# | Line 42 | Line 42 | |
---|---|---|
42 | #include "math/SquareMatrix3.hpp" | |
43 | #include "nonbonded/NonBondedInteraction.hpp" | |
44 | #include "brains/SnapshotManager.hpp" | |
45 | + | #include "brains/PairList.hpp" |
46 | ||
47 | using namespace std; | |
48 | namespace OpenMD { | |
49 | ||
50 | + | ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { |
51 | + | |
52 | + | // In a parallel computation, row and colum scans must visit all |
53 | + | // surrounding cells (not just the 14 upper triangular blocks that |
54 | + | // are used when the processor can see all pairs) |
55 | + | #ifdef IS_MPI |
56 | + | cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
57 | + | cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
58 | + | cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
59 | + | cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
60 | + | cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
61 | + | cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
62 | + | cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
63 | + | cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
64 | + | cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
65 | + | cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
66 | + | cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
67 | + | cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
68 | + | cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
69 | + | #endif |
70 | + | } |
71 | + | |
72 | + | |
73 | /** | |
74 | * distributeInitialData is essentially a copy of the older fortran | |
75 | * SimulationSetup | |
76 | */ | |
53 | – | |
77 | void ForceMatrixDecomposition::distributeInitialData() { | |
78 | < | #ifdef IS_MPI |
79 | < | Snapshot* snap = sman_->getCurrentSnapshot(); |
80 | < | int nLocal = snap->getNumberOfAtoms(); |
81 | < | int nGroups = snap->getNumberOfCutoffGroups(); |
78 | > | snap_ = sman_->getCurrentSnapshot(); |
79 | > | storageLayout_ = sman_->getStorageLayout(); |
80 | > | ff_ = info_->getForceField(); |
81 | > | nLocal_ = snap_->getNumberOfAtoms(); |
82 | > | |
83 | > | nGroups_ = info_->getNLocalCutoffGroups(); |
84 | > | // gather the information for atomtype IDs (atids): |
85 | > | idents = info_->getIdentArray(); |
86 | > | AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
87 | > | cgLocalToGlobal = info_->getGlobalGroupIndices(); |
88 | > | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
89 | ||
90 | < | AtomCommIntRow = new Communicator<Row,int>(nLocal); |
61 | < | AtomCommRealRow = new Communicator<Row,RealType>(nLocal); |
62 | < | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal); |
63 | < | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal); |
90 | > | massFactors = info_->getMassFactors(); |
91 | ||
92 | < | AtomCommIntColumn = new Communicator<Column,int>(nLocal); |
93 | < | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal); |
94 | < | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal); |
95 | < | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal); |
92 | > | PairList* excludes = info_->getExcludedInteractions(); |
93 | > | PairList* oneTwo = info_->getOneTwoInteractions(); |
94 | > | PairList* oneThree = info_->getOneThreeInteractions(); |
95 | > | PairList* oneFour = info_->getOneFourInteractions(); |
96 | ||
97 | < | cgCommIntRow = new Communicator<Row,int>(nGroups); |
98 | < | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups); |
99 | < | cgCommIntColumn = new Communicator<Column,int>(nGroups); |
100 | < | cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups); |
97 | > | #ifdef IS_MPI |
98 | > | |
99 | > | MPI::Intracomm row = rowComm.getComm(); |
100 | > | MPI::Intracomm col = colComm.getComm(); |
101 | ||
102 | < | int nAtomsInRow = AtomCommIntRow->getSize(); |
103 | < | int nAtomsInCol = AtomCommIntColumn->getSize(); |
104 | < | int nGroupsInRow = cgCommIntRow->getSize(); |
105 | < | int nGroupsInCol = cgCommIntColumn->getSize(); |
102 | > | AtomPlanIntRow = new Plan<int>(row, nLocal_); |
103 | > | AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
104 | > | AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); |
105 | > | AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); |
106 | > | AtomPlanPotRow = new Plan<potVec>(row, nLocal_); |
107 | > | |
108 | > | AtomPlanIntColumn = new Plan<int>(col, nLocal_); |
109 | > | AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); |
110 | > | AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); |
111 | > | AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); |
112 | > | AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); |
113 | > | |
114 | > | cgPlanIntRow = new Plan<int>(row, nGroups_); |
115 | > | cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); |
116 | > | cgPlanIntColumn = new Plan<int>(col, nGroups_); |
117 | > | cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); |
118 | > | |
119 | > | nAtomsInRow_ = AtomPlanIntRow->getSize(); |
120 | > | nAtomsInCol_ = AtomPlanIntColumn->getSize(); |
121 | > | nGroupsInRow_ = cgPlanIntRow->getSize(); |
122 | > | nGroupsInCol_ = cgPlanIntColumn->getSize(); |
123 | > | |
124 | > | // Modify the data storage objects with the correct layouts and sizes: |
125 | > | atomRowData.resize(nAtomsInRow_); |
126 | > | atomRowData.setStorageLayout(storageLayout_); |
127 | > | atomColData.resize(nAtomsInCol_); |
128 | > | atomColData.setStorageLayout(storageLayout_); |
129 | > | cgRowData.resize(nGroupsInRow_); |
130 | > | cgRowData.setStorageLayout(DataStorage::dslPosition); |
131 | > | cgColData.resize(nGroupsInCol_); |
132 | > | cgColData.setStorageLayout(DataStorage::dslPosition); |
133 | > | |
134 | > | identsRow.resize(nAtomsInRow_); |
135 | > | identsCol.resize(nAtomsInCol_); |
136 | ||
137 | < | vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES, |
138 | < | vector<RealType> (nAtomsInRow, 0.0)); |
82 | < | vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES, |
83 | < | vector<RealType> (nAtomsInCol, 0.0)); |
137 | > | AtomPlanIntRow->gather(idents, identsRow); |
138 | > | AtomPlanIntColumn->gather(idents, identsCol); |
139 | ||
140 | < | vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0); |
140 | > | // allocate memory for the parallel objects |
141 | > | atypesRow.resize(nAtomsInRow_); |
142 | > | atypesCol.resize(nAtomsInCol_); |
143 | > | |
144 | > | for (int i = 0; i < nAtomsInRow_; i++) |
145 | > | atypesRow[i] = ff_->getAtomType(identsRow[i]); |
146 | > | for (int i = 0; i < nAtomsInCol_; i++) |
147 | > | atypesCol[i] = ff_->getAtomType(identsCol[i]); |
148 | > | |
149 | > | pot_row.resize(nAtomsInRow_); |
150 | > | pot_col.resize(nAtomsInCol_); |
151 | > | |
152 | > | AtomRowToGlobal.resize(nAtomsInRow_); |
153 | > | AtomColToGlobal.resize(nAtomsInCol_); |
154 | > | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
155 | > | AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
156 | > | |
157 | > | cgRowToGlobal.resize(nGroupsInRow_); |
158 | > | cgColToGlobal.resize(nGroupsInCol_); |
159 | > | cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
160 | > | cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
161 | > | |
162 | > | massFactorsRow.resize(nAtomsInRow_); |
163 | > | massFactorsCol.resize(nAtomsInCol_); |
164 | > | AtomPlanRealRow->gather(massFactors, massFactorsRow); |
165 | > | AtomPlanRealColumn->gather(massFactors, massFactorsCol); |
166 | > | |
167 | > | groupListRow_.clear(); |
168 | > | groupListRow_.resize(nGroupsInRow_); |
169 | > | for (int i = 0; i < nGroupsInRow_; i++) { |
170 | > | int gid = cgRowToGlobal[i]; |
171 | > | for (int j = 0; j < nAtomsInRow_; j++) { |
172 | > | int aid = AtomRowToGlobal[j]; |
173 | > | if (globalGroupMembership[aid] == gid) |
174 | > | groupListRow_[i].push_back(j); |
175 | > | } |
176 | > | } |
177 | > | |
178 | > | groupListCol_.clear(); |
179 | > | groupListCol_.resize(nGroupsInCol_); |
180 | > | for (int i = 0; i < nGroupsInCol_; i++) { |
181 | > | int gid = cgColToGlobal[i]; |
182 | > | for (int j = 0; j < nAtomsInCol_; j++) { |
183 | > | int aid = AtomColToGlobal[j]; |
184 | > | if (globalGroupMembership[aid] == gid) |
185 | > | groupListCol_[i].push_back(j); |
186 | > | } |
187 | > | } |
188 | > | |
189 | > | excludesForAtom.clear(); |
190 | > | excludesForAtom.resize(nAtomsInRow_); |
191 | > | toposForAtom.clear(); |
192 | > | toposForAtom.resize(nAtomsInRow_); |
193 | > | topoDist.clear(); |
194 | > | topoDist.resize(nAtomsInRow_); |
195 | > | for (int i = 0; i < nAtomsInRow_; i++) { |
196 | > | int iglob = AtomRowToGlobal[i]; |
197 | > | |
198 | > | for (int j = 0; j < nAtomsInCol_; j++) { |
199 | > | int jglob = AtomColToGlobal[j]; |
200 | > | |
201 | > | if (excludes->hasPair(iglob, jglob)) |
202 | > | excludesForAtom[i].push_back(j); |
203 | > | |
204 | > | if (oneTwo->hasPair(iglob, jglob)) { |
205 | > | toposForAtom[i].push_back(j); |
206 | > | topoDist[i].push_back(1); |
207 | > | } else { |
208 | > | if (oneThree->hasPair(iglob, jglob)) { |
209 | > | toposForAtom[i].push_back(j); |
210 | > | topoDist[i].push_back(2); |
211 | > | } else { |
212 | > | if (oneFour->hasPair(iglob, jglob)) { |
213 | > | toposForAtom[i].push_back(j); |
214 | > | topoDist[i].push_back(3); |
215 | > | } |
216 | > | } |
217 | > | } |
218 | > | } |
219 | > | } |
220 | > | |
221 | > | #endif |
222 | > | |
223 | > | // allocate memory for the parallel objects |
224 | > | atypesLocal.resize(nLocal_); |
225 | > | |
226 | > | for (int i = 0; i < nLocal_; i++) |
227 | > | atypesLocal[i] = ff_->getAtomType(idents[i]); |
228 | > | |
229 | > | groupList_.clear(); |
230 | > | groupList_.resize(nGroups_); |
231 | > | for (int i = 0; i < nGroups_; i++) { |
232 | > | int gid = cgLocalToGlobal[i]; |
233 | > | for (int j = 0; j < nLocal_; j++) { |
234 | > | int aid = AtomLocalToGlobal[j]; |
235 | > | if (globalGroupMembership[aid] == gid) { |
236 | > | groupList_[i].push_back(j); |
237 | > | } |
238 | > | } |
239 | > | } |
240 | > | |
241 | > | excludesForAtom.clear(); |
242 | > | excludesForAtom.resize(nLocal_); |
243 | > | toposForAtom.clear(); |
244 | > | toposForAtom.resize(nLocal_); |
245 | > | topoDist.clear(); |
246 | > | topoDist.resize(nLocal_); |
247 | > | |
248 | > | for (int i = 0; i < nLocal_; i++) { |
249 | > | int iglob = AtomLocalToGlobal[i]; |
250 | > | |
251 | > | for (int j = 0; j < nLocal_; j++) { |
252 | > | int jglob = AtomLocalToGlobal[j]; |
253 | > | |
254 | > | if (excludes->hasPair(iglob, jglob)) |
255 | > | excludesForAtom[i].push_back(j); |
256 | > | |
257 | > | if (oneTwo->hasPair(iglob, jglob)) { |
258 | > | toposForAtom[i].push_back(j); |
259 | > | topoDist[i].push_back(1); |
260 | > | } else { |
261 | > | if (oneThree->hasPair(iglob, jglob)) { |
262 | > | toposForAtom[i].push_back(j); |
263 | > | topoDist[i].push_back(2); |
264 | > | } else { |
265 | > | if (oneFour->hasPair(iglob, jglob)) { |
266 | > | toposForAtom[i].push_back(j); |
267 | > | topoDist[i].push_back(3); |
268 | > | } |
269 | > | } |
270 | > | } |
271 | > | } |
272 | > | } |
273 | ||
274 | < | // gather the information for atomtype IDs (atids): |
275 | < | vector<int> identsLocal = info_->getIdentArray(); |
276 | < | identsRow.reserve(nAtomsInRow); |
277 | < | identsCol.reserve(nAtomsInCol); |
274 | > | createGtypeCutoffMap(); |
275 | > | |
276 | > | } |
277 | > | |
278 | > | void ForceMatrixDecomposition::createGtypeCutoffMap() { |
279 | ||
280 | < | AtomCommIntRow->gather(identsLocal, identsRow); |
281 | < | AtomCommIntColumn->gather(identsLocal, identsCol); |
280 | > | RealType tol = 1e-6; |
281 | > | largestRcut_ = 0.0; |
282 | > | RealType rc; |
283 | > | int atid; |
284 | > | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
285 | ||
286 | < | AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
287 | < | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
288 | < | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
286 | > | map<int, RealType> atypeCutoff; |
287 | > | |
288 | > | for (set<AtomType*>::iterator at = atypes.begin(); |
289 | > | at != atypes.end(); ++at){ |
290 | > | atid = (*at)->getIdent(); |
291 | > | if (userChoseCutoff_) |
292 | > | atypeCutoff[atid] = userCutoff_; |
293 | > | else |
294 | > | atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
295 | > | } |
296 | ||
297 | < | cgLocalToGlobal = info_->getGlobalGroupIndices(); |
298 | < | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
299 | < | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
297 | > | vector<RealType> gTypeCutoffs; |
298 | > | // first we do a single loop over the cutoff groups to find the |
299 | > | // largest cutoff for any atypes present in this group. |
300 | > | #ifdef IS_MPI |
301 | > | vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); |
302 | > | groupRowToGtype.resize(nGroupsInRow_); |
303 | > | for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { |
304 | > | vector<int> atomListRow = getAtomsInGroupRow(cg1); |
305 | > | for (vector<int>::iterator ia = atomListRow.begin(); |
306 | > | ia != atomListRow.end(); ++ia) { |
307 | > | int atom1 = (*ia); |
308 | > | atid = identsRow[atom1]; |
309 | > | if (atypeCutoff[atid] > groupCutoffRow[cg1]) { |
310 | > | groupCutoffRow[cg1] = atypeCutoff[atid]; |
311 | > | } |
312 | > | } |
313 | ||
314 | < | // still need: |
315 | < | // topoDist |
316 | < | // exclude |
314 | > | bool gTypeFound = false; |
315 | > | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
316 | > | if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) { |
317 | > | groupRowToGtype[cg1] = gt; |
318 | > | gTypeFound = true; |
319 | > | } |
320 | > | } |
321 | > | if (!gTypeFound) { |
322 | > | gTypeCutoffs.push_back( groupCutoffRow[cg1] ); |
323 | > | groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; |
324 | > | } |
325 | > | |
326 | > | } |
327 | > | vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); |
328 | > | groupColToGtype.resize(nGroupsInCol_); |
329 | > | for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { |
330 | > | vector<int> atomListCol = getAtomsInGroupColumn(cg2); |
331 | > | for (vector<int>::iterator jb = atomListCol.begin(); |
332 | > | jb != atomListCol.end(); ++jb) { |
333 | > | int atom2 = (*jb); |
334 | > | atid = identsCol[atom2]; |
335 | > | if (atypeCutoff[atid] > groupCutoffCol[cg2]) { |
336 | > | groupCutoffCol[cg2] = atypeCutoff[atid]; |
337 | > | } |
338 | > | } |
339 | > | bool gTypeFound = false; |
340 | > | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
341 | > | if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) { |
342 | > | groupColToGtype[cg2] = gt; |
343 | > | gTypeFound = true; |
344 | > | } |
345 | > | } |
346 | > | if (!gTypeFound) { |
347 | > | gTypeCutoffs.push_back( groupCutoffCol[cg2] ); |
348 | > | groupColToGtype[cg2] = gTypeCutoffs.size() - 1; |
349 | > | } |
350 | > | } |
351 | > | #else |
352 | > | |
353 | > | vector<RealType> groupCutoff(nGroups_, 0.0); |
354 | > | groupToGtype.resize(nGroups_); |
355 | > | for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
356 | > | groupCutoff[cg1] = 0.0; |
357 | > | vector<int> atomList = getAtomsInGroupRow(cg1); |
358 | > | for (vector<int>::iterator ia = atomList.begin(); |
359 | > | ia != atomList.end(); ++ia) { |
360 | > | int atom1 = (*ia); |
361 | > | atid = idents[atom1]; |
362 | > | if (atypeCutoff[atid] > groupCutoff[cg1]) |
363 | > | groupCutoff[cg1] = atypeCutoff[atid]; |
364 | > | } |
365 | > | |
366 | > | bool gTypeFound = false; |
367 | > | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
368 | > | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
369 | > | groupToGtype[cg1] = gt; |
370 | > | gTypeFound = true; |
371 | > | } |
372 | > | } |
373 | > | if (!gTypeFound) { |
374 | > | gTypeCutoffs.push_back( groupCutoff[cg1] ); |
375 | > | groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
376 | > | } |
377 | > | } |
378 | #endif | |
379 | + | |
380 | + | // Now we find the maximum group cutoff value present in the simulation |
381 | + | |
382 | + | RealType groupMax = *max_element(gTypeCutoffs.begin(), |
383 | + | gTypeCutoffs.end()); |
384 | + | |
385 | + | #ifdef IS_MPI |
386 | + | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, |
387 | + | MPI::MAX); |
388 | + | #endif |
389 | + | |
390 | + | RealType tradRcut = groupMax; |
391 | + | |
392 | + | for (int i = 0; i < gTypeCutoffs.size(); i++) { |
393 | + | for (int j = 0; j < gTypeCutoffs.size(); j++) { |
394 | + | RealType thisRcut; |
395 | + | switch(cutoffPolicy_) { |
396 | + | case TRADITIONAL: |
397 | + | thisRcut = tradRcut; |
398 | + | break; |
399 | + | case MIX: |
400 | + | thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); |
401 | + | break; |
402 | + | case MAX: |
403 | + | thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); |
404 | + | break; |
405 | + | default: |
406 | + | sprintf(painCave.errMsg, |
407 | + | "ForceMatrixDecomposition::createGtypeCutoffMap " |
408 | + | "hit an unknown cutoff policy!\n"); |
409 | + | painCave.severity = OPENMD_ERROR; |
410 | + | painCave.isFatal = 1; |
411 | + | simError(); |
412 | + | break; |
413 | + | } |
414 | + | |
415 | + | pair<int,int> key = make_pair(i,j); |
416 | + | gTypeCutoffMap[key].first = thisRcut; |
417 | + | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
418 | + | gTypeCutoffMap[key].second = thisRcut*thisRcut; |
419 | + | gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
420 | + | // sanity check |
421 | + | |
422 | + | if (userChoseCutoff_) { |
423 | + | if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
424 | + | sprintf(painCave.errMsg, |
425 | + | "ForceMatrixDecomposition::createGtypeCutoffMap " |
426 | + | "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
427 | + | painCave.severity = OPENMD_ERROR; |
428 | + | painCave.isFatal = 1; |
429 | + | simError(); |
430 | + | } |
431 | + | } |
432 | + | } |
433 | + | } |
434 | } | |
435 | + | |
436 | + | |
437 | + | groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
438 | + | int i, j; |
439 | + | #ifdef IS_MPI |
440 | + | i = groupRowToGtype[cg1]; |
441 | + | j = groupColToGtype[cg2]; |
442 | + | #else |
443 | + | i = groupToGtype[cg1]; |
444 | + | j = groupToGtype[cg2]; |
445 | + | #endif |
446 | + | return gTypeCutoffMap[make_pair(i,j)]; |
447 | + | } |
448 | + | |
449 | + | int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
450 | + | for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
451 | + | if (toposForAtom[atom1][j] == atom2) |
452 | + | return topoDist[atom1][j]; |
453 | + | } |
454 | + | return 0; |
455 | + | } |
456 | + | |
457 | + | void ForceMatrixDecomposition::zeroWorkArrays() { |
458 | + | pairwisePot = 0.0; |
459 | + | embeddingPot = 0.0; |
460 | + | |
461 | + | #ifdef IS_MPI |
462 | + | if (storageLayout_ & DataStorage::dslForce) { |
463 | + | fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); |
464 | + | fill(atomColData.force.begin(), atomColData.force.end(), V3Zero); |
465 | + | } |
466 | + | |
467 | + | if (storageLayout_ & DataStorage::dslTorque) { |
468 | + | fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero); |
469 | + | fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero); |
470 | + | } |
471 | ||
472 | + | fill(pot_row.begin(), pot_row.end(), |
473 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
474 | ||
475 | + | fill(pot_col.begin(), pot_col.end(), |
476 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
477 | ||
478 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
479 | + | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
480 | + | 0.0); |
481 | + | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), |
482 | + | 0.0); |
483 | + | } |
484 | + | |
485 | + | if (storageLayout_ & DataStorage::dslDensity) { |
486 | + | fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0); |
487 | + | fill(atomColData.density.begin(), atomColData.density.end(), 0.0); |
488 | + | } |
489 | + | |
490 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
491 | + | fill(atomRowData.functional.begin(), atomRowData.functional.end(), |
492 | + | 0.0); |
493 | + | fill(atomColData.functional.begin(), atomColData.functional.end(), |
494 | + | 0.0); |
495 | + | } |
496 | + | |
497 | + | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
498 | + | fill(atomRowData.functionalDerivative.begin(), |
499 | + | atomRowData.functionalDerivative.end(), 0.0); |
500 | + | fill(atomColData.functionalDerivative.begin(), |
501 | + | atomColData.functionalDerivative.end(), 0.0); |
502 | + | } |
503 | + | |
504 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
505 | + | fill(atomRowData.skippedCharge.begin(), |
506 | + | atomRowData.skippedCharge.end(), 0.0); |
507 | + | fill(atomColData.skippedCharge.begin(), |
508 | + | atomColData.skippedCharge.end(), 0.0); |
509 | + | } |
510 | + | |
511 | + | #endif |
512 | + | // even in parallel, we need to zero out the local arrays: |
513 | + | |
514 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
515 | + | fill(snap_->atomData.particlePot.begin(), |
516 | + | snap_->atomData.particlePot.end(), 0.0); |
517 | + | } |
518 | + | |
519 | + | if (storageLayout_ & DataStorage::dslDensity) { |
520 | + | fill(snap_->atomData.density.begin(), |
521 | + | snap_->atomData.density.end(), 0.0); |
522 | + | } |
523 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
524 | + | fill(snap_->atomData.functional.begin(), |
525 | + | snap_->atomData.functional.end(), 0.0); |
526 | + | } |
527 | + | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
528 | + | fill(snap_->atomData.functionalDerivative.begin(), |
529 | + | snap_->atomData.functionalDerivative.end(), 0.0); |
530 | + | } |
531 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
532 | + | fill(snap_->atomData.skippedCharge.begin(), |
533 | + | snap_->atomData.skippedCharge.end(), 0.0); |
534 | + | } |
535 | + | |
536 | + | } |
537 | + | |
538 | + | |
539 | void ForceMatrixDecomposition::distributeData() { | |
540 | + | snap_ = sman_->getCurrentSnapshot(); |
541 | + | storageLayout_ = sman_->getStorageLayout(); |
542 | #ifdef IS_MPI | |
113 | – | Snapshot* snap = sman_->getCurrentSnapshot(); |
543 | ||
544 | // gather up the atomic positions | |
545 | < | AtomCommVectorRow->gather(snap->atomData.position, |
546 | < | snap->atomIData.position); |
547 | < | AtomCommVectorColumn->gather(snap->atomData.position, |
548 | < | snap->atomJData.position); |
545 | > | AtomPlanVectorRow->gather(snap_->atomData.position, |
546 | > | atomRowData.position); |
547 | > | AtomPlanVectorColumn->gather(snap_->atomData.position, |
548 | > | atomColData.position); |
549 | ||
550 | // gather up the cutoff group positions | |
551 | < | cgCommVectorRow->gather(snap->cgData.position, |
552 | < | snap->cgIData.position); |
553 | < | cgCommVectorColumn->gather(snap->cgData.position, |
554 | < | snap->cgJData.position); |
551 | > | |
552 | > | cgPlanVectorRow->gather(snap_->cgData.position, |
553 | > | cgRowData.position); |
554 | > | |
555 | > | cgPlanVectorColumn->gather(snap_->cgData.position, |
556 | > | cgColData.position); |
557 | > | |
558 | ||
559 | // if needed, gather the atomic rotation matrices | |
560 | < | if (snap->atomData.getStorageLayout() & DataStorage::dslAmat) { |
561 | < | AtomCommMatrixRow->gather(snap->atomData.aMat, |
562 | < | snap->atomIData.aMat); |
563 | < | AtomCommMatrixColumn->gather(snap->atomData.aMat, |
564 | < | snap->atomJData.aMat); |
560 | > | if (storageLayout_ & DataStorage::dslAmat) { |
561 | > | AtomPlanMatrixRow->gather(snap_->atomData.aMat, |
562 | > | atomRowData.aMat); |
563 | > | AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
564 | > | atomColData.aMat); |
565 | } | |
566 | ||
567 | // if needed, gather the atomic eletrostatic frames | |
568 | < | if (snap->atomData.getStorageLayout() & DataStorage::dslElectroFrame) { |
569 | < | AtomCommMatrixRow->gather(snap->atomData.electroFrame, |
570 | < | snap->atomIData.electroFrame); |
571 | < | AtomCommMatrixColumn->gather(snap->atomData.electroFrame, |
572 | < | snap->atomJData.electroFrame); |
568 | > | if (storageLayout_ & DataStorage::dslElectroFrame) { |
569 | > | AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
570 | > | atomRowData.electroFrame); |
571 | > | AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
572 | > | atomColData.electroFrame); |
573 | } | |
574 | + | |
575 | #endif | |
576 | } | |
577 | ||
578 | + | /* collects information obtained during the pre-pair loop onto local |
579 | + | * data structures. |
580 | + | */ |
581 | void ForceMatrixDecomposition::collectIntermediateData() { | |
582 | + | snap_ = sman_->getCurrentSnapshot(); |
583 | + | storageLayout_ = sman_->getStorageLayout(); |
584 | #ifdef IS_MPI | |
147 | – | Snapshot* snap = sman_->getCurrentSnapshot(); |
585 | ||
586 | < | if (snap->atomData.getStorageLayout() & DataStorage::dslDensity) { |
587 | < | |
588 | < | AtomCommRealRow->scatter(snap->atomIData.density, |
589 | < | snap->atomData.density); |
590 | < | |
591 | < | int n = snap->atomData.density.size(); |
592 | < | std::vector<RealType> rho_tmp(n, 0.0); |
593 | < | AtomCommRealColumn->scatter(snap->atomJData.density, rho_tmp); |
586 | > | if (storageLayout_ & DataStorage::dslDensity) { |
587 | > | |
588 | > | AtomPlanRealRow->scatter(atomRowData.density, |
589 | > | snap_->atomData.density); |
590 | > | |
591 | > | int n = snap_->atomData.density.size(); |
592 | > | vector<RealType> rho_tmp(n, 0.0); |
593 | > | AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); |
594 | for (int i = 0; i < n; i++) | |
595 | < | snap->atomData.density[i] += rho_tmp[i]; |
595 | > | snap_->atomData.density[i] += rho_tmp[i]; |
596 | } | |
597 | #endif | |
598 | } | |
599 | < | |
599 | > | |
600 | > | /* |
601 | > | * redistributes information obtained during the pre-pair loop out to |
602 | > | * row and column-indexed data structures |
603 | > | */ |
604 | void ForceMatrixDecomposition::distributeIntermediateData() { | |
605 | + | snap_ = sman_->getCurrentSnapshot(); |
606 | + | storageLayout_ = sman_->getStorageLayout(); |
607 | #ifdef IS_MPI | |
608 | < | Snapshot* snap = sman_->getCurrentSnapshot(); |
609 | < | if (snap->atomData.getStorageLayout() & DataStorage::dslFunctional) { |
610 | < | AtomCommRealRow->gather(snap->atomData.functional, |
611 | < | snap->atomIData.functional); |
612 | < | AtomCommRealColumn->gather(snap->atomData.functional, |
170 | < | snap->atomJData.functional); |
608 | > | if (storageLayout_ & DataStorage::dslFunctional) { |
609 | > | AtomPlanRealRow->gather(snap_->atomData.functional, |
610 | > | atomRowData.functional); |
611 | > | AtomPlanRealColumn->gather(snap_->atomData.functional, |
612 | > | atomColData.functional); |
613 | } | |
614 | ||
615 | < | if (snap->atomData.getStorageLayout() & DataStorage::dslFunctionalDerivative) { |
616 | < | AtomCommRealRow->gather(snap->atomData.functionalDerivative, |
617 | < | snap->atomIData.functionalDerivative); |
618 | < | AtomCommRealColumn->gather(snap->atomData.functionalDerivative, |
619 | < | snap->atomJData.functionalDerivative); |
615 | > | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
616 | > | AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, |
617 | > | atomRowData.functionalDerivative); |
618 | > | AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, |
619 | > | atomColData.functionalDerivative); |
620 | } | |
621 | #endif | |
622 | } | |
623 | ||
624 | ||
625 | void ForceMatrixDecomposition::collectData() { | |
626 | < | #ifdef IS_MPI |
627 | < | Snapshot* snap = sman_->getCurrentSnapshot(); |
628 | < | |
629 | < | int n = snap->atomData.force.size(); |
626 | > | snap_ = sman_->getCurrentSnapshot(); |
627 | > | storageLayout_ = sman_->getStorageLayout(); |
628 | > | #ifdef IS_MPI |
629 | > | int n = snap_->atomData.force.size(); |
630 | vector<Vector3d> frc_tmp(n, V3Zero); | |
631 | ||
632 | < | AtomCommVectorRow->scatter(snap->atomIData.force, frc_tmp); |
632 | > | AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); |
633 | for (int i = 0; i < n; i++) { | |
634 | < | snap->atomData.force[i] += frc_tmp[i]; |
634 | > | snap_->atomData.force[i] += frc_tmp[i]; |
635 | frc_tmp[i] = 0.0; | |
636 | } | |
637 | ||
638 | < | AtomCommVectorColumn->scatter(snap->atomJData.force, frc_tmp); |
639 | < | for (int i = 0; i < n; i++) |
640 | < | snap->atomData.force[i] += frc_tmp[i]; |
641 | < | |
642 | < | |
643 | < | if (snap->atomData.getStorageLayout() & DataStorage::dslTorque) { |
638 | > | AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); |
639 | > | for (int i = 0; i < n; i++) { |
640 | > | snap_->atomData.force[i] += frc_tmp[i]; |
641 | > | } |
642 | > | |
643 | > | if (storageLayout_ & DataStorage::dslTorque) { |
644 | ||
645 | < | int nt = snap->atomData.force.size(); |
645 | > | int nt = snap_->atomData.torque.size(); |
646 | vector<Vector3d> trq_tmp(nt, V3Zero); | |
647 | ||
648 | < | AtomCommVectorRow->scatter(snap->atomIData.torque, trq_tmp); |
649 | < | for (int i = 0; i < n; i++) { |
650 | < | snap->atomData.torque[i] += trq_tmp[i]; |
648 | > | AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); |
649 | > | for (int i = 0; i < nt; i++) { |
650 | > | snap_->atomData.torque[i] += trq_tmp[i]; |
651 | trq_tmp[i] = 0.0; | |
652 | } | |
653 | ||
654 | < | AtomCommVectorColumn->scatter(snap->atomJData.torque, trq_tmp); |
655 | < | for (int i = 0; i < n; i++) |
656 | < | snap->atomData.torque[i] += trq_tmp[i]; |
654 | > | AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); |
655 | > | for (int i = 0; i < nt; i++) |
656 | > | snap_->atomData.torque[i] += trq_tmp[i]; |
657 | } | |
658 | + | |
659 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
660 | + | |
661 | + | int ns = snap_->atomData.skippedCharge.size(); |
662 | + | vector<RealType> skch_tmp(ns, 0.0); |
663 | + | |
664 | + | AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
665 | + | for (int i = 0; i < ns; i++) { |
666 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
667 | + | skch_tmp[i] = 0.0; |
668 | + | } |
669 | + | |
670 | + | AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
671 | + | for (int i = 0; i < ns; i++) |
672 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
673 | + | } |
674 | ||
675 | < | int nLocal = snap->getNumberOfAtoms(); |
675 | > | nLocal_ = snap_->getNumberOfAtoms(); |
676 | ||
677 | < | vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES, |
678 | < | vector<RealType> (nLocal, 0.0)); |
677 | > | vector<potVec> pot_temp(nLocal_, |
678 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
679 | > | |
680 | > | // scatter/gather pot_row into the members of my column |
681 | > | |
682 | > | AtomPlanPotRow->scatter(pot_row, pot_temp); |
683 | > | |
684 | > | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
685 | > | pairwisePot += pot_temp[ii]; |
686 | ||
687 | < | for (int i = 0; i < N_INTERACTION_FAMILIES; i++) { |
688 | < | AtomCommRealRow->scatter(pot_row[i], pot_temp[i]); |
689 | < | for (int ii = 0; ii < pot_temp[i].size(); ii++ ) { |
690 | < | pot_local[i] += pot_temp[i][ii]; |
691 | < | } |
687 | > | fill(pot_temp.begin(), pot_temp.end(), |
688 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
689 | > | |
690 | > | AtomPlanPotColumn->scatter(pot_col, pot_temp); |
691 | > | |
692 | > | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
693 | > | pairwisePot += pot_temp[ii]; |
694 | > | |
695 | > | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
696 | > | RealType ploc1 = pairwisePot[ii]; |
697 | > | RealType ploc2 = 0.0; |
698 | > | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
699 | > | pairwisePot[ii] = ploc2; |
700 | > | } |
701 | > | |
702 | > | #endif |
703 | > | |
704 | > | } |
705 | > | |
706 | > | int ForceMatrixDecomposition::getNAtomsInRow() { |
707 | > | #ifdef IS_MPI |
708 | > | return nAtomsInRow_; |
709 | > | #else |
710 | > | return nLocal_; |
711 | > | #endif |
712 | > | } |
713 | > | |
714 | > | /** |
715 | > | * returns the list of atoms belonging to this group. |
716 | > | */ |
717 | > | vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
718 | > | #ifdef IS_MPI |
719 | > | return groupListRow_[cg1]; |
720 | > | #else |
721 | > | return groupList_[cg1]; |
722 | > | #endif |
723 | > | } |
724 | > | |
725 | > | vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
726 | > | #ifdef IS_MPI |
727 | > | return groupListCol_[cg2]; |
728 | > | #else |
729 | > | return groupList_[cg2]; |
730 | > | #endif |
731 | > | } |
732 | > | |
733 | > | Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ |
734 | > | Vector3d d; |
735 | > | |
736 | > | #ifdef IS_MPI |
737 | > | d = cgColData.position[cg2] - cgRowData.position[cg1]; |
738 | > | #else |
739 | > | d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; |
740 | > | #endif |
741 | > | |
742 | > | snap_->wrapVector(d); |
743 | > | return d; |
744 | > | } |
745 | > | |
746 | > | |
747 | > | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ |
748 | > | |
749 | > | Vector3d d; |
750 | > | |
751 | > | #ifdef IS_MPI |
752 | > | d = cgRowData.position[cg1] - atomRowData.position[atom1]; |
753 | > | #else |
754 | > | d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; |
755 | > | #endif |
756 | > | |
757 | > | snap_->wrapVector(d); |
758 | > | return d; |
759 | > | } |
760 | > | |
761 | > | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){ |
762 | > | Vector3d d; |
763 | > | |
764 | > | #ifdef IS_MPI |
765 | > | d = cgColData.position[cg2] - atomColData.position[atom2]; |
766 | > | #else |
767 | > | d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; |
768 | > | #endif |
769 | > | |
770 | > | snap_->wrapVector(d); |
771 | > | return d; |
772 | > | } |
773 | > | |
774 | > | RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
775 | > | #ifdef IS_MPI |
776 | > | return massFactorsRow[atom1]; |
777 | > | #else |
778 | > | return massFactors[atom1]; |
779 | > | #endif |
780 | > | } |
781 | > | |
782 | > | RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
783 | > | #ifdef IS_MPI |
784 | > | return massFactorsCol[atom2]; |
785 | > | #else |
786 | > | return massFactors[atom2]; |
787 | > | #endif |
788 | > | |
789 | > | } |
790 | > | |
791 | > | Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ |
792 | > | Vector3d d; |
793 | > | |
794 | > | #ifdef IS_MPI |
795 | > | d = atomColData.position[atom2] - atomRowData.position[atom1]; |
796 | > | #else |
797 | > | d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; |
798 | > | #endif |
799 | > | |
800 | > | snap_->wrapVector(d); |
801 | > | return d; |
802 | > | } |
803 | > | |
804 | > | vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
805 | > | return excludesForAtom[atom1]; |
806 | > | } |
807 | > | |
808 | > | /** |
809 | > | * We need to exclude some overcounted interactions that result from |
810 | > | * the parallel decomposition. |
811 | > | */ |
812 | > | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
813 | > | int unique_id_1, unique_id_2; |
814 | > | |
815 | > | #ifdef IS_MPI |
816 | > | // in MPI, we have to look up the unique IDs for each atom |
817 | > | unique_id_1 = AtomRowToGlobal[atom1]; |
818 | > | unique_id_2 = AtomColToGlobal[atom2]; |
819 | > | |
820 | > | // this situation should only arise in MPI simulations |
821 | > | if (unique_id_1 == unique_id_2) return true; |
822 | > | |
823 | > | // this prevents us from doing the pair on multiple processors |
824 | > | if (unique_id_1 < unique_id_2) { |
825 | > | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
826 | > | } else { |
827 | > | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
828 | > | } |
829 | > | #endif |
830 | > | return false; |
831 | > | } |
832 | > | |
833 | > | /** |
834 | > | * We need to handle the interactions for atoms who are involved in |
835 | > | * the same rigid body as well as some short range interactions |
836 | > | * (bonds, bends, torsions) differently from other interactions. |
837 | > | * We'll still visit the pairwise routines, but with a flag that |
838 | > | * tells those routines to exclude the pair from direct long range |
839 | > | * interactions. Some indirect interactions (notably reaction |
840 | > | * field) must still be handled for these pairs. |
841 | > | */ |
842 | > | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
843 | > | int unique_id_2; |
844 | > | #ifdef IS_MPI |
845 | > | // in MPI, we have to look up the unique IDs for the row atom. |
846 | > | unique_id_2 = AtomColToGlobal[atom2]; |
847 | > | #else |
848 | > | // in the normal loop, the atom numbers are unique |
849 | > | unique_id_2 = atom2; |
850 | > | #endif |
851 | > | |
852 | > | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
853 | > | i != excludesForAtom[atom1].end(); ++i) { |
854 | > | if ( (*i) == unique_id_2 ) return true; |
855 | > | } |
856 | > | |
857 | > | return false; |
858 | > | } |
859 | > | |
860 | > | |
861 | > | void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ |
862 | > | #ifdef IS_MPI |
863 | > | atomRowData.force[atom1] += fg; |
864 | > | #else |
865 | > | snap_->atomData.force[atom1] += fg; |
866 | > | #endif |
867 | > | } |
868 | > | |
869 | > | void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){ |
870 | > | #ifdef IS_MPI |
871 | > | atomColData.force[atom2] += fg; |
872 | > | #else |
873 | > | snap_->atomData.force[atom2] += fg; |
874 | > | #endif |
875 | > | } |
876 | > | |
877 | > | // filling interaction blocks with pointers |
878 | > | void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
879 | > | int atom1, int atom2) { |
880 | > | |
881 | > | idat.excluded = excludeAtomPair(atom1, atom2); |
882 | > | |
883 | > | #ifdef IS_MPI |
884 | > | idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
885 | > | //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
886 | > | // ff_->getAtomType(identsCol[atom2]) ); |
887 | > | |
888 | > | if (storageLayout_ & DataStorage::dslAmat) { |
889 | > | idat.A1 = &(atomRowData.aMat[atom1]); |
890 | > | idat.A2 = &(atomColData.aMat[atom2]); |
891 | > | } |
892 | > | |
893 | > | if (storageLayout_ & DataStorage::dslElectroFrame) { |
894 | > | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
895 | > | idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
896 | > | } |
897 | > | |
898 | > | if (storageLayout_ & DataStorage::dslTorque) { |
899 | > | idat.t1 = &(atomRowData.torque[atom1]); |
900 | > | idat.t2 = &(atomColData.torque[atom2]); |
901 | > | } |
902 | > | |
903 | > | if (storageLayout_ & DataStorage::dslDensity) { |
904 | > | idat.rho1 = &(atomRowData.density[atom1]); |
905 | > | idat.rho2 = &(atomColData.density[atom2]); |
906 | > | } |
907 | > | |
908 | > | if (storageLayout_ & DataStorage::dslFunctional) { |
909 | > | idat.frho1 = &(atomRowData.functional[atom1]); |
910 | > | idat.frho2 = &(atomColData.functional[atom2]); |
911 | > | } |
912 | > | |
913 | > | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
914 | > | idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); |
915 | > | idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); |
916 | > | } |
917 | > | |
918 | > | if (storageLayout_ & DataStorage::dslParticlePot) { |
919 | > | idat.particlePot1 = &(atomRowData.particlePot[atom1]); |
920 | > | idat.particlePot2 = &(atomColData.particlePot[atom2]); |
921 | > | } |
922 | > | |
923 | > | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
924 | > | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
925 | > | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
926 | } | |
927 | + | |
928 | + | #else |
929 | + | |
930 | + | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
931 | + | //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
932 | + | // ff_->getAtomType(idents[atom2]) ); |
933 | + | |
934 | + | if (storageLayout_ & DataStorage::dslAmat) { |
935 | + | idat.A1 = &(snap_->atomData.aMat[atom1]); |
936 | + | idat.A2 = &(snap_->atomData.aMat[atom2]); |
937 | + | } |
938 | + | |
939 | + | if (storageLayout_ & DataStorage::dslElectroFrame) { |
940 | + | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
941 | + | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
942 | + | } |
943 | + | |
944 | + | if (storageLayout_ & DataStorage::dslTorque) { |
945 | + | idat.t1 = &(snap_->atomData.torque[atom1]); |
946 | + | idat.t2 = &(snap_->atomData.torque[atom2]); |
947 | + | } |
948 | + | |
949 | + | if (storageLayout_ & DataStorage::dslDensity) { |
950 | + | idat.rho1 = &(snap_->atomData.density[atom1]); |
951 | + | idat.rho2 = &(snap_->atomData.density[atom2]); |
952 | + | } |
953 | + | |
954 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
955 | + | idat.frho1 = &(snap_->atomData.functional[atom1]); |
956 | + | idat.frho2 = &(snap_->atomData.functional[atom2]); |
957 | + | } |
958 | + | |
959 | + | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
960 | + | idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); |
961 | + | idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); |
962 | + | } |
963 | + | |
964 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
965 | + | idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); |
966 | + | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
967 | + | } |
968 | + | |
969 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
970 | + | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
971 | + | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
972 | + | } |
973 | #endif | |
974 | } | |
975 | + | |
976 | ||
977 | + | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
978 | + | #ifdef IS_MPI |
979 | + | pot_row[atom1] += 0.5 * *(idat.pot); |
980 | + | pot_col[atom2] += 0.5 * *(idat.pot); |
981 | + | |
982 | + | atomRowData.force[atom1] += *(idat.f1); |
983 | + | atomColData.force[atom2] -= *(idat.f1); |
984 | + | #else |
985 | + | pairwisePot += *(idat.pot); |
986 | + | |
987 | + | snap_->atomData.force[atom1] += *(idat.f1); |
988 | + | snap_->atomData.force[atom2] -= *(idat.f1); |
989 | + | #endif |
990 | + | |
991 | + | } |
992 | + | |
993 | + | /* |
994 | + | * buildNeighborList |
995 | + | * |
996 | + | * first element of pair is row-indexed CutoffGroup |
997 | + | * second element of pair is column-indexed CutoffGroup |
998 | + | */ |
999 | + | vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { |
1000 | + | |
1001 | + | vector<pair<int, int> > neighborList; |
1002 | + | groupCutoffs cuts; |
1003 | + | bool doAllPairs = false; |
1004 | + | |
1005 | + | #ifdef IS_MPI |
1006 | + | cellListRow_.clear(); |
1007 | + | cellListCol_.clear(); |
1008 | + | #else |
1009 | + | cellList_.clear(); |
1010 | + | #endif |
1011 | + | |
1012 | + | RealType rList_ = (largestRcut_ + skinThickness_); |
1013 | + | RealType rl2 = rList_ * rList_; |
1014 | + | Snapshot* snap_ = sman_->getCurrentSnapshot(); |
1015 | + | Mat3x3d Hmat = snap_->getHmat(); |
1016 | + | Vector3d Hx = Hmat.getColumn(0); |
1017 | + | Vector3d Hy = Hmat.getColumn(1); |
1018 | + | Vector3d Hz = Hmat.getColumn(2); |
1019 | + | |
1020 | + | nCells_.x() = (int) ( Hx.length() )/ rList_; |
1021 | + | nCells_.y() = (int) ( Hy.length() )/ rList_; |
1022 | + | nCells_.z() = (int) ( Hz.length() )/ rList_; |
1023 | + | |
1024 | + | // handle small boxes where the cell offsets can end up repeating cells |
1025 | + | |
1026 | + | if (nCells_.x() < 3) doAllPairs = true; |
1027 | + | if (nCells_.y() < 3) doAllPairs = true; |
1028 | + | if (nCells_.z() < 3) doAllPairs = true; |
1029 | + | |
1030 | + | Mat3x3d invHmat = snap_->getInvHmat(); |
1031 | + | Vector3d rs, scaled, dr; |
1032 | + | Vector3i whichCell; |
1033 | + | int cellIndex; |
1034 | + | int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
1035 | + | |
1036 | + | #ifdef IS_MPI |
1037 | + | cellListRow_.resize(nCtot); |
1038 | + | cellListCol_.resize(nCtot); |
1039 | + | #else |
1040 | + | cellList_.resize(nCtot); |
1041 | + | #endif |
1042 | + | |
1043 | + | if (!doAllPairs) { |
1044 | + | #ifdef IS_MPI |
1045 | + | |
1046 | + | for (int i = 0; i < nGroupsInRow_; i++) { |
1047 | + | rs = cgRowData.position[i]; |
1048 | + | |
1049 | + | // scaled positions relative to the box vectors |
1050 | + | scaled = invHmat * rs; |
1051 | + | |
1052 | + | // wrap the vector back into the unit box by subtracting integer box |
1053 | + | // numbers |
1054 | + | for (int j = 0; j < 3; j++) { |
1055 | + | scaled[j] -= roundMe(scaled[j]); |
1056 | + | scaled[j] += 0.5; |
1057 | + | } |
1058 | + | |
1059 | + | // find xyz-indices of cell that cutoffGroup is in. |
1060 | + | whichCell.x() = nCells_.x() * scaled.x(); |
1061 | + | whichCell.y() = nCells_.y() * scaled.y(); |
1062 | + | whichCell.z() = nCells_.z() * scaled.z(); |
1063 | + | |
1064 | + | // find single index of this cell: |
1065 | + | cellIndex = Vlinear(whichCell, nCells_); |
1066 | + | |
1067 | + | // add this cutoff group to the list of groups in this cell; |
1068 | + | cellListRow_[cellIndex].push_back(i); |
1069 | + | } |
1070 | + | for (int i = 0; i < nGroupsInCol_; i++) { |
1071 | + | rs = cgColData.position[i]; |
1072 | + | |
1073 | + | // scaled positions relative to the box vectors |
1074 | + | scaled = invHmat * rs; |
1075 | + | |
1076 | + | // wrap the vector back into the unit box by subtracting integer box |
1077 | + | // numbers |
1078 | + | for (int j = 0; j < 3; j++) { |
1079 | + | scaled[j] -= roundMe(scaled[j]); |
1080 | + | scaled[j] += 0.5; |
1081 | + | } |
1082 | + | |
1083 | + | // find xyz-indices of cell that cutoffGroup is in. |
1084 | + | whichCell.x() = nCells_.x() * scaled.x(); |
1085 | + | whichCell.y() = nCells_.y() * scaled.y(); |
1086 | + | whichCell.z() = nCells_.z() * scaled.z(); |
1087 | + | |
1088 | + | // find single index of this cell: |
1089 | + | cellIndex = Vlinear(whichCell, nCells_); |
1090 | + | |
1091 | + | // add this cutoff group to the list of groups in this cell; |
1092 | + | cellListCol_[cellIndex].push_back(i); |
1093 | + | } |
1094 | + | #else |
1095 | + | for (int i = 0; i < nGroups_; i++) { |
1096 | + | rs = snap_->cgData.position[i]; |
1097 | + | |
1098 | + | // scaled positions relative to the box vectors |
1099 | + | scaled = invHmat * rs; |
1100 | + | |
1101 | + | // wrap the vector back into the unit box by subtracting integer box |
1102 | + | // numbers |
1103 | + | for (int j = 0; j < 3; j++) { |
1104 | + | scaled[j] -= roundMe(scaled[j]); |
1105 | + | scaled[j] += 0.5; |
1106 | + | } |
1107 | + | |
1108 | + | // find xyz-indices of cell that cutoffGroup is in. |
1109 | + | whichCell.x() = nCells_.x() * scaled.x(); |
1110 | + | whichCell.y() = nCells_.y() * scaled.y(); |
1111 | + | whichCell.z() = nCells_.z() * scaled.z(); |
1112 | + | |
1113 | + | // find single index of this cell: |
1114 | + | cellIndex = Vlinear(whichCell, nCells_); |
1115 | + | |
1116 | + | // add this cutoff group to the list of groups in this cell; |
1117 | + | cellList_[cellIndex].push_back(i); |
1118 | + | } |
1119 | + | #endif |
1120 | + | |
1121 | + | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1122 | + | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1123 | + | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1124 | + | Vector3i m1v(m1x, m1y, m1z); |
1125 | + | int m1 = Vlinear(m1v, nCells_); |
1126 | + | |
1127 | + | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1128 | + | os != cellOffsets_.end(); ++os) { |
1129 | + | |
1130 | + | Vector3i m2v = m1v + (*os); |
1131 | + | |
1132 | + | if (m2v.x() >= nCells_.x()) { |
1133 | + | m2v.x() = 0; |
1134 | + | } else if (m2v.x() < 0) { |
1135 | + | m2v.x() = nCells_.x() - 1; |
1136 | + | } |
1137 | + | |
1138 | + | if (m2v.y() >= nCells_.y()) { |
1139 | + | m2v.y() = 0; |
1140 | + | } else if (m2v.y() < 0) { |
1141 | + | m2v.y() = nCells_.y() - 1; |
1142 | + | } |
1143 | + | |
1144 | + | if (m2v.z() >= nCells_.z()) { |
1145 | + | m2v.z() = 0; |
1146 | + | } else if (m2v.z() < 0) { |
1147 | + | m2v.z() = nCells_.z() - 1; |
1148 | + | } |
1149 | + | |
1150 | + | int m2 = Vlinear (m2v, nCells_); |
1151 | + | |
1152 | + | #ifdef IS_MPI |
1153 | + | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1154 | + | j1 != cellListRow_[m1].end(); ++j1) { |
1155 | + | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1156 | + | j2 != cellListCol_[m2].end(); ++j2) { |
1157 | + | |
1158 | + | // In parallel, we need to visit *all* pairs of row & |
1159 | + | // column indicies and will truncate later on. |
1160 | + | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1161 | + | snap_->wrapVector(dr); |
1162 | + | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1163 | + | if (dr.lengthSquare() < cuts.third) { |
1164 | + | neighborList.push_back(make_pair((*j1), (*j2))); |
1165 | + | } |
1166 | + | } |
1167 | + | } |
1168 | + | #else |
1169 | + | |
1170 | + | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1171 | + | j1 != cellList_[m1].end(); ++j1) { |
1172 | + | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1173 | + | j2 != cellList_[m2].end(); ++j2) { |
1174 | + | |
1175 | + | // Always do this if we're in different cells or if |
1176 | + | // we're in the same cell and the global index of the |
1177 | + | // j2 cutoff group is less than the j1 cutoff group |
1178 | + | |
1179 | + | if (m2 != m1 || (*j2) < (*j1)) { |
1180 | + | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1181 | + | snap_->wrapVector(dr); |
1182 | + | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1183 | + | if (dr.lengthSquare() < cuts.third) { |
1184 | + | neighborList.push_back(make_pair((*j1), (*j2))); |
1185 | + | } |
1186 | + | } |
1187 | + | } |
1188 | + | } |
1189 | + | #endif |
1190 | + | } |
1191 | + | } |
1192 | + | } |
1193 | + | } |
1194 | + | } else { |
1195 | + | // branch to do all cutoff group pairs |
1196 | + | #ifdef IS_MPI |
1197 | + | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1198 | + | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1199 | + | dr = cgColData.position[j2] - cgRowData.position[j1]; |
1200 | + | snap_->wrapVector(dr); |
1201 | + | cuts = getGroupCutoffs( j1, j2 ); |
1202 | + | if (dr.lengthSquare() < cuts.third) { |
1203 | + | neighborList.push_back(make_pair(j1, j2)); |
1204 | + | } |
1205 | + | } |
1206 | + | } |
1207 | + | #else |
1208 | + | for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1209 | + | for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1210 | + | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1211 | + | snap_->wrapVector(dr); |
1212 | + | cuts = getGroupCutoffs( j1, j2 ); |
1213 | + | if (dr.lengthSquare() < cuts.third) { |
1214 | + | neighborList.push_back(make_pair(j1, j2)); |
1215 | + | } |
1216 | + | } |
1217 | + | } |
1218 | + | #endif |
1219 | + | } |
1220 | + | |
1221 | + | // save the local cutoff group positions for the check that is |
1222 | + | // done on each loop: |
1223 | + | saved_CG_positions_.clear(); |
1224 | + | for (int i = 0; i < nGroups_; i++) |
1225 | + | saved_CG_positions_.push_back(snap_->cgData.position[i]); |
1226 | + | |
1227 | + | return neighborList; |
1228 | + | } |
1229 | } //end namespace OpenMD |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |