# | Line 35 | Line 35 | |
---|---|---|
35 | * | |
36 | * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | |
37 | * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | |
38 | < | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 | < | * [4] Vardeman & Gezelter, in progress (2009). |
38 | > | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 | > | * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 | > | * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 | */ | |
42 | #include "parallel/ForceMatrixDecomposition.hpp" | |
43 | #include "math/SquareMatrix3.hpp" | |
# | Line 94 | Line 95 | namespace OpenMD { | |
95 | storageLayout_ = sman_->getStorageLayout(); | |
96 | ff_ = info_->getForceField(); | |
97 | nLocal_ = snap_->getNumberOfAtoms(); | |
98 | < | |
98 | > | |
99 | nGroups_ = info_->getNLocalCutoffGroups(); | |
100 | // gather the information for atomtype IDs (atids): | |
101 | idents = info_->getIdentArray(); | |
# | Line 108 | Line 109 | namespace OpenMD { | |
109 | PairList* oneTwo = info_->getOneTwoInteractions(); | |
110 | PairList* oneThree = info_->getOneThreeInteractions(); | |
111 | PairList* oneFour = info_->getOneFourInteractions(); | |
112 | < | |
112 | > | |
113 | > | if (needVelocities_) |
114 | > | snap_->cgData.setStorageLayout(DataStorage::dslPosition | |
115 | > | DataStorage::dslVelocity); |
116 | > | else |
117 | > | snap_->cgData.setStorageLayout(DataStorage::dslPosition); |
118 | > | |
119 | #ifdef IS_MPI | |
120 | ||
121 | MPI::Intracomm row = rowComm.getComm(); | |
# | Line 144 | Line 151 | namespace OpenMD { | |
151 | cgRowData.resize(nGroupsInRow_); | |
152 | cgRowData.setStorageLayout(DataStorage::dslPosition); | |
153 | cgColData.resize(nGroupsInCol_); | |
154 | < | cgColData.setStorageLayout(DataStorage::dslPosition); |
155 | < | |
154 | > | if (needVelocities_) |
155 | > | // we only need column velocities if we need them. |
156 | > | cgColData.setStorageLayout(DataStorage::dslPosition | |
157 | > | DataStorage::dslVelocity); |
158 | > | else |
159 | > | cgColData.setStorageLayout(DataStorage::dslPosition); |
160 | > | |
161 | identsRow.resize(nAtomsInRow_); | |
162 | identsCol.resize(nAtomsInCol_); | |
163 | ||
# | Line 164 | Line 176 | namespace OpenMD { | |
176 | pot_row.resize(nAtomsInRow_); | |
177 | pot_col.resize(nAtomsInCol_); | |
178 | ||
179 | + | expot_row.resize(nAtomsInRow_); |
180 | + | expot_col.resize(nAtomsInCol_); |
181 | + | |
182 | AtomRowToGlobal.resize(nAtomsInRow_); | |
183 | AtomColToGlobal.resize(nAtomsInCol_); | |
184 | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | |
# | Line 295 | Line 310 | namespace OpenMD { | |
310 | ||
311 | RealType tol = 1e-6; | |
312 | largestRcut_ = 0.0; | |
298 | – | RealType rc; |
313 | int atid; | |
314 | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); | |
315 | ||
# | Line 380 | Line 394 | namespace OpenMD { | |
394 | } | |
395 | ||
396 | bool gTypeFound = false; | |
397 | < | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
397 | > | for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
398 | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { | |
399 | groupToGtype[cg1] = gt; | |
400 | gTypeFound = true; | |
# | Line 405 | Line 419 | namespace OpenMD { | |
419 | ||
420 | RealType tradRcut = groupMax; | |
421 | ||
422 | < | for (int i = 0; i < gTypeCutoffs.size(); i++) { |
423 | < | for (int j = 0; j < gTypeCutoffs.size(); j++) { |
422 | > | for (unsigned int i = 0; i < gTypeCutoffs.size(); i++) { |
423 | > | for (unsigned int j = 0; j < gTypeCutoffs.size(); j++) { |
424 | RealType thisRcut; | |
425 | switch(cutoffPolicy_) { | |
426 | case TRADITIONAL: | |
# | Line 449 | Line 463 | namespace OpenMD { | |
463 | } | |
464 | } | |
465 | ||
452 | – | |
466 | groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { | |
467 | int i, j; | |
468 | #ifdef IS_MPI | |
# | Line 463 | Line 476 | namespace OpenMD { | |
476 | } | |
477 | ||
478 | int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { | |
479 | < | for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
479 | > | for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) { |
480 | if (toposForAtom[atom1][j] == atom2) | |
481 | return topoDist[atom1][j]; | |
482 | < | } |
482 | > | } |
483 | return 0; | |
484 | } | |
485 | ||
486 | void ForceMatrixDecomposition::zeroWorkArrays() { | |
487 | pairwisePot = 0.0; | |
488 | embeddingPot = 0.0; | |
489 | + | excludedPot = 0.0; |
490 | + | excludedSelfPot = 0.0; |
491 | ||
492 | #ifdef IS_MPI | |
493 | if (storageLayout_ & DataStorage::dslForce) { | |
# | Line 491 | Line 506 | namespace OpenMD { | |
506 | fill(pot_col.begin(), pot_col.end(), | |
507 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
508 | ||
509 | + | fill(expot_row.begin(), expot_row.end(), |
510 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
511 | + | |
512 | + | fill(expot_col.begin(), expot_col.end(), |
513 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
514 | + | |
515 | if (storageLayout_ & DataStorage::dslParticlePot) { | |
516 | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), | |
517 | 0.0); | |
# | Line 524 | Line 545 | namespace OpenMD { | |
545 | atomColData.skippedCharge.end(), 0.0); | |
546 | } | |
547 | ||
548 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
549 | + | fill(atomRowData.flucQFrc.begin(), |
550 | + | atomRowData.flucQFrc.end(), 0.0); |
551 | + | fill(atomColData.flucQFrc.begin(), |
552 | + | atomColData.flucQFrc.end(), 0.0); |
553 | + | } |
554 | + | |
555 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
556 | + | fill(atomRowData.electricField.begin(), |
557 | + | atomRowData.electricField.end(), V3Zero); |
558 | + | fill(atomColData.electricField.begin(), |
559 | + | atomColData.electricField.end(), V3Zero); |
560 | + | } |
561 | + | |
562 | #endif | |
563 | // even in parallel, we need to zero out the local arrays: | |
564 | ||
# | Line 536 | Line 571 | namespace OpenMD { | |
571 | fill(snap_->atomData.density.begin(), | |
572 | snap_->atomData.density.end(), 0.0); | |
573 | } | |
574 | + | |
575 | if (storageLayout_ & DataStorage::dslFunctional) { | |
576 | fill(snap_->atomData.functional.begin(), | |
577 | snap_->atomData.functional.end(), 0.0); | |
578 | } | |
579 | + | |
580 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
581 | fill(snap_->atomData.functionalDerivative.begin(), | |
582 | snap_->atomData.functionalDerivative.end(), 0.0); | |
583 | } | |
584 | + | |
585 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | |
586 | fill(snap_->atomData.skippedCharge.begin(), | |
587 | snap_->atomData.skippedCharge.end(), 0.0); | |
588 | } | |
589 | < | |
589 | > | |
590 | > | if (storageLayout_ & DataStorage::dslElectricField) { |
591 | > | fill(snap_->atomData.electricField.begin(), |
592 | > | snap_->atomData.electricField.end(), V3Zero); |
593 | > | } |
594 | } | |
595 | ||
596 | ||
# | Line 571 | Line 613 | namespace OpenMD { | |
613 | cgPlanVectorColumn->gather(snap_->cgData.position, | |
614 | cgColData.position); | |
615 | ||
616 | + | |
617 | + | |
618 | + | if (needVelocities_) { |
619 | + | // gather up the atomic velocities |
620 | + | AtomPlanVectorColumn->gather(snap_->atomData.velocity, |
621 | + | atomColData.velocity); |
622 | + | |
623 | + | cgPlanVectorColumn->gather(snap_->cgData.velocity, |
624 | + | cgColData.velocity); |
625 | + | } |
626 | + | |
627 | ||
628 | // if needed, gather the atomic rotation matrices | |
629 | if (storageLayout_ & DataStorage::dslAmat) { | |
# | Line 579 | Line 632 | namespace OpenMD { | |
632 | AtomPlanMatrixColumn->gather(snap_->atomData.aMat, | |
633 | atomColData.aMat); | |
634 | } | |
635 | < | |
636 | < | // if needed, gather the atomic eletrostatic frames |
637 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { |
638 | < | AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
639 | < | atomRowData.electroFrame); |
640 | < | AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
641 | < | atomColData.electroFrame); |
635 | > | |
636 | > | // if needed, gather the atomic eletrostatic information |
637 | > | if (storageLayout_ & DataStorage::dslDipole) { |
638 | > | AtomPlanVectorRow->gather(snap_->atomData.dipole, |
639 | > | atomRowData.dipole); |
640 | > | AtomPlanVectorColumn->gather(snap_->atomData.dipole, |
641 | > | atomColData.dipole); |
642 | } | |
643 | ||
644 | + | if (storageLayout_ & DataStorage::dslQuadrupole) { |
645 | + | AtomPlanMatrixRow->gather(snap_->atomData.quadrupole, |
646 | + | atomRowData.quadrupole); |
647 | + | AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole, |
648 | + | atomColData.quadrupole); |
649 | + | } |
650 | + | |
651 | + | // if needed, gather the atomic fluctuating charge values |
652 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
653 | + | AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
654 | + | atomRowData.flucQPos); |
655 | + | AtomPlanRealColumn->gather(snap_->atomData.flucQPos, |
656 | + | atomColData.flucQPos); |
657 | + | } |
658 | + | |
659 | #endif | |
660 | } | |
661 | ||
# | Line 610 | Line 678 | namespace OpenMD { | |
678 | for (int i = 0; i < n; i++) | |
679 | snap_->atomData.density[i] += rho_tmp[i]; | |
680 | } | |
681 | + | |
682 | + | // this isn't necessary if we don't have polarizable atoms, but |
683 | + | // we'll leave it here for now. |
684 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
685 | + | |
686 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, |
687 | + | snap_->atomData.electricField); |
688 | + | |
689 | + | int n = snap_->atomData.electricField.size(); |
690 | + | vector<Vector3d> field_tmp(n, V3Zero); |
691 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, |
692 | + | field_tmp); |
693 | + | for (int i = 0; i < n; i++) |
694 | + | snap_->atomData.electricField[i] += field_tmp[i]; |
695 | + | } |
696 | #endif | |
697 | } | |
698 | ||
# | Line 689 | Line 772 | namespace OpenMD { | |
772 | ||
773 | } | |
774 | ||
775 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
776 | + | |
777 | + | int nq = snap_->atomData.flucQFrc.size(); |
778 | + | vector<RealType> fqfrc_tmp(nq, 0.0); |
779 | + | |
780 | + | AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); |
781 | + | for (int i = 0; i < nq; i++) { |
782 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
783 | + | fqfrc_tmp[i] = 0.0; |
784 | + | } |
785 | + | |
786 | + | AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); |
787 | + | for (int i = 0; i < nq; i++) |
788 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
789 | + | |
790 | + | } |
791 | + | |
792 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
793 | + | |
794 | + | int nef = snap_->atomData.electricField.size(); |
795 | + | vector<Vector3d> efield_tmp(nef, V3Zero); |
796 | + | |
797 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp); |
798 | + | for (int i = 0; i < nef; i++) { |
799 | + | snap_->atomData.electricField[i] += efield_tmp[i]; |
800 | + | efield_tmp[i] = 0.0; |
801 | + | } |
802 | + | |
803 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp); |
804 | + | for (int i = 0; i < nef; i++) |
805 | + | snap_->atomData.electricField[i] += efield_tmp[i]; |
806 | + | } |
807 | + | |
808 | + | |
809 | nLocal_ = snap_->getNumberOfAtoms(); | |
810 | ||
811 | vector<potVec> pot_temp(nLocal_, | |
812 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
813 | + | vector<potVec> expot_temp(nLocal_, |
814 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
815 | ||
816 | // scatter/gather pot_row into the members of my column | |
817 | ||
818 | AtomPlanPotRow->scatter(pot_row, pot_temp); | |
819 | + | AtomPlanPotRow->scatter(expot_row, expot_temp); |
820 | ||
821 | < | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
821 | > | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
822 | pairwisePot += pot_temp[ii]; | |
823 | < | |
823 | > | |
824 | > | for (int ii = 0; ii < expot_temp.size(); ii++ ) |
825 | > | excludedPot += expot_temp[ii]; |
826 | > | |
827 | > | if (storageLayout_ & DataStorage::dslParticlePot) { |
828 | > | // This is the pairwise contribution to the particle pot. The |
829 | > | // embedding contribution is added in each of the low level |
830 | > | // non-bonded routines. In single processor, this is done in |
831 | > | // unpackInteractionData, not in collectData. |
832 | > | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
833 | > | for (int i = 0; i < nLocal_; i++) { |
834 | > | // factor of two is because the total potential terms are divided |
835 | > | // by 2 in parallel due to row/ column scatter |
836 | > | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
837 | > | } |
838 | > | } |
839 | > | } |
840 | > | |
841 | fill(pot_temp.begin(), pot_temp.end(), | |
842 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
843 | + | fill(expot_temp.begin(), expot_temp.end(), |
844 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
845 | ||
846 | AtomPlanPotColumn->scatter(pot_col, pot_temp); | |
847 | + | AtomPlanPotColumn->scatter(expot_col, expot_temp); |
848 | ||
849 | for (int ii = 0; ii < pot_temp.size(); ii++ ) | |
850 | pairwisePot += pot_temp[ii]; | |
851 | + | |
852 | + | for (int ii = 0; ii < expot_temp.size(); ii++ ) |
853 | + | excludedPot += expot_temp[ii]; |
854 | + | |
855 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
856 | + | // This is the pairwise contribution to the particle pot. The |
857 | + | // embedding contribution is added in each of the low level |
858 | + | // non-bonded routines. In single processor, this is done in |
859 | + | // unpackInteractionData, not in collectData. |
860 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
861 | + | for (int i = 0; i < nLocal_; i++) { |
862 | + | // factor of two is because the total potential terms are divided |
863 | + | // by 2 in parallel due to row/ column scatter |
864 | + | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
865 | + | } |
866 | + | } |
867 | + | } |
868 | ||
869 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
870 | + | int npp = snap_->atomData.particlePot.size(); |
871 | + | vector<RealType> ppot_temp(npp, 0.0); |
872 | + | |
873 | + | // This is the direct or embedding contribution to the particle |
874 | + | // pot. |
875 | + | |
876 | + | AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); |
877 | + | for (int i = 0; i < npp; i++) { |
878 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; |
879 | + | } |
880 | + | |
881 | + | fill(ppot_temp.begin(), ppot_temp.end(), 0.0); |
882 | + | |
883 | + | AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); |
884 | + | for (int i = 0; i < npp; i++) { |
885 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; |
886 | + | } |
887 | + | } |
888 | + | |
889 | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | |
890 | RealType ploc1 = pairwisePot[ii]; | |
891 | RealType ploc2 = 0.0; | |
# | Line 717 | Line 894 | namespace OpenMD { | |
894 | } | |
895 | ||
896 | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | |
897 | < | RealType ploc1 = embeddingPot[ii]; |
897 | > | RealType ploc1 = excludedPot[ii]; |
898 | RealType ploc2 = 0.0; | |
899 | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | |
900 | < | embeddingPot[ii] = ploc2; |
900 | > | excludedPot[ii] = ploc2; |
901 | } | |
902 | ||
903 | + | // Here be dragons. |
904 | + | MPI::Intracomm col = colComm.getComm(); |
905 | + | |
906 | + | col.Allreduce(MPI::IN_PLACE, |
907 | + | &snap_->frameData.conductiveHeatFlux[0], 3, |
908 | + | MPI::REALTYPE, MPI::SUM); |
909 | + | |
910 | + | |
911 | #endif | |
912 | ||
913 | } | |
914 | ||
915 | < | int ForceMatrixDecomposition::getNAtomsInRow() { |
915 | > | /** |
916 | > | * Collects information obtained during the post-pair (and embedding |
917 | > | * functional) loops onto local data structures. |
918 | > | */ |
919 | > | void ForceMatrixDecomposition::collectSelfData() { |
920 | > | snap_ = sman_->getCurrentSnapshot(); |
921 | > | storageLayout_ = sman_->getStorageLayout(); |
922 | > | |
923 | #ifdef IS_MPI | |
924 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
925 | + | RealType ploc1 = embeddingPot[ii]; |
926 | + | RealType ploc2 = 0.0; |
927 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
928 | + | embeddingPot[ii] = ploc2; |
929 | + | } |
930 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
931 | + | RealType ploc1 = excludedSelfPot[ii]; |
932 | + | RealType ploc2 = 0.0; |
933 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
934 | + | excludedSelfPot[ii] = ploc2; |
935 | + | } |
936 | + | #endif |
937 | + | |
938 | + | } |
939 | + | |
940 | + | |
941 | + | |
942 | + | int& ForceMatrixDecomposition::getNAtomsInRow() { |
943 | + | #ifdef IS_MPI |
944 | return nAtomsInRow_; | |
945 | #else | |
946 | return nLocal_; | |
# | Line 738 | Line 950 | namespace OpenMD { | |
950 | /** | |
951 | * returns the list of atoms belonging to this group. | |
952 | */ | |
953 | < | vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
953 | > | vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
954 | #ifdef IS_MPI | |
955 | return groupListRow_[cg1]; | |
956 | #else | |
# | Line 746 | Line 958 | namespace OpenMD { | |
958 | #endif | |
959 | } | |
960 | ||
961 | < | vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
961 | > | vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
962 | #ifdef IS_MPI | |
963 | return groupListCol_[cg2]; | |
964 | #else | |
# | Line 763 | Line 975 | namespace OpenMD { | |
975 | d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; | |
976 | #endif | |
977 | ||
978 | < | snap_->wrapVector(d); |
978 | > | if (usePeriodicBoundaryConditions_) { |
979 | > | snap_->wrapVector(d); |
980 | > | } |
981 | return d; | |
982 | } | |
983 | ||
984 | + | Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ |
985 | + | #ifdef IS_MPI |
986 | + | return cgColData.velocity[cg2]; |
987 | + | #else |
988 | + | return snap_->cgData.velocity[cg2]; |
989 | + | #endif |
990 | + | } |
991 | ||
992 | + | Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ |
993 | + | #ifdef IS_MPI |
994 | + | return atomColData.velocity[atom2]; |
995 | + | #else |
996 | + | return snap_->atomData.velocity[atom2]; |
997 | + | #endif |
998 | + | } |
999 | + | |
1000 | + | |
1001 | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ | |
1002 | ||
1003 | Vector3d d; | |
# | Line 777 | Line 1007 | namespace OpenMD { | |
1007 | #else | |
1008 | d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; | |
1009 | #endif | |
1010 | < | |
1011 | < | snap_->wrapVector(d); |
1010 | > | if (usePeriodicBoundaryConditions_) { |
1011 | > | snap_->wrapVector(d); |
1012 | > | } |
1013 | return d; | |
1014 | } | |
1015 | ||
# | Line 790 | Line 1021 | namespace OpenMD { | |
1021 | #else | |
1022 | d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; | |
1023 | #endif | |
1024 | < | |
1025 | < | snap_->wrapVector(d); |
1024 | > | if (usePeriodicBoundaryConditions_) { |
1025 | > | snap_->wrapVector(d); |
1026 | > | } |
1027 | return d; | |
1028 | } | |
1029 | ||
1030 | < | RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
1030 | > | RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
1031 | #ifdef IS_MPI | |
1032 | return massFactorsRow[atom1]; | |
1033 | #else | |
# | Line 803 | Line 1035 | namespace OpenMD { | |
1035 | #endif | |
1036 | } | |
1037 | ||
1038 | < | RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
1038 | > | RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
1039 | #ifdef IS_MPI | |
1040 | return massFactorsCol[atom2]; | |
1041 | #else | |
# | Line 820 | Line 1052 | namespace OpenMD { | |
1052 | #else | |
1053 | d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; | |
1054 | #endif | |
1055 | < | |
1056 | < | snap_->wrapVector(d); |
1055 | > | if (usePeriodicBoundaryConditions_) { |
1056 | > | snap_->wrapVector(d); |
1057 | > | } |
1058 | return d; | |
1059 | } | |
1060 | ||
1061 | < | vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
1061 | > | vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
1062 | return excludesForAtom[atom1]; | |
1063 | } | |
1064 | ||
# | Line 833 | Line 1066 | namespace OpenMD { | |
1066 | * We need to exclude some overcounted interactions that result from | |
1067 | * the parallel decomposition. | |
1068 | */ | |
1069 | < | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
1069 | > | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { |
1070 | int unique_id_1, unique_id_2; | |
1071 | ||
1072 | #ifdef IS_MPI | |
1073 | // in MPI, we have to look up the unique IDs for each atom | |
1074 | unique_id_1 = AtomRowToGlobal[atom1]; | |
1075 | unique_id_2 = AtomColToGlobal[atom2]; | |
1076 | + | // group1 = cgRowToGlobal[cg1]; |
1077 | + | // group2 = cgColToGlobal[cg2]; |
1078 | #else | |
1079 | unique_id_1 = AtomLocalToGlobal[atom1]; | |
1080 | unique_id_2 = AtomLocalToGlobal[atom2]; | |
1081 | + | int group1 = cgLocalToGlobal[cg1]; |
1082 | + | int group2 = cgLocalToGlobal[cg2]; |
1083 | #endif | |
1084 | ||
1085 | if (unique_id_1 == unique_id_2) return true; | |
# | Line 854 | Line 1091 | namespace OpenMD { | |
1091 | } else { | |
1092 | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | |
1093 | } | |
1094 | + | #endif |
1095 | + | |
1096 | + | #ifndef IS_MPI |
1097 | + | if (group1 == group2) { |
1098 | + | if (unique_id_1 < unique_id_2) return true; |
1099 | + | } |
1100 | #endif | |
1101 | ||
1102 | return false; | |
# | Line 914 | Line 1157 | namespace OpenMD { | |
1157 | idat.A2 = &(atomColData.aMat[atom2]); | |
1158 | } | |
1159 | ||
917 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { |
918 | – | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
919 | – | idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
920 | – | } |
921 | – | |
1160 | if (storageLayout_ & DataStorage::dslTorque) { | |
1161 | idat.t1 = &(atomRowData.torque[atom1]); | |
1162 | idat.t2 = &(atomColData.torque[atom2]); | |
1163 | } | |
1164 | ||
1165 | + | if (storageLayout_ & DataStorage::dslDipole) { |
1166 | + | idat.dipole1 = &(atomRowData.dipole[atom1]); |
1167 | + | idat.dipole2 = &(atomColData.dipole[atom2]); |
1168 | + | } |
1169 | + | |
1170 | + | if (storageLayout_ & DataStorage::dslQuadrupole) { |
1171 | + | idat.quadrupole1 = &(atomRowData.quadrupole[atom1]); |
1172 | + | idat.quadrupole2 = &(atomColData.quadrupole[atom2]); |
1173 | + | } |
1174 | + | |
1175 | if (storageLayout_ & DataStorage::dslDensity) { | |
1176 | idat.rho1 = &(atomRowData.density[atom1]); | |
1177 | idat.rho2 = &(atomColData.density[atom2]); | |
# | Line 949 | Line 1197 | namespace OpenMD { | |
1197 | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); | |
1198 | } | |
1199 | ||
1200 | < | #else |
1200 | > | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1201 | > | idat.flucQ1 = &(atomRowData.flucQPos[atom1]); |
1202 | > | idat.flucQ2 = &(atomColData.flucQPos[atom2]); |
1203 | > | } |
1204 | ||
1205 | + | #else |
1206 | + | |
1207 | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); | |
955 | – | //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
956 | – | // ff_->getAtomType(idents[atom2]) ); |
1208 | ||
1209 | if (storageLayout_ & DataStorage::dslAmat) { | |
1210 | idat.A1 = &(snap_->atomData.aMat[atom1]); | |
1211 | idat.A2 = &(snap_->atomData.aMat[atom2]); | |
1212 | } | |
1213 | ||
963 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { |
964 | – | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
965 | – | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
966 | – | } |
967 | – | |
1214 | if (storageLayout_ & DataStorage::dslTorque) { | |
1215 | idat.t1 = &(snap_->atomData.torque[atom1]); | |
1216 | idat.t2 = &(snap_->atomData.torque[atom2]); | |
1217 | } | |
1218 | ||
1219 | + | if (storageLayout_ & DataStorage::dslDipole) { |
1220 | + | idat.dipole1 = &(snap_->atomData.dipole[atom1]); |
1221 | + | idat.dipole2 = &(snap_->atomData.dipole[atom2]); |
1222 | + | } |
1223 | + | |
1224 | + | if (storageLayout_ & DataStorage::dslQuadrupole) { |
1225 | + | idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]); |
1226 | + | idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]); |
1227 | + | } |
1228 | + | |
1229 | if (storageLayout_ & DataStorage::dslDensity) { | |
1230 | idat.rho1 = &(snap_->atomData.density[atom1]); | |
1231 | idat.rho2 = &(snap_->atomData.density[atom2]); | |
# | Line 994 | Line 1250 | namespace OpenMD { | |
1250 | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); | |
1251 | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); | |
1252 | } | |
1253 | + | |
1254 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1255 | + | idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); |
1256 | + | idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); |
1257 | + | } |
1258 | + | |
1259 | #endif | |
1260 | } | |
1261 | ||
1262 | ||
1263 | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { | |
1264 | #ifdef IS_MPI | |
1265 | < | pot_row[atom1] += 0.5 * *(idat.pot); |
1266 | < | pot_col[atom2] += 0.5 * *(idat.pot); |
1265 | > | pot_row[atom1] += RealType(0.5) * *(idat.pot); |
1266 | > | pot_col[atom2] += RealType(0.5) * *(idat.pot); |
1267 | > | expot_row[atom1] += RealType(0.5) * *(idat.excludedPot); |
1268 | > | expot_col[atom2] += RealType(0.5) * *(idat.excludedPot); |
1269 | ||
1270 | atomRowData.force[atom1] += *(idat.f1); | |
1271 | atomColData.force[atom2] -= *(idat.f1); | |
1272 | + | |
1273 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
1274 | + | atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1275 | + | atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1276 | + | } |
1277 | + | |
1278 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
1279 | + | atomRowData.electricField[atom1] += *(idat.eField1); |
1280 | + | atomColData.electricField[atom2] += *(idat.eField2); |
1281 | + | } |
1282 | + | |
1283 | #else | |
1284 | pairwisePot += *(idat.pot); | |
1285 | + | excludedPot += *(idat.excludedPot); |
1286 | ||
1287 | snap_->atomData.force[atom1] += *(idat.f1); | |
1288 | snap_->atomData.force[atom2] -= *(idat.f1); | |
1289 | + | |
1290 | + | if (idat.doParticlePot) { |
1291 | + | // This is the pairwise contribution to the particle pot. The |
1292 | + | // embedding contribution is added in each of the low level |
1293 | + | // non-bonded routines. In parallel, this calculation is done |
1294 | + | // in collectData, not in unpackInteractionData. |
1295 | + | snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); |
1296 | + | snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); |
1297 | + | } |
1298 | + | |
1299 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
1300 | + | snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1301 | + | snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1302 | + | } |
1303 | + | |
1304 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
1305 | + | snap_->atomData.electricField[atom1] += *(idat.eField1); |
1306 | + | snap_->atomData.electricField[atom2] += *(idat.eField2); |
1307 | + | } |
1308 | + | |
1309 | #endif | |
1310 | ||
1311 | } | |
# | Line 1026 | Line 1322 | namespace OpenMD { | |
1322 | groupCutoffs cuts; | |
1323 | bool doAllPairs = false; | |
1324 | ||
1325 | + | RealType rList_ = (largestRcut_ + skinThickness_); |
1326 | + | Snapshot* snap_ = sman_->getCurrentSnapshot(); |
1327 | + | Mat3x3d box; |
1328 | + | Mat3x3d invBox; |
1329 | + | |
1330 | + | Vector3d rs, scaled, dr; |
1331 | + | Vector3i whichCell; |
1332 | + | int cellIndex; |
1333 | + | |
1334 | #ifdef IS_MPI | |
1335 | cellListRow_.clear(); | |
1336 | cellListCol_.clear(); | |
1337 | #else | |
1338 | cellList_.clear(); | |
1339 | #endif | |
1340 | < | |
1341 | < | RealType rList_ = (largestRcut_ + skinThickness_); |
1342 | < | RealType rl2 = rList_ * rList_; |
1343 | < | Snapshot* snap_ = sman_->getCurrentSnapshot(); |
1344 | < | Mat3x3d Hmat = snap_->getHmat(); |
1345 | < | Vector3d Hx = Hmat.getColumn(0); |
1346 | < | Vector3d Hy = Hmat.getColumn(1); |
1347 | < | Vector3d Hz = Hmat.getColumn(2); |
1348 | < | |
1349 | < | nCells_.x() = (int) ( Hx.length() )/ rList_; |
1350 | < | nCells_.y() = (int) ( Hy.length() )/ rList_; |
1351 | < | nCells_.z() = (int) ( Hz.length() )/ rList_; |
1352 | < | |
1340 | > | |
1341 | > | if (!usePeriodicBoundaryConditions_) { |
1342 | > | box = snap_->getBoundingBox(); |
1343 | > | invBox = snap_->getInvBoundingBox(); |
1344 | > | } else { |
1345 | > | box = snap_->getHmat(); |
1346 | > | invBox = snap_->getInvHmat(); |
1347 | > | } |
1348 | > | |
1349 | > | Vector3d boxX = box.getColumn(0); |
1350 | > | Vector3d boxY = box.getColumn(1); |
1351 | > | Vector3d boxZ = box.getColumn(2); |
1352 | > | |
1353 | > | nCells_.x() = (int) ( boxX.length() )/ rList_; |
1354 | > | nCells_.y() = (int) ( boxY.length() )/ rList_; |
1355 | > | nCells_.z() = (int) ( boxZ.length() )/ rList_; |
1356 | > | |
1357 | // handle small boxes where the cell offsets can end up repeating cells | |
1358 | ||
1359 | if (nCells_.x() < 3) doAllPairs = true; | |
1360 | if (nCells_.y() < 3) doAllPairs = true; | |
1361 | if (nCells_.z() < 3) doAllPairs = true; | |
1362 | < | |
1054 | < | Mat3x3d invHmat = snap_->getInvHmat(); |
1055 | < | Vector3d rs, scaled, dr; |
1056 | < | Vector3i whichCell; |
1057 | < | int cellIndex; |
1362 | > | |
1363 | int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); | |
1364 | < | |
1364 | > | |
1365 | #ifdef IS_MPI | |
1366 | cellListRow_.resize(nCtot); | |
1367 | cellListCol_.resize(nCtot); | |
1368 | #else | |
1369 | cellList_.resize(nCtot); | |
1370 | #endif | |
1371 | < | |
1371 | > | |
1372 | if (!doAllPairs) { | |
1373 | #ifdef IS_MPI | |
1374 | < | |
1374 | > | |
1375 | for (int i = 0; i < nGroupsInRow_; i++) { | |
1376 | rs = cgRowData.position[i]; | |
1377 | ||
1378 | // scaled positions relative to the box vectors | |
1379 | < | scaled = invHmat * rs; |
1379 | > | scaled = invBox * rs; |
1380 | ||
1381 | // wrap the vector back into the unit box by subtracting integer box | |
1382 | // numbers | |
1383 | for (int j = 0; j < 3; j++) { | |
1384 | scaled[j] -= roundMe(scaled[j]); | |
1385 | scaled[j] += 0.5; | |
1386 | + | // Handle the special case when an object is exactly on the |
1387 | + | // boundary (a scaled coordinate of 1.0 is the same as |
1388 | + | // scaled coordinate of 0.0) |
1389 | + | if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1390 | } | |
1391 | ||
1392 | // find xyz-indices of cell that cutoffGroup is in. | |
# | Line 1095 | Line 1404 | namespace OpenMD { | |
1404 | rs = cgColData.position[i]; | |
1405 | ||
1406 | // scaled positions relative to the box vectors | |
1407 | < | scaled = invHmat * rs; |
1407 | > | scaled = invBox * rs; |
1408 | ||
1409 | // wrap the vector back into the unit box by subtracting integer box | |
1410 | // numbers | |
1411 | for (int j = 0; j < 3; j++) { | |
1412 | scaled[j] -= roundMe(scaled[j]); | |
1413 | scaled[j] += 0.5; | |
1414 | + | // Handle the special case when an object is exactly on the |
1415 | + | // boundary (a scaled coordinate of 1.0 is the same as |
1416 | + | // scaled coordinate of 0.0) |
1417 | + | if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1418 | } | |
1419 | ||
1420 | // find xyz-indices of cell that cutoffGroup is in. | |
# | Line 1115 | Line 1428 | namespace OpenMD { | |
1428 | // add this cutoff group to the list of groups in this cell; | |
1429 | cellListCol_[cellIndex].push_back(i); | |
1430 | } | |
1431 | < | |
1431 | > | |
1432 | #else | |
1433 | for (int i = 0; i < nGroups_; i++) { | |
1434 | rs = snap_->cgData.position[i]; | |
1435 | ||
1436 | // scaled positions relative to the box vectors | |
1437 | < | scaled = invHmat * rs; |
1437 | > | scaled = invBox * rs; |
1438 | ||
1439 | // wrap the vector back into the unit box by subtracting integer box | |
1440 | // numbers | |
1441 | for (int j = 0; j < 3; j++) { | |
1442 | scaled[j] -= roundMe(scaled[j]); | |
1443 | scaled[j] += 0.5; | |
1444 | + | // Handle the special case when an object is exactly on the |
1445 | + | // boundary (a scaled coordinate of 1.0 is the same as |
1446 | + | // scaled coordinate of 0.0) |
1447 | + | if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1448 | } | |
1449 | ||
1450 | // find xyz-indices of cell that cutoffGroup is in. | |
# | Line 1186 | Line 1503 | namespace OpenMD { | |
1503 | // & column indicies and will divide labor in the | |
1504 | // force evaluation later. | |
1505 | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | |
1506 | < | snap_->wrapVector(dr); |
1506 | > | if (usePeriodicBoundaryConditions_) { |
1507 | > | snap_->wrapVector(dr); |
1508 | > | } |
1509 | cuts = getGroupCutoffs( (*j1), (*j2) ); | |
1510 | if (dr.lengthSquare() < cuts.third) { | |
1511 | neighborList.push_back(make_pair((*j1), (*j2))); | |
# | Line 1208 | Line 1527 | namespace OpenMD { | |
1527 | // allows atoms within a single cutoff group to | |
1528 | // interact with each other. | |
1529 | ||
1211 | – | |
1212 | – | |
1530 | if (m2 != m1 || (*j2) >= (*j1) ) { | |
1531 | ||
1532 | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | |
1533 | < | snap_->wrapVector(dr); |
1533 | > | if (usePeriodicBoundaryConditions_) { |
1534 | > | snap_->wrapVector(dr); |
1535 | > | } |
1536 | cuts = getGroupCutoffs( (*j1), (*j2) ); | |
1537 | if (dr.lengthSquare() < cuts.third) { | |
1538 | neighborList.push_back(make_pair((*j1), (*j2))); | |
# | Line 1232 | Line 1551 | namespace OpenMD { | |
1551 | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { | |
1552 | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { | |
1553 | dr = cgColData.position[j2] - cgRowData.position[j1]; | |
1554 | < | snap_->wrapVector(dr); |
1554 | > | if (usePeriodicBoundaryConditions_) { |
1555 | > | snap_->wrapVector(dr); |
1556 | > | } |
1557 | cuts = getGroupCutoffs( j1, j2 ); | |
1558 | if (dr.lengthSquare() < cuts.third) { | |
1559 | neighborList.push_back(make_pair(j1, j2)); | |
# | Line 1245 | Line 1566 | namespace OpenMD { | |
1566 | // include self group interactions j2 == j1 | |
1567 | for (int j2 = j1; j2 < nGroups_; j2++) { | |
1568 | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; | |
1569 | < | snap_->wrapVector(dr); |
1569 | > | if (usePeriodicBoundaryConditions_) { |
1570 | > | snap_->wrapVector(dr); |
1571 | > | } |
1572 | cuts = getGroupCutoffs( j1, j2 ); | |
1573 | if (dr.lengthSquare() < cuts.third) { | |
1574 | neighborList.push_back(make_pair(j1, j2)); |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |