellOffsets_.push_back( Vector3i( 0, 0, 1) ); |
80 | + | cellOffsets_.push_back( Vector3i( 1, 0, 1) ); |
81 | + | cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
82 | + | cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
83 | + | cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
84 | #endif | |
85 | } | |
86 | ||
# | Line 154 | Line 169 | namespace OpenMD { | |
169 | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | |
170 | AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); | |
171 | ||
157 | – | cerr << "Atoms in Local:\n"; |
158 | – | for (int i = 0; i < AtomLocalToGlobal.size(); i++) { |
159 | – | cerr << "i =\t" << i << "\t localAt =\t" << AtomLocalToGlobal[i] << "\n"; |
160 | – | } |
161 | – | cerr << "Atoms in Row:\n"; |
162 | – | for (int i = 0; i < AtomRowToGlobal.size(); i++) { |
163 | – | cerr << "i =\t" << i << "\t rowAt =\t" << AtomRowToGlobal[i] << "\n"; |
164 | – | } |
165 | – | cerr << "Atoms in Col:\n"; |
166 | – | for (int i = 0; i < AtomColToGlobal.size(); i++) { |
167 | – | cerr << "i =\t" << i << "\t colAt =\t" << AtomColToGlobal[i] << "\n"; |
168 | – | } |
169 | – | |
172 | cgRowToGlobal.resize(nGroupsInRow_); | |
173 | cgColToGlobal.resize(nGroupsInCol_); | |
174 | cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); | |
175 | cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); | |
174 | – | |
175 | – | cerr << "Gruops in Local:\n"; |
176 | – | for (int i = 0; i < cgLocalToGlobal.size(); i++) { |
177 | – | cerr << "i =\t" << i << "\t localCG =\t" << cgLocalToGlobal[i] << "\n"; |
178 | – | } |
179 | – | cerr << "Groups in Row:\n"; |
180 | – | for (int i = 0; i < cgRowToGlobal.size(); i++) { |
181 | – | cerr << "i =\t" << i << "\t rowCG =\t" << cgRowToGlobal[i] << "\n"; |
182 | – | } |
183 | – | cerr << "Groups in Col:\n"; |
184 | – | for (int i = 0; i < cgColToGlobal.size(); i++) { |
185 | – | cerr << "i =\t" << i << "\t colCG =\t" << cgColToGlobal[i] << "\n"; |
186 | – | } |
176 | ||
188 | – | |
177 | massFactorsRow.resize(nAtomsInRow_); | |
178 | massFactorsCol.resize(nAtomsInCol_); | |
179 | AtomPlanRealRow->gather(massFactors, massFactorsRow); | |
# | Line 245 | Line 233 | namespace OpenMD { | |
233 | } | |
234 | } | |
235 | ||
236 | < | #endif |
249 | < | |
250 | < | // allocate memory for the parallel objects |
251 | < | atypesLocal.resize(nLocal_); |
252 | < | |
253 | < | for (int i = 0; i < nLocal_; i++) |
254 | < | atypesLocal[i] = ff_->getAtomType(idents[i]); |
255 | < | |
256 | < | groupList_.clear(); |
257 | < | groupList_.resize(nGroups_); |
258 | < | for (int i = 0; i < nGroups_; i++) { |
259 | < | int gid = cgLocalToGlobal[i]; |
260 | < | for (int j = 0; j < nLocal_; j++) { |
261 | < | int aid = AtomLocalToGlobal[j]; |
262 | < | if (globalGroupMembership[aid] == gid) { |
263 | < | groupList_[i].push_back(j); |
264 | < | } |
265 | < | } |
266 | < | } |
267 | < | |
236 | > | #else |
237 | excludesForAtom.clear(); | |
238 | excludesForAtom.resize(nLocal_); | |
239 | toposForAtom.clear(); | |
# | Line 297 | Line 266 | namespace OpenMD { | |
266 | } | |
267 | } | |
268 | } | |
269 | < | |
269 | > | #endif |
270 | > | |
271 | > | // allocate memory for the parallel objects |
272 | > | atypesLocal.resize(nLocal_); |
273 | > | |
274 | > | for (int i = 0; i < nLocal_; i++) |
275 | > | atypesLocal[i] = ff_->getAtomType(idents[i]); |
276 | > | |
277 | > | groupList_.clear(); |
278 | > | groupList_.resize(nGroups_); |
279 | > | for (int i = 0; i < nGroups_; i++) { |
280 | > | int gid = cgLocalToGlobal[i]; |
281 | > | for (int j = 0; j < nLocal_; j++) { |
282 | > | int aid = AtomLocalToGlobal[j]; |
283 | > | if (globalGroupMembership[aid] == gid) { |
284 | > | groupList_[i].push_back(j); |
285 | > | } |
286 | > | } |
287 | > | } |
288 | > | |
289 | > | |
290 | createGtypeCutoffMap(); | |
291 | ||
292 | } | |
# | Line 575 | Line 564 | namespace OpenMD { | |
564 | atomColData.position); | |
565 | ||
566 | // gather up the cutoff group positions | |
578 | – | |
579 | – | cerr << "before gather\n"; |
580 | – | for (int i = 0; i < snap_->cgData.position.size(); i++) { |
581 | – | cerr << "cgpos = " << snap_->cgData.position[i] << "\n"; |
582 | – | } |
567 | ||
568 | cgPlanVectorRow->gather(snap_->cgData.position, | |
569 | cgRowData.position); | |
570 | ||
587 | – | cerr << "after gather\n"; |
588 | – | for (int i = 0; i < cgRowData.position.size(); i++) { |
589 | – | cerr << "cgRpos = " << cgRowData.position[i] << "\n"; |
590 | – | } |
591 | – | |
571 | cgPlanVectorColumn->gather(snap_->cgData.position, | |
572 | cgColData.position); | |
594 | – | for (int i = 0; i < cgColData.position.size(); i++) { |
595 | – | cerr << "cgCpos = " << cgColData.position[i] << "\n"; |
596 | – | } |
573 | ||
574 | ||
575 | // if needed, gather the atomic rotation matrices | |
# | Line 708 | Line 684 | namespace OpenMD { | |
684 | } | |
685 | ||
686 | AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); | |
687 | < | for (int i = 0; i < ns; i++) |
687 | > | for (int i = 0; i < ns; i++) |
688 | snap_->atomData.skippedCharge[i] += skch_tmp[i]; | |
689 | + | |
690 | } | |
691 | ||
692 | nLocal_ = snap_->getNumberOfAtoms(); | |
# | Line 731 | Line 708 | namespace OpenMD { | |
708 | ||
709 | for (int ii = 0; ii < pot_temp.size(); ii++ ) | |
710 | pairwisePot += pot_temp[ii]; | |
711 | + | |
712 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
713 | + | RealType ploc1 = pairwisePot[ii]; |
714 | + | RealType ploc2 = 0.0; |
715 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
716 | + | pairwisePot[ii] = ploc2; |
717 | + | } |
718 | + | |
719 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
720 | + | RealType ploc1 = embeddingPot[ii]; |
721 | + | RealType ploc2 = 0.0; |
722 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
723 | + | embeddingPot[ii] = ploc2; |
724 | + | } |
725 | + | |
726 | #endif | |
727 | ||
736 | – | cerr << "pairwisePot = " << pairwisePot << "\n"; |
728 | } | |
729 | ||
730 | int ForceMatrixDecomposition::getNAtomsInRow() { | |
# | Line 768 | Line 759 | namespace OpenMD { | |
759 | ||
760 | #ifdef IS_MPI | |
761 | d = cgColData.position[cg2] - cgRowData.position[cg1]; | |
771 | – | cerr << "cg1 = " << cg1 << "\tcg1p = " << cgRowData.position[cg1] << "\n"; |
772 | – | cerr << "cg2 = " << cg2 << "\tcg2p = " << cgColData.position[cg2] << "\n"; |
762 | #else | |
763 | d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; | |
775 | – | cerr << "cg1 = " << cg1 << "\tcg1p = " << snap_->cgData.position[cg1] << "\n"; |
776 | – | cerr << "cg2 = " << cg2 << "\tcg2p = " << snap_->cgData.position[cg2] << "\n"; |
764 | #endif | |
765 | ||
766 | snap_->wrapVector(d); | |
# | Line 848 | Line 835 | namespace OpenMD { | |
835 | */ | |
836 | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { | |
837 | int unique_id_1, unique_id_2; | |
838 | < | |
852 | < | |
853 | < | cerr << "sap with atom1, atom2 =\t" << atom1 << "\t" << atom2 << "\n"; |
838 | > | |
839 | #ifdef IS_MPI | |
840 | // in MPI, we have to look up the unique IDs for each atom | |
841 | unique_id_1 = AtomRowToGlobal[atom1]; | |
842 | unique_id_2 = AtomColToGlobal[atom2]; | |
843 | + | #else |
844 | + | unique_id_1 = AtomLocalToGlobal[atom1]; |
845 | + | unique_id_2 = AtomLocalToGlobal[atom2]; |
846 | + | #endif |
847 | ||
859 | – | cerr << "sap with uid1, uid2 =\t" << unique_id_1 << "\t" << unique_id_2 << "\n"; |
860 | – | // this situation should only arise in MPI simulations |
848 | if (unique_id_1 == unique_id_2) return true; | |
849 | < | |
849 | > | |
850 | > | #ifdef IS_MPI |
851 | // this prevents us from doing the pair on multiple processors | |
852 | if (unique_id_1 < unique_id_2) { | |
853 | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; | |
854 | } else { | |
855 | < | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
855 | > | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
856 | } | |
857 | #endif | |
858 | + | |
859 | return false; | |
860 | } | |
861 | ||
# | Line 880 | Line 869 | namespace OpenMD { | |
869 | * field) must still be handled for these pairs. | |
870 | */ | |
871 | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { | |
872 | < | int unique_id_2; |
873 | < | #ifdef IS_MPI |
874 | < | // in MPI, we have to look up the unique IDs for the row atom. |
886 | < | unique_id_2 = AtomColToGlobal[atom2]; |
887 | < | #else |
888 | < | // in the normal loop, the atom numbers are unique |
889 | < | unique_id_2 = atom2; |
890 | < | #endif |
872 | > | |
873 | > | // excludesForAtom was constructed to use row/column indices in the MPI |
874 | > | // version, and to use local IDs in the non-MPI version: |
875 | ||
876 | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); | |
877 | i != excludesForAtom[atom1].end(); ++i) { | |
878 | < | if ( (*i) == unique_id_2 ) return true; |
878 | > | if ( (*i) == atom2 ) return true; |
879 | } | |
880 | ||
881 | return false; | |
# | Line 1131 | Line 1115 | namespace OpenMD { | |
1115 | // add this cutoff group to the list of groups in this cell; | |
1116 | cellListCol_[cellIndex].push_back(i); | |
1117 | } | |
1118 | + | |
1119 | #else | |
1120 | for (int i = 0; i < nGroups_; i++) { | |
1121 | rs = snap_->cgData.position[i]; | |
# | Line 1156 | Line 1141 | namespace OpenMD { | |
1141 | // add this cutoff group to the list of groups in this cell; | |
1142 | cellList_[cellIndex].push_back(i); | |
1143 | } | |
1144 | + | |
1145 | #endif | |
1146 | ||
1147 | for (int m1z = 0; m1z < nCells_.z(); m1z++) { | |
# | Line 1168 | Line 1154 | namespace OpenMD { | |
1154 | os != cellOffsets_.end(); ++os) { | |
1155 | ||
1156 | Vector3i m2v = m1v + (*os); | |
1157 | < | |
1157 | > | |
1158 | > | |
1159 | if (m2v.x() >= nCells_.x()) { | |
1160 | m2v.x() = 0; | |
1161 | } else if (m2v.x() < 0) { | |
# | Line 1186 | Line 1173 | namespace OpenMD { | |
1173 | } else if (m2v.z() < 0) { | |
1174 | m2v.z() = nCells_.z() - 1; | |
1175 | } | |
1176 | < | |
1176 | > | |
1177 | int m2 = Vlinear (m2v, nCells_); | |
1178 | ||
1179 | #ifdef IS_MPI | |
# | Line 1195 | Line 1182 | namespace OpenMD { | |
1182 | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); | |
1183 | j2 != cellListCol_[m2].end(); ++j2) { | |
1184 | ||
1185 | < | // In parallel, we need to visit *all* pairs of row & |
1186 | < | // column indicies and will truncate later on. |
1185 | > | // In parallel, we need to visit *all* pairs of row |
1186 | > | // & column indicies and will divide labor in the |
1187 | > | // force evaluation later. |
1188 | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | |
1189 | snap_->wrapVector(dr); | |
1190 | cuts = getGroupCutoffs( (*j1), (*j2) ); | |
# | Line 1206 | Line 1194 | namespace OpenMD { | |
1194 | } | |
1195 | } | |
1196 | #else | |
1209 | – | |
1197 | for (vector<int>::iterator j1 = cellList_[m1].begin(); | |
1198 | j1 != cellList_[m1].end(); ++j1) { | |
1199 | for (vector<int>::iterator j2 = cellList_[m2].begin(); | |
1200 | j2 != cellList_[m2].end(); ++j2) { | |
1201 | < | |
1201 | > | |
1202 | // Always do this if we're in different cells or if | |
1203 | < | // we're in the same cell and the global index of the |
1204 | < | // j2 cutoff group is less than the j1 cutoff group |
1205 | < | |
1206 | < | if (m2 != m1 || (*j2) < (*j1)) { |
1203 | > | // we're in the same cell and the global index of |
1204 | > | // the j2 cutoff group is greater than or equal to |
1205 | > | // the j1 cutoff group. Note that Rappaport's code |
1206 | > | // has a "less than" conditional here, but that |
1207 | > | // deals with atom-by-atom computation. OpenMD |
1208 | > | // allows atoms within a single cutoff group to |
1209 | > | // interact with each other. |
1210 | > | |
1211 | > | |
1212 | > | |
1213 | > | if (m2 != m1 || (*j2) >= (*j1) ) { |
1214 | > | |
1215 | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | |
1216 | snap_->wrapVector(dr); | |
1217 | cuts = getGroupCutoffs( (*j1), (*j2) ); | |
# | Line 1235 | Line 1230 | namespace OpenMD { | |
1230 | // branch to do all cutoff group pairs | |
1231 | #ifdef IS_MPI | |
1232 | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { | |
1233 | < | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1233 | > | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1234 | dr = cgColData.position[j2] - cgRowData.position[j1]; | |
1235 | snap_->wrapVector(dr); | |
1236 | cuts = getGroupCutoffs( j1, j2 ); | |
# | Line 1243 | Line 1238 | namespace OpenMD { | |
1238 | neighborList.push_back(make_pair(j1, j2)); | |
1239 | } | |
1240 | } | |
1241 | < | } |
1241 | > | } |
1242 | #else | |
1243 | < | for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1244 | < | for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1243 | > | // include all groups here. |
1244 | > | for (int j1 = 0; j1 < nGroups_; j1++) { |
1245 | > | // include self group interactions j2 == j1 |
1246 | > | for (int j2 = j1; j2 < nGroups_; j2++) { |
1247 | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; | |
1248 | snap_->wrapVector(dr); | |
1249 | cuts = getGroupCutoffs( j1, j2 ); | |
1250 | if (dr.lengthSquare() < cuts.third) { | |
1251 | neighborList.push_back(make_pair(j1, j2)); | |
1252 | } | |
1253 | < | } |
1254 | < | } |
1253 | > | } |
1254 | > | } |
1255 | #endif | |
1256 | } | |
1257 |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |