# | Line 47 | Line 47 | namespace OpenMD { | |
---|---|---|
47 | using namespace std; | |
48 | namespace OpenMD { | |
49 | ||
50 | + | ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { |
51 | + | |
52 | + | // In a parallel computation, row and colum scans must visit all |
53 | + | // surrounding cells (not just the 14 upper triangular blocks that |
54 | + | // are used when the processor can see all pairs) |
55 | + | #ifdef IS_MPI |
56 | + | cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
57 | + | cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
58 | + | cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
59 | + | cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
60 | + | cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
61 | + | cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
62 | + | cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
63 | + | cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
64 | + | cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
65 | + | cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
66 | + | cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
67 | + | cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
68 | + | cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
69 | + | #endif |
70 | + | } |
71 | + | |
72 | + | |
73 | /** | |
74 | * distributeInitialData is essentially a copy of the older fortran | |
75 | * SimulationSetup | |
76 | */ | |
54 | – | |
77 | void ForceMatrixDecomposition::distributeInitialData() { | |
78 | snap_ = sman_->getCurrentSnapshot(); | |
79 | storageLayout_ = sman_->getStorageLayout(); | |
80 | ff_ = info_->getForceField(); | |
81 | nLocal_ = snap_->getNumberOfAtoms(); | |
82 | < | |
82 | > | |
83 | nGroups_ = info_->getNLocalCutoffGroups(); | |
62 | – | cerr << "in dId, nGroups = " << nGroups_ << "\n"; |
84 | // gather the information for atomtype IDs (atids): | |
85 | idents = info_->getIdentArray(); | |
86 | AtomLocalToGlobal = info_->getGlobalAtomIndices(); | |
87 | cgLocalToGlobal = info_->getGlobalGroupIndices(); | |
88 | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); | |
89 | + | |
90 | massFactors = info_->getMassFactors(); | |
91 | ||
92 | < | PairList excludes = info_->getExcludedInteractions(); |
93 | < | PairList oneTwo = info_->getOneTwoInteractions(); |
94 | < | PairList oneThree = info_->getOneThreeInteractions(); |
95 | < | PairList oneFour = info_->getOneFourInteractions(); |
92 | > | PairList* excludes = info_->getExcludedInteractions(); |
93 | > | PairList* oneTwo = info_->getOneTwoInteractions(); |
94 | > | PairList* oneThree = info_->getOneThreeInteractions(); |
95 | > | PairList* oneFour = info_->getOneFourInteractions(); |
96 | ||
97 | #ifdef IS_MPI | |
98 | ||
99 | < | AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
100 | < | AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
79 | < | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
80 | < | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
81 | < | AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
99 | > | MPI::Intracomm row = rowComm.getComm(); |
100 | > | MPI::Intracomm col = colComm.getComm(); |
101 | ||
102 | < | AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
103 | < | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
104 | < | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
105 | < | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
106 | < | AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
102 | > | AtomPlanIntRow = new Plan<int>(row, nLocal_); |
103 | > | AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
104 | > | AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); |
105 | > | AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); |
106 | > | AtomPlanPotRow = new Plan<potVec>(row, nLocal_); |
107 | ||
108 | < | cgCommIntRow = new Communicator<Row,int>(nGroups_); |
109 | < | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
110 | < | cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
111 | < | cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
108 | > | AtomPlanIntColumn = new Plan<int>(col, nLocal_); |
109 | > | AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); |
110 | > | AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); |
111 | > | AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); |
112 | > | AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); |
113 | ||
114 | < | nAtomsInRow_ = AtomCommIntRow->getSize(); |
115 | < | nAtomsInCol_ = AtomCommIntColumn->getSize(); |
116 | < | nGroupsInRow_ = cgCommIntRow->getSize(); |
117 | < | nGroupsInCol_ = cgCommIntColumn->getSize(); |
114 | > | cgPlanIntRow = new Plan<int>(row, nGroups_); |
115 | > | cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); |
116 | > | cgPlanIntColumn = new Plan<int>(col, nGroups_); |
117 | > | cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); |
118 | ||
119 | + | nAtomsInRow_ = AtomPlanIntRow->getSize(); |
120 | + | nAtomsInCol_ = AtomPlanIntColumn->getSize(); |
121 | + | nGroupsInRow_ = cgPlanIntRow->getSize(); |
122 | + | nGroupsInCol_ = cgPlanIntColumn->getSize(); |
123 | + | |
124 | // Modify the data storage objects with the correct layouts and sizes: | |
125 | atomRowData.resize(nAtomsInRow_); | |
126 | atomRowData.setStorageLayout(storageLayout_); | |
# | Line 109 | Line 134 | namespace OpenMD { | |
134 | identsRow.resize(nAtomsInRow_); | |
135 | identsCol.resize(nAtomsInCol_); | |
136 | ||
137 | < | AtomCommIntRow->gather(idents, identsRow); |
138 | < | AtomCommIntColumn->gather(idents, identsCol); |
137 | > | AtomPlanIntRow->gather(idents, identsRow); |
138 | > | AtomPlanIntColumn->gather(idents, identsCol); |
139 | ||
140 | < | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
141 | < | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
142 | < | |
118 | < | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
119 | < | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
140 | > | // allocate memory for the parallel objects |
141 | > | atypesRow.resize(nAtomsInRow_); |
142 | > | atypesCol.resize(nAtomsInCol_); |
143 | ||
144 | < | AtomCommRealRow->gather(massFactors, massFactorsRow); |
145 | < | AtomCommRealColumn->gather(massFactors, massFactorsCol); |
144 | > | for (int i = 0; i < nAtomsInRow_; i++) |
145 | > | atypesRow[i] = ff_->getAtomType(identsRow[i]); |
146 | > | for (int i = 0; i < nAtomsInCol_; i++) |
147 | > | atypesCol[i] = ff_->getAtomType(identsCol[i]); |
148 | ||
149 | + | pot_row.resize(nAtomsInRow_); |
150 | + | pot_col.resize(nAtomsInCol_); |
151 | + | |
152 | + | AtomRowToGlobal.resize(nAtomsInRow_); |
153 | + | AtomColToGlobal.resize(nAtomsInCol_); |
154 | + | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
155 | + | AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
156 | + | |
157 | + | cgRowToGlobal.resize(nGroupsInRow_); |
158 | + | cgColToGlobal.resize(nGroupsInCol_); |
159 | + | cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
160 | + | cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
161 | + | |
162 | + | massFactorsRow.resize(nAtomsInRow_); |
163 | + | massFactorsCol.resize(nAtomsInCol_); |
164 | + | AtomPlanRealRow->gather(massFactors, massFactorsRow); |
165 | + | AtomPlanRealColumn->gather(massFactors, massFactorsCol); |
166 | + | |
167 | groupListRow_.clear(); | |
168 | groupListRow_.resize(nGroupsInRow_); | |
169 | for (int i = 0; i < nGroupsInRow_; i++) { | |
# | Line 143 | Line 186 | namespace OpenMD { | |
186 | } | |
187 | } | |
188 | ||
189 | < | skipsForAtom.clear(); |
190 | < | skipsForAtom.resize(nAtomsInRow_); |
189 | > | excludesForAtom.clear(); |
190 | > | excludesForAtom.resize(nAtomsInRow_); |
191 | toposForAtom.clear(); | |
192 | toposForAtom.resize(nAtomsInRow_); | |
193 | topoDist.clear(); | |
# | Line 155 | Line 198 | namespace OpenMD { | |
198 | for (int j = 0; j < nAtomsInCol_; j++) { | |
199 | int jglob = AtomColToGlobal[j]; | |
200 | ||
201 | < | if (excludes.hasPair(iglob, jglob)) |
202 | < | skipsForAtom[i].push_back(j); |
201 | > | if (excludes->hasPair(iglob, jglob)) |
202 | > | excludesForAtom[i].push_back(j); |
203 | ||
204 | < | if (oneTwo.hasPair(iglob, jglob)) { |
204 | > | if (oneTwo->hasPair(iglob, jglob)) { |
205 | toposForAtom[i].push_back(j); | |
206 | topoDist[i].push_back(1); | |
207 | } else { | |
208 | < | if (oneThree.hasPair(iglob, jglob)) { |
208 | > | if (oneThree->hasPair(iglob, jglob)) { |
209 | toposForAtom[i].push_back(j); | |
210 | topoDist[i].push_back(2); | |
211 | } else { | |
212 | < | if (oneFour.hasPair(iglob, jglob)) { |
212 | > | if (oneFour->hasPair(iglob, jglob)) { |
213 | toposForAtom[i].push_back(j); | |
214 | topoDist[i].push_back(3); | |
215 | } | |
# | Line 177 | Line 220 | namespace OpenMD { | |
220 | ||
221 | #endif | |
222 | ||
223 | + | // allocate memory for the parallel objects |
224 | + | atypesLocal.resize(nLocal_); |
225 | + | |
226 | + | for (int i = 0; i < nLocal_; i++) |
227 | + | atypesLocal[i] = ff_->getAtomType(idents[i]); |
228 | + | |
229 | groupList_.clear(); | |
230 | groupList_.resize(nGroups_); | |
231 | for (int i = 0; i < nGroups_; i++) { | |
# | Line 189 | Line 238 | namespace OpenMD { | |
238 | } | |
239 | } | |
240 | ||
241 | < | skipsForAtom.clear(); |
242 | < | skipsForAtom.resize(nLocal_); |
241 | > | excludesForAtom.clear(); |
242 | > | excludesForAtom.resize(nLocal_); |
243 | toposForAtom.clear(); | |
244 | toposForAtom.resize(nLocal_); | |
245 | topoDist.clear(); | |
# | Line 202 | Line 251 | namespace OpenMD { | |
251 | for (int j = 0; j < nLocal_; j++) { | |
252 | int jglob = AtomLocalToGlobal[j]; | |
253 | ||
254 | < | if (excludes.hasPair(iglob, jglob)) |
255 | < | skipsForAtom[i].push_back(j); |
254 | > | if (excludes->hasPair(iglob, jglob)) |
255 | > | excludesForAtom[i].push_back(j); |
256 | ||
257 | < | if (oneTwo.hasPair(iglob, jglob)) { |
257 | > | if (oneTwo->hasPair(iglob, jglob)) { |
258 | toposForAtom[i].push_back(j); | |
259 | topoDist[i].push_back(1); | |
260 | } else { | |
261 | < | if (oneThree.hasPair(iglob, jglob)) { |
261 | > | if (oneThree->hasPair(iglob, jglob)) { |
262 | toposForAtom[i].push_back(j); | |
263 | topoDist[i].push_back(2); | |
264 | } else { | |
265 | < | if (oneFour.hasPair(iglob, jglob)) { |
265 | > | if (oneFour->hasPair(iglob, jglob)) { |
266 | toposForAtom[i].push_back(j); | |
267 | topoDist[i].push_back(3); | |
268 | } | |
# | Line 223 | Line 272 | namespace OpenMD { | |
272 | } | |
273 | ||
274 | createGtypeCutoffMap(); | |
275 | + | |
276 | } | |
277 | ||
278 | void ForceMatrixDecomposition::createGtypeCutoffMap() { | |
279 | < | |
279 | > | |
280 | RealType tol = 1e-6; | |
281 | + | largestRcut_ = 0.0; |
282 | RealType rc; | |
283 | int atid; | |
284 | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); | |
285 | < | vector<RealType> atypeCutoff; |
286 | < | atypeCutoff.resize( atypes.size() ); |
285 | > | |
286 | > | map<int, RealType> atypeCutoff; |
287 | ||
288 | for (set<AtomType*>::iterator at = atypes.begin(); | |
289 | at != atypes.end(); ++at){ | |
290 | atid = (*at)->getIdent(); | |
291 | < | |
241 | < | if (userChoseCutoff_) |
291 | > | if (userChoseCutoff_) |
292 | atypeCutoff[atid] = userCutoff_; | |
293 | else | |
294 | atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); | |
295 | } | |
296 | < | |
296 | > | |
297 | vector<RealType> gTypeCutoffs; | |
248 | – | |
298 | // first we do a single loop over the cutoff groups to find the | |
299 | // largest cutoff for any atypes present in this group. | |
300 | #ifdef IS_MPI | |
# | Line 303 | Line 352 | namespace OpenMD { | |
352 | ||
353 | vector<RealType> groupCutoff(nGroups_, 0.0); | |
354 | groupToGtype.resize(nGroups_); | |
306 | – | |
307 | – | cerr << "nGroups = " << nGroups_ << "\n"; |
355 | for (int cg1 = 0; cg1 < nGroups_; cg1++) { | |
309 | – | |
356 | groupCutoff[cg1] = 0.0; | |
357 | vector<int> atomList = getAtomsInGroupRow(cg1); | |
312 | – | |
358 | for (vector<int>::iterator ia = atomList.begin(); | |
359 | ia != atomList.end(); ++ia) { | |
360 | int atom1 = (*ia); | |
361 | atid = idents[atom1]; | |
362 | < | if (atypeCutoff[atid] > groupCutoff[cg1]) { |
362 | > | if (atypeCutoff[atid] > groupCutoff[cg1]) |
363 | groupCutoff[cg1] = atypeCutoff[atid]; | |
319 | – | } |
364 | } | |
365 | < | |
365 | > | |
366 | bool gTypeFound = false; | |
367 | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { | |
368 | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { | |
# | Line 326 | Line 370 | namespace OpenMD { | |
370 | gTypeFound = true; | |
371 | } | |
372 | } | |
373 | < | if (!gTypeFound) { |
373 | > | if (!gTypeFound) { |
374 | gTypeCutoffs.push_back( groupCutoff[cg1] ); | |
375 | groupToGtype[cg1] = gTypeCutoffs.size() - 1; | |
376 | } | |
377 | } | |
378 | #endif | |
379 | ||
336 | – | cerr << "gTypeCutoffs.size() = " << gTypeCutoffs.size() << "\n"; |
380 | // Now we find the maximum group cutoff value present in the simulation | |
381 | ||
382 | < | RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); |
382 | > | RealType groupMax = *max_element(gTypeCutoffs.begin(), |
383 | > | gTypeCutoffs.end()); |
384 | ||
385 | #ifdef IS_MPI | |
386 | < | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); |
386 | > | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, |
387 | > | MPI::MAX); |
388 | #endif | |
389 | ||
390 | RealType tradRcut = groupMax; | |
# | Line 369 | Line 414 | namespace OpenMD { | |
414 | ||
415 | pair<int,int> key = make_pair(i,j); | |
416 | gTypeCutoffMap[key].first = thisRcut; | |
372 | – | |
417 | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; | |
374 | – | |
418 | gTypeCutoffMap[key].second = thisRcut*thisRcut; | |
376 | – | |
419 | gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); | |
378 | – | |
420 | // sanity check | |
421 | ||
422 | if (userChoseCutoff_) { | |
# | Line 435 | Line 476 | namespace OpenMD { | |
476 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
477 | ||
478 | if (storageLayout_ & DataStorage::dslParticlePot) { | |
479 | < | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); |
480 | < | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); |
479 | > | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
480 | > | 0.0); |
481 | > | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), |
482 | > | 0.0); |
483 | } | |
484 | ||
485 | if (storageLayout_ & DataStorage::dslDensity) { | |
# | Line 445 | Line 488 | namespace OpenMD { | |
488 | } | |
489 | ||
490 | if (storageLayout_ & DataStorage::dslFunctional) { | |
491 | < | fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); |
492 | < | fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); |
491 | > | fill(atomRowData.functional.begin(), atomRowData.functional.end(), |
492 | > | 0.0); |
493 | > | fill(atomColData.functional.begin(), atomColData.functional.end(), |
494 | > | 0.0); |
495 | } | |
496 | ||
497 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
# | Line 456 | Line 501 | namespace OpenMD { | |
501 | atomColData.functionalDerivative.end(), 0.0); | |
502 | } | |
503 | ||
504 | < | #else |
505 | < | |
504 | > | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
505 | > | fill(atomRowData.skippedCharge.begin(), |
506 | > | atomRowData.skippedCharge.end(), 0.0); |
507 | > | fill(atomColData.skippedCharge.begin(), |
508 | > | atomColData.skippedCharge.end(), 0.0); |
509 | > | } |
510 | > | |
511 | > | #endif |
512 | > | // even in parallel, we need to zero out the local arrays: |
513 | > | |
514 | if (storageLayout_ & DataStorage::dslParticlePot) { | |
515 | fill(snap_->atomData.particlePot.begin(), | |
516 | snap_->atomData.particlePot.end(), 0.0); | |
# | Line 475 | Line 528 | namespace OpenMD { | |
528 | fill(snap_->atomData.functionalDerivative.begin(), | |
529 | snap_->atomData.functionalDerivative.end(), 0.0); | |
530 | } | |
531 | < | #endif |
531 | > | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
532 | > | fill(snap_->atomData.skippedCharge.begin(), |
533 | > | snap_->atomData.skippedCharge.end(), 0.0); |
534 | > | } |
535 | ||
536 | } | |
537 | ||
# | Line 486 | Line 542 | namespace OpenMD { | |
542 | #ifdef IS_MPI | |
543 | ||
544 | // gather up the atomic positions | |
545 | < | AtomCommVectorRow->gather(snap_->atomData.position, |
545 | > | AtomPlanVectorRow->gather(snap_->atomData.position, |
546 | atomRowData.position); | |
547 | < | AtomCommVectorColumn->gather(snap_->atomData.position, |
547 | > | AtomPlanVectorColumn->gather(snap_->atomData.position, |
548 | atomColData.position); | |
549 | ||
550 | // gather up the cutoff group positions | |
551 | < | cgCommVectorRow->gather(snap_->cgData.position, |
551 | > | |
552 | > | cgPlanVectorRow->gather(snap_->cgData.position, |
553 | cgRowData.position); | |
554 | < | cgCommVectorColumn->gather(snap_->cgData.position, |
554 | > | |
555 | > | cgPlanVectorColumn->gather(snap_->cgData.position, |
556 | cgColData.position); | |
557 | + | |
558 | ||
559 | // if needed, gather the atomic rotation matrices | |
560 | if (storageLayout_ & DataStorage::dslAmat) { | |
561 | < | AtomCommMatrixRow->gather(snap_->atomData.aMat, |
561 | > | AtomPlanMatrixRow->gather(snap_->atomData.aMat, |
562 | atomRowData.aMat); | |
563 | < | AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
563 | > | AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
564 | atomColData.aMat); | |
565 | } | |
566 | ||
567 | // if needed, gather the atomic eletrostatic frames | |
568 | if (storageLayout_ & DataStorage::dslElectroFrame) { | |
569 | < | AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
569 | > | AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
570 | atomRowData.electroFrame); | |
571 | < | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
571 | > | AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
572 | atomColData.electroFrame); | |
573 | } | |
574 | + | |
575 | #endif | |
576 | } | |
577 | ||
# | Line 525 | Line 585 | namespace OpenMD { | |
585 | ||
586 | if (storageLayout_ & DataStorage::dslDensity) { | |
587 | ||
588 | < | AtomCommRealRow->scatter(atomRowData.density, |
588 | > | AtomPlanRealRow->scatter(atomRowData.density, |
589 | snap_->atomData.density); | |
590 | ||
591 | int n = snap_->atomData.density.size(); | |
592 | vector<RealType> rho_tmp(n, 0.0); | |
593 | < | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
593 | > | AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); |
594 | for (int i = 0; i < n; i++) | |
595 | snap_->atomData.density[i] += rho_tmp[i]; | |
596 | } | |
# | Line 546 | Line 606 | namespace OpenMD { | |
606 | storageLayout_ = sman_->getStorageLayout(); | |
607 | #ifdef IS_MPI | |
608 | if (storageLayout_ & DataStorage::dslFunctional) { | |
609 | < | AtomCommRealRow->gather(snap_->atomData.functional, |
609 | > | AtomPlanRealRow->gather(snap_->atomData.functional, |
610 | atomRowData.functional); | |
611 | < | AtomCommRealColumn->gather(snap_->atomData.functional, |
611 | > | AtomPlanRealColumn->gather(snap_->atomData.functional, |
612 | atomColData.functional); | |
613 | } | |
614 | ||
615 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
616 | < | AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
616 | > | AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, |
617 | atomRowData.functionalDerivative); | |
618 | < | AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
618 | > | AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, |
619 | atomColData.functionalDerivative); | |
620 | } | |
621 | #endif | |
# | Line 569 | Line 629 | namespace OpenMD { | |
629 | int n = snap_->atomData.force.size(); | |
630 | vector<Vector3d> frc_tmp(n, V3Zero); | |
631 | ||
632 | < | AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
632 | > | AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); |
633 | for (int i = 0; i < n; i++) { | |
634 | snap_->atomData.force[i] += frc_tmp[i]; | |
635 | frc_tmp[i] = 0.0; | |
636 | } | |
637 | ||
638 | < | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
639 | < | for (int i = 0; i < n; i++) |
638 | > | AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); |
639 | > | for (int i = 0; i < n; i++) { |
640 | snap_->atomData.force[i] += frc_tmp[i]; | |
641 | < | |
642 | < | |
641 | > | } |
642 | > | |
643 | if (storageLayout_ & DataStorage::dslTorque) { | |
644 | ||
645 | < | int nt = snap_->atomData.force.size(); |
645 | > | int nt = snap_->atomData.torque.size(); |
646 | vector<Vector3d> trq_tmp(nt, V3Zero); | |
647 | ||
648 | < | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
649 | < | for (int i = 0; i < n; i++) { |
648 | > | AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); |
649 | > | for (int i = 0; i < nt; i++) { |
650 | snap_->atomData.torque[i] += trq_tmp[i]; | |
651 | trq_tmp[i] = 0.0; | |
652 | } | |
653 | ||
654 | < | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
655 | < | for (int i = 0; i < n; i++) |
654 | > | AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); |
655 | > | for (int i = 0; i < nt; i++) |
656 | snap_->atomData.torque[i] += trq_tmp[i]; | |
657 | } | |
658 | + | |
659 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
660 | + | |
661 | + | int ns = snap_->atomData.skippedCharge.size(); |
662 | + | vector<RealType> skch_tmp(ns, 0.0); |
663 | + | |
664 | + | AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
665 | + | for (int i = 0; i < ns; i++) { |
666 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
667 | + | skch_tmp[i] = 0.0; |
668 | + | } |
669 | + | |
670 | + | AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
671 | + | for (int i = 0; i < ns; i++) |
672 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
673 | + | } |
674 | ||
675 | nLocal_ = snap_->getNumberOfAtoms(); | |
676 | ||
# | Line 603 | Line 679 | namespace OpenMD { | |
679 | ||
680 | // scatter/gather pot_row into the members of my column | |
681 | ||
682 | < | AtomCommPotRow->scatter(pot_row, pot_temp); |
682 | > | AtomPlanPotRow->scatter(pot_row, pot_temp); |
683 | ||
684 | for (int ii = 0; ii < pot_temp.size(); ii++ ) | |
685 | pairwisePot += pot_temp[ii]; | |
# | Line 611 | Line 687 | namespace OpenMD { | |
687 | fill(pot_temp.begin(), pot_temp.end(), | |
688 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
689 | ||
690 | < | AtomCommPotColumn->scatter(pot_col, pot_temp); |
690 | > | AtomPlanPotColumn->scatter(pot_col, pot_temp); |
691 | ||
692 | for (int ii = 0; ii < pot_temp.size(); ii++ ) | |
693 | pairwisePot += pot_temp[ii]; | |
694 | + | |
695 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
696 | + | RealType ploc1 = pairwisePot[ii]; |
697 | + | RealType ploc2 = 0.0; |
698 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
699 | + | pairwisePot[ii] = ploc2; |
700 | + | } |
701 | + | |
702 | #endif | |
703 | ||
704 | } | |
# | Line 691 | Line 775 | namespace OpenMD { | |
775 | #ifdef IS_MPI | |
776 | return massFactorsRow[atom1]; | |
777 | #else | |
694 | – | cerr << "mfs = " << massFactors.size() << " atom1 = " << atom1 << "\n"; |
778 | return massFactors[atom1]; | |
779 | #endif | |
780 | } | |
# | Line 718 | Line 801 | namespace OpenMD { | |
801 | return d; | |
802 | } | |
803 | ||
804 | < | vector<int> ForceMatrixDecomposition::getSkipsForAtom(int atom1) { |
805 | < | return skipsForAtom[atom1]; |
804 | > | vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
805 | > | return excludesForAtom[atom1]; |
806 | } | |
807 | ||
808 | /** | |
809 | < | * There are a number of reasons to skip a pair or a |
727 | < | * particle. Mostly we do this to exclude atoms who are involved in |
728 | < | * short range interactions (bonds, bends, torsions), but we also |
729 | < | * need to exclude some overcounted interactions that result from |
809 | > | * We need to exclude some overcounted interactions that result from |
810 | * the parallel decomposition. | |
811 | */ | |
812 | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { | |
813 | int unique_id_1, unique_id_2; | |
814 | < | |
814 | > | |
815 | #ifdef IS_MPI | |
816 | // in MPI, we have to look up the unique IDs for each atom | |
817 | unique_id_1 = AtomRowToGlobal[atom1]; | |
# | Line 746 | Line 826 | namespace OpenMD { | |
826 | } else { | |
827 | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | |
828 | } | |
829 | + | #endif |
830 | + | return false; |
831 | + | } |
832 | + | |
833 | + | /** |
834 | + | * We need to handle the interactions for atoms who are involved in |
835 | + | * the same rigid body as well as some short range interactions |
836 | + | * (bonds, bends, torsions) differently from other interactions. |
837 | + | * We'll still visit the pairwise routines, but with a flag that |
838 | + | * tells those routines to exclude the pair from direct long range |
839 | + | * interactions. Some indirect interactions (notably reaction |
840 | + | * field) must still be handled for these pairs. |
841 | + | */ |
842 | + | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
843 | + | int unique_id_2; |
844 | + | #ifdef IS_MPI |
845 | + | // in MPI, we have to look up the unique IDs for the row atom. |
846 | + | unique_id_2 = AtomColToGlobal[atom2]; |
847 | #else | |
848 | // in the normal loop, the atom numbers are unique | |
751 | – | unique_id_1 = atom1; |
849 | unique_id_2 = atom2; | |
850 | #endif | |
851 | ||
852 | < | for (vector<int>::iterator i = skipsForAtom[atom1].begin(); |
853 | < | i != skipsForAtom[atom1].end(); ++i) { |
852 | > | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
853 | > | i != excludesForAtom[atom1].end(); ++i) { |
854 | if ( (*i) == unique_id_2 ) return true; | |
855 | } | |
856 | ||
# | Line 779 | Line 876 | namespace OpenMD { | |
876 | ||
877 | // filling interaction blocks with pointers | |
878 | void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, | |
879 | < | int atom1, int atom2) { |
879 | > | int atom1, int atom2) { |
880 | > | |
881 | > | idat.excluded = excludeAtomPair(atom1, atom2); |
882 | > | |
883 | #ifdef IS_MPI | |
884 | + | idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
885 | + | //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
886 | + | // ff_->getAtomType(identsCol[atom2]) ); |
887 | ||
785 | – | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
786 | – | ff_->getAtomType(identsCol[atom2]) ); |
787 | – | |
888 | if (storageLayout_ & DataStorage::dslAmat) { | |
889 | idat.A1 = &(atomRowData.aMat[atom1]); | |
890 | idat.A2 = &(atomColData.aMat[atom2]); | |
# | Line 820 | Line 920 | namespace OpenMD { | |
920 | idat.particlePot2 = &(atomColData.particlePot[atom2]); | |
921 | } | |
922 | ||
923 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
924 | + | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
925 | + | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
926 | + | } |
927 | + | |
928 | #else | |
929 | ||
930 | < | idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
931 | < | ff_->getAtomType(idents[atom2]) ); |
930 | > | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
931 | > | //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
932 | > | // ff_->getAtomType(idents[atom2]) ); |
933 | ||
934 | if (storageLayout_ & DataStorage::dslAmat) { | |
935 | idat.A1 = &(snap_->atomData.aMat[atom1]); | |
# | Line 860 | Line 966 | namespace OpenMD { | |
966 | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); | |
967 | } | |
968 | ||
969 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
970 | + | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
971 | + | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
972 | + | } |
973 | #endif | |
974 | } | |
975 | ||
# | Line 877 | Line 987 | namespace OpenMD { | |
987 | snap_->atomData.force[atom1] += *(idat.f1); | |
988 | snap_->atomData.force[atom2] -= *(idat.f1); | |
989 | #endif | |
990 | < | |
881 | < | } |
882 | < | |
883 | < | |
884 | < | void ForceMatrixDecomposition::fillSkipData(InteractionData &idat, |
885 | < | int atom1, int atom2) { |
886 | < | #ifdef IS_MPI |
887 | < | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
888 | < | ff_->getAtomType(identsCol[atom2]) ); |
889 | < | |
890 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { |
891 | < | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
892 | < | idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
893 | < | } |
894 | < | |
895 | < | if (storageLayout_ & DataStorage::dslTorque) { |
896 | < | idat.t1 = &(atomRowData.torque[atom1]); |
897 | < | idat.t2 = &(atomColData.torque[atom2]); |
898 | < | } |
899 | < | |
900 | < | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
901 | < | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
902 | < | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
903 | < | } |
904 | < | #else |
905 | < | idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
906 | < | ff_->getAtomType(idents[atom2]) ); |
907 | < | |
908 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { |
909 | < | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
910 | < | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
911 | < | } |
912 | < | |
913 | < | if (storageLayout_ & DataStorage::dslTorque) { |
914 | < | idat.t1 = &(snap_->atomData.torque[atom1]); |
915 | < | idat.t2 = &(snap_->atomData.torque[atom2]); |
916 | < | } |
917 | < | |
918 | < | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
919 | < | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
920 | < | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
921 | < | } |
922 | < | #endif |
990 | > | |
991 | } | |
992 | ||
925 | – | |
926 | – | void ForceMatrixDecomposition::unpackSkipData(InteractionData &idat, int atom1, int atom2) { |
927 | – | #ifdef IS_MPI |
928 | – | pot_row[atom1] += 0.5 * *(idat.pot); |
929 | – | pot_col[atom2] += 0.5 * *(idat.pot); |
930 | – | #else |
931 | – | pairwisePot += *(idat.pot); |
932 | – | #endif |
933 | – | |
934 | – | } |
935 | – | |
936 | – | |
993 | /* | |
994 | * buildNeighborList | |
995 | * | |
# | Line 944 | Line 1000 | namespace OpenMD { | |
1000 | ||
1001 | vector<pair<int, int> > neighborList; | |
1002 | groupCutoffs cuts; | |
1003 | + | bool doAllPairs = false; |
1004 | + | |
1005 | #ifdef IS_MPI | |
1006 | cellListRow_.clear(); | |
1007 | cellListCol_.clear(); | |
# | Line 963 | Line 1021 | namespace OpenMD { | |
1021 | nCells_.y() = (int) ( Hy.length() )/ rList_; | |
1022 | nCells_.z() = (int) ( Hz.length() )/ rList_; | |
1023 | ||
1024 | + | // handle small boxes where the cell offsets can end up repeating cells |
1025 | + | |
1026 | + | if (nCells_.x() < 3) doAllPairs = true; |
1027 | + | if (nCells_.y() < 3) doAllPairs = true; |
1028 | + | if (nCells_.z() < 3) doAllPairs = true; |
1029 | + | |
1030 | Mat3x3d invHmat = snap_->getInvHmat(); | |
1031 | Vector3d rs, scaled, dr; | |
1032 | Vector3i whichCell; | |
# | Line 976 | Line 1040 | namespace OpenMD { | |
1040 | cellList_.resize(nCtot); | |
1041 | #endif | |
1042 | ||
1043 | + | if (!doAllPairs) { |
1044 | #ifdef IS_MPI | |
980 | – | for (int i = 0; i < nGroupsInRow_; i++) { |
981 | – | rs = cgRowData.position[i]; |
1045 | ||
1046 | < | // scaled positions relative to the box vectors |
1047 | < | scaled = invHmat * rs; |
1048 | < | |
1049 | < | // wrap the vector back into the unit box by subtracting integer box |
1050 | < | // numbers |
1051 | < | for (int j = 0; j < 3; j++) { |
1052 | < | scaled[j] -= roundMe(scaled[j]); |
1053 | < | scaled[j] += 0.5; |
1046 | > | for (int i = 0; i < nGroupsInRow_; i++) { |
1047 | > | rs = cgRowData.position[i]; |
1048 | > | |
1049 | > | // scaled positions relative to the box vectors |
1050 | > | scaled = invHmat * rs; |
1051 | > | |
1052 | > | // wrap the vector back into the unit box by subtracting integer box |
1053 | > | // numbers |
1054 | > | for (int j = 0; j < 3; j++) { |
1055 | > | scaled[j] -= roundMe(scaled[j]); |
1056 | > | scaled[j] += 0.5; |
1057 | > | } |
1058 | > | |
1059 | > | // find xyz-indices of cell that cutoffGroup is in. |
1060 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1061 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1062 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1063 | > | |
1064 | > | // find single index of this cell: |
1065 | > | cellIndex = Vlinear(whichCell, nCells_); |
1066 | > | |
1067 | > | // add this cutoff group to the list of groups in this cell; |
1068 | > | cellListRow_[cellIndex].push_back(i); |
1069 | } | |
1070 | < | |
1071 | < | // find xyz-indices of cell that cutoffGroup is in. |
1072 | < | whichCell.x() = nCells_.x() * scaled.x(); |
1073 | < | whichCell.y() = nCells_.y() * scaled.y(); |
1074 | < | whichCell.z() = nCells_.z() * scaled.z(); |
1075 | < | |
1076 | < | // find single index of this cell: |
1077 | < | cellIndex = Vlinear(whichCell, nCells_); |
1078 | < | |
1079 | < | // add this cutoff group to the list of groups in this cell; |
1080 | < | cellListRow_[cellIndex].push_back(i); |
1081 | < | } |
1082 | < | |
1083 | < | for (int i = 0; i < nGroupsInCol_; i++) { |
1084 | < | rs = cgColData.position[i]; |
1085 | < | |
1086 | < | // scaled positions relative to the box vectors |
1087 | < | scaled = invHmat * rs; |
1088 | < | |
1089 | < | // wrap the vector back into the unit box by subtracting integer box |
1090 | < | // numbers |
1091 | < | for (int j = 0; j < 3; j++) { |
1092 | < | scaled[j] -= roundMe(scaled[j]); |
1015 | < | scaled[j] += 0.5; |
1070 | > | for (int i = 0; i < nGroupsInCol_; i++) { |
1071 | > | rs = cgColData.position[i]; |
1072 | > | |
1073 | > | // scaled positions relative to the box vectors |
1074 | > | scaled = invHmat * rs; |
1075 | > | |
1076 | > | // wrap the vector back into the unit box by subtracting integer box |
1077 | > | // numbers |
1078 | > | for (int j = 0; j < 3; j++) { |
1079 | > | scaled[j] -= roundMe(scaled[j]); |
1080 | > | scaled[j] += 0.5; |
1081 | > | } |
1082 | > | |
1083 | > | // find xyz-indices of cell that cutoffGroup is in. |
1084 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1085 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1086 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1087 | > | |
1088 | > | // find single index of this cell: |
1089 | > | cellIndex = Vlinear(whichCell, nCells_); |
1090 | > | |
1091 | > | // add this cutoff group to the list of groups in this cell; |
1092 | > | cellListCol_[cellIndex].push_back(i); |
1093 | } | |
1017 | – | |
1018 | – | // find xyz-indices of cell that cutoffGroup is in. |
1019 | – | whichCell.x() = nCells_.x() * scaled.x(); |
1020 | – | whichCell.y() = nCells_.y() * scaled.y(); |
1021 | – | whichCell.z() = nCells_.z() * scaled.z(); |
1022 | – | |
1023 | – | // find single index of this cell: |
1024 | – | cellIndex = Vlinear(whichCell, nCells_); |
1025 | – | |
1026 | – | // add this cutoff group to the list of groups in this cell; |
1027 | – | cellListCol_[cellIndex].push_back(i); |
1028 | – | } |
1094 | #else | |
1095 | < | for (int i = 0; i < nGroups_; i++) { |
1096 | < | rs = snap_->cgData.position[i]; |
1097 | < | |
1098 | < | // scaled positions relative to the box vectors |
1099 | < | scaled = invHmat * rs; |
1100 | < | |
1101 | < | // wrap the vector back into the unit box by subtracting integer box |
1102 | < | // numbers |
1103 | < | for (int j = 0; j < 3; j++) { |
1104 | < | scaled[j] -= roundMe(scaled[j]); |
1105 | < | scaled[j] += 0.5; |
1095 | > | for (int i = 0; i < nGroups_; i++) { |
1096 | > | rs = snap_->cgData.position[i]; |
1097 | > | |
1098 | > | // scaled positions relative to the box vectors |
1099 | > | scaled = invHmat * rs; |
1100 | > | |
1101 | > | // wrap the vector back into the unit box by subtracting integer box |
1102 | > | // numbers |
1103 | > | for (int j = 0; j < 3; j++) { |
1104 | > | scaled[j] -= roundMe(scaled[j]); |
1105 | > | scaled[j] += 0.5; |
1106 | > | } |
1107 | > | |
1108 | > | // find xyz-indices of cell that cutoffGroup is in. |
1109 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1110 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1111 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1112 | > | |
1113 | > | // find single index of this cell: |
1114 | > | cellIndex = Vlinear(whichCell, nCells_); |
1115 | > | |
1116 | > | // add this cutoff group to the list of groups in this cell; |
1117 | > | cellList_[cellIndex].push_back(i); |
1118 | } | |
1042 | – | |
1043 | – | // find xyz-indices of cell that cutoffGroup is in. |
1044 | – | whichCell.x() = nCells_.x() * scaled.x(); |
1045 | – | whichCell.y() = nCells_.y() * scaled.y(); |
1046 | – | whichCell.z() = nCells_.z() * scaled.z(); |
1047 | – | |
1048 | – | // find single index of this cell: |
1049 | – | cellIndex = Vlinear(whichCell, nCells_); |
1050 | – | |
1051 | – | // add this cutoff group to the list of groups in this cell; |
1052 | – | cellList_[cellIndex].push_back(i); |
1053 | – | } |
1119 | #endif | |
1120 | ||
1121 | < | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1122 | < | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1123 | < | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1124 | < | Vector3i m1v(m1x, m1y, m1z); |
1125 | < | int m1 = Vlinear(m1v, nCells_); |
1061 | < | |
1062 | < | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1063 | < | os != cellOffsets_.end(); ++os) { |
1121 | > | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1122 | > | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1123 | > | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1124 | > | Vector3i m1v(m1x, m1y, m1z); |
1125 | > | int m1 = Vlinear(m1v, nCells_); |
1126 | ||
1127 | < | Vector3i m2v = m1v + (*os); |
1128 | < | |
1129 | < | if (m2v.x() >= nCells_.x()) { |
1130 | < | m2v.x() = 0; |
1131 | < | } else if (m2v.x() < 0) { |
1132 | < | m2v.x() = nCells_.x() - 1; |
1133 | < | } |
1134 | < | |
1135 | < | if (m2v.y() >= nCells_.y()) { |
1136 | < | m2v.y() = 0; |
1137 | < | } else if (m2v.y() < 0) { |
1138 | < | m2v.y() = nCells_.y() - 1; |
1139 | < | } |
1140 | < | |
1141 | < | if (m2v.z() >= nCells_.z()) { |
1142 | < | m2v.z() = 0; |
1143 | < | } else if (m2v.z() < 0) { |
1144 | < | m2v.z() = nCells_.z() - 1; |
1145 | < | } |
1146 | < | |
1147 | < | int m2 = Vlinear (m2v, nCells_); |
1148 | < | |
1127 | > | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1128 | > | os != cellOffsets_.end(); ++os) { |
1129 | > | |
1130 | > | Vector3i m2v = m1v + (*os); |
1131 | > | |
1132 | > | if (m2v.x() >= nCells_.x()) { |
1133 | > | m2v.x() = 0; |
1134 | > | } else if (m2v.x() < 0) { |
1135 | > | m2v.x() = nCells_.x() - 1; |
1136 | > | } |
1137 | > | |
1138 | > | if (m2v.y() >= nCells_.y()) { |
1139 | > | m2v.y() = 0; |
1140 | > | } else if (m2v.y() < 0) { |
1141 | > | m2v.y() = nCells_.y() - 1; |
1142 | > | } |
1143 | > | |
1144 | > | if (m2v.z() >= nCells_.z()) { |
1145 | > | m2v.z() = 0; |
1146 | > | } else if (m2v.z() < 0) { |
1147 | > | m2v.z() = nCells_.z() - 1; |
1148 | > | } |
1149 | > | |
1150 | > | int m2 = Vlinear (m2v, nCells_); |
1151 | > | |
1152 | #ifdef IS_MPI | |
1153 | < | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1154 | < | j1 != cellListRow_[m1].end(); ++j1) { |
1155 | < | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1156 | < | j2 != cellListCol_[m2].end(); ++j2) { |
1157 | < | |
1158 | < | // Always do this if we're in different cells or if |
1159 | < | // we're in the same cell and the global index of the |
1095 | < | // j2 cutoff group is less than the j1 cutoff group |
1096 | < | |
1097 | < | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1153 | > | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1154 | > | j1 != cellListRow_[m1].end(); ++j1) { |
1155 | > | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1156 | > | j2 != cellListCol_[m2].end(); ++j2) { |
1157 | > | |
1158 | > | // In parallel, we need to visit *all* pairs of row & |
1159 | > | // column indicies and will truncate later on. |
1160 | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | |
1161 | snap_->wrapVector(dr); | |
1162 | cuts = getGroupCutoffs( (*j1), (*j2) ); | |
1163 | if (dr.lengthSquare() < cuts.third) { | |
1164 | neighborList.push_back(make_pair((*j1), (*j2))); | |
1165 | < | } |
1165 | > | } |
1166 | } | |
1167 | } | |
1106 | – | } |
1168 | #else | |
1169 | < | |
1170 | < | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1171 | < | j1 != cellList_[m1].end(); ++j1) { |
1172 | < | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1173 | < | j2 != cellList_[m2].end(); ++j2) { |
1174 | < | |
1175 | < | // Always do this if we're in different cells or if |
1176 | < | // we're in the same cell and the global index of the |
1177 | < | // j2 cutoff group is less than the j1 cutoff group |
1178 | < | |
1179 | < | if (m2 != m1 || (*j2) < (*j1)) { |
1180 | < | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1181 | < | snap_->wrapVector(dr); |
1182 | < | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1183 | < | if (dr.lengthSquare() < cuts.third) { |
1184 | < | neighborList.push_back(make_pair((*j1), (*j2))); |
1169 | > | |
1170 | > | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1171 | > | j1 != cellList_[m1].end(); ++j1) { |
1172 | > | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1173 | > | j2 != cellList_[m2].end(); ++j2) { |
1174 | > | |
1175 | > | // Always do this if we're in different cells or if |
1176 | > | // we're in the same cell and the global index of the |
1177 | > | // j2 cutoff group is less than the j1 cutoff group |
1178 | > | |
1179 | > | if (m2 != m1 || (*j2) < (*j1)) { |
1180 | > | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1181 | > | snap_->wrapVector(dr); |
1182 | > | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1183 | > | if (dr.lengthSquare() < cuts.third) { |
1184 | > | neighborList.push_back(make_pair((*j1), (*j2))); |
1185 | > | } |
1186 | } | |
1187 | } | |
1188 | } | |
1127 | – | } |
1189 | #endif | |
1190 | + | } |
1191 | } | |
1192 | } | |
1193 | } | |
1194 | + | } else { |
1195 | + | // branch to do all cutoff group pairs |
1196 | + | #ifdef IS_MPI |
1197 | + | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1198 | + | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1199 | + | dr = cgColData.position[j2] - cgRowData.position[j1]; |
1200 | + | snap_->wrapVector(dr); |
1201 | + | cuts = getGroupCutoffs( j1, j2 ); |
1202 | + | if (dr.lengthSquare() < cuts.third) { |
1203 | + | neighborList.push_back(make_pair(j1, j2)); |
1204 | + | } |
1205 | + | } |
1206 | + | } |
1207 | + | #else |
1208 | + | for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1209 | + | for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1210 | + | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1211 | + | snap_->wrapVector(dr); |
1212 | + | cuts = getGroupCutoffs( j1, j2 ); |
1213 | + | if (dr.lengthSquare() < cuts.third) { |
1214 | + | neighborList.push_back(make_pair(j1, j2)); |
1215 | + | } |
1216 | + | } |
1217 | + | } |
1218 | + | #endif |
1219 | } | |
1220 | < | |
1220 | > | |
1221 | // save the local cutoff group positions for the check that is | |
1222 | // done on each loop: | |
1223 | saved_CG_positions_.clear(); | |
1224 | for (int i = 0; i < nGroups_; i++) | |
1225 | saved_CG_positions_.push_back(snap_->cgData.position[i]); | |
1226 | < | |
1226 | > | |
1227 | return neighborList; | |
1228 | } | |
1229 | } //end namespace OpenMD |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |