# | Line 36 | Line 36 | |
---|---|---|
36 | * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | |
37 | * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | |
38 | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | |
39 | < | * [4] Vardeman & Gezelter, in progress (2009). |
39 | > | * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 | > | * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 | */ | |
42 | #include "parallel/ForceMatrixDecomposition.hpp" | |
43 | #include "math/SquareMatrix3.hpp" | |
# | Line 47 | Line 48 | namespace OpenMD { | |
48 | using namespace std; | |
49 | namespace OpenMD { | |
50 | ||
51 | + | ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { |
52 | + | |
53 | + | // In a parallel computation, row and colum scans must visit all |
54 | + | // surrounding cells (not just the 14 upper triangular blocks that |
55 | + | // are used when the processor can see all pairs) |
56 | + | #ifdef IS_MPI |
57 | + | cellOffsets_.clear(); |
58 | + | cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
59 | + | cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
60 | + | cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
61 | + | cellOffsets_.push_back( Vector3i(-1, 0,-1) ); |
62 | + | cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
63 | + | cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
64 | + | cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
65 | + | cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
66 | + | cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
67 | + | cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
68 | + | cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
69 | + | cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
70 | + | cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
71 | + | cellOffsets_.push_back( Vector3i( 0, 0, 0) ); |
72 | + | cellOffsets_.push_back( Vector3i( 1, 0, 0) ); |
73 | + | cellOffsets_.push_back( Vector3i(-1, 1, 0) ); |
74 | + | cellOffsets_.push_back( Vector3i( 0, 1, 0) ); |
75 | + | cellOffsets_.push_back( Vector3i( 1, 1, 0) ); |
76 | + | cellOffsets_.push_back( Vector3i(-1,-1, 1) ); |
77 | + | cellOffsets_.push_back( Vector3i( 0,-1, 1) ); |
78 | + | cellOffsets_.push_back( Vector3i( 1,-1, 1) ); |
79 | + | cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
80 | + | cellOffsets_.push_back( Vector3i( 0, 0, 1) ); |
81 | + | cellOffsets_.push_back( Vector3i( 1, 0, 1) ); |
82 | + | cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
83 | + | cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
84 | + | cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
85 | + | #endif |
86 | + | } |
87 | + | |
88 | + | |
89 | /** | |
90 | * distributeInitialData is essentially a copy of the older fortran | |
91 | * SimulationSetup | |
92 | */ | |
54 | – | |
93 | void ForceMatrixDecomposition::distributeInitialData() { | |
94 | snap_ = sman_->getCurrentSnapshot(); | |
95 | storageLayout_ = sman_->getStorageLayout(); | |
96 | ff_ = info_->getForceField(); | |
97 | nLocal_ = snap_->getNumberOfAtoms(); | |
98 | < | nGroups_ = snap_->getNumberOfCutoffGroups(); |
99 | < | |
98 | > | |
99 | > | nGroups_ = info_->getNLocalCutoffGroups(); |
100 | // gather the information for atomtype IDs (atids): | |
101 | < | identsLocal = info_->getIdentArray(); |
101 | > | idents = info_->getIdentArray(); |
102 | AtomLocalToGlobal = info_->getGlobalAtomIndices(); | |
103 | cgLocalToGlobal = info_->getGlobalGroupIndices(); | |
104 | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); | |
67 | – | vector<RealType> massFactorsLocal = info_->getMassFactors(); |
68 | – | PairList excludes = info_->getExcludedInteractions(); |
69 | – | PairList oneTwo = info_->getOneTwoInteractions(); |
70 | – | PairList oneThree = info_->getOneThreeInteractions(); |
71 | – | PairList oneFour = info_->getOneFourInteractions(); |
105 | ||
106 | + | massFactors = info_->getMassFactors(); |
107 | + | |
108 | + | PairList* excludes = info_->getExcludedInteractions(); |
109 | + | PairList* oneTwo = info_->getOneTwoInteractions(); |
110 | + | PairList* oneThree = info_->getOneThreeInteractions(); |
111 | + | PairList* oneFour = info_->getOneFourInteractions(); |
112 | + | |
113 | #ifdef IS_MPI | |
114 | ||
115 | < | AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
116 | < | AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
77 | < | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
78 | < | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
79 | < | AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
115 | > | MPI::Intracomm row = rowComm.getComm(); |
116 | > | MPI::Intracomm col = colComm.getComm(); |
117 | ||
118 | < | AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
119 | < | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
120 | < | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
121 | < | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
122 | < | AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
118 | > | AtomPlanIntRow = new Plan<int>(row, nLocal_); |
119 | > | AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
120 | > | AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); |
121 | > | AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); |
122 | > | AtomPlanPotRow = new Plan<potVec>(row, nLocal_); |
123 | ||
124 | < | cgCommIntRow = new Communicator<Row,int>(nGroups_); |
125 | < | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
126 | < | cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
127 | < | cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
124 | > | AtomPlanIntColumn = new Plan<int>(col, nLocal_); |
125 | > | AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); |
126 | > | AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); |
127 | > | AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); |
128 | > | AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); |
129 | ||
130 | < | nAtomsInRow_ = AtomCommIntRow->getSize(); |
131 | < | nAtomsInCol_ = AtomCommIntColumn->getSize(); |
132 | < | nGroupsInRow_ = cgCommIntRow->getSize(); |
133 | < | nGroupsInCol_ = cgCommIntColumn->getSize(); |
130 | > | cgPlanIntRow = new Plan<int>(row, nGroups_); |
131 | > | cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); |
132 | > | cgPlanIntColumn = new Plan<int>(col, nGroups_); |
133 | > | cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); |
134 | ||
135 | + | nAtomsInRow_ = AtomPlanIntRow->getSize(); |
136 | + | nAtomsInCol_ = AtomPlanIntColumn->getSize(); |
137 | + | nGroupsInRow_ = cgPlanIntRow->getSize(); |
138 | + | nGroupsInCol_ = cgPlanIntColumn->getSize(); |
139 | + | |
140 | // Modify the data storage objects with the correct layouts and sizes: | |
141 | atomRowData.resize(nAtomsInRow_); | |
142 | atomRowData.setStorageLayout(storageLayout_); | |
# | Line 104 | Line 147 | namespace OpenMD { | |
147 | cgColData.resize(nGroupsInCol_); | |
148 | cgColData.setStorageLayout(DataStorage::dslPosition); | |
149 | ||
150 | < | identsRow.reserve(nAtomsInRow_); |
151 | < | identsCol.reserve(nAtomsInCol_); |
150 | > | identsRow.resize(nAtomsInRow_); |
151 | > | identsCol.resize(nAtomsInCol_); |
152 | ||
153 | < | AtomCommIntRow->gather(identsLocal, identsRow); |
154 | < | AtomCommIntColumn->gather(identsLocal, identsCol); |
153 | > | AtomPlanIntRow->gather(idents, identsRow); |
154 | > | AtomPlanIntColumn->gather(idents, identsCol); |
155 | ||
156 | < | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
157 | < | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
158 | < | |
116 | < | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
117 | < | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
156 | > | // allocate memory for the parallel objects |
157 | > | atypesRow.resize(nAtomsInRow_); |
158 | > | atypesCol.resize(nAtomsInCol_); |
159 | ||
160 | < | AtomCommRealRow->gather(massFactorsLocal, massFactorsRow); |
161 | < | AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol); |
160 | > | for (int i = 0; i < nAtomsInRow_; i++) |
161 | > | atypesRow[i] = ff_->getAtomType(identsRow[i]); |
162 | > | for (int i = 0; i < nAtomsInCol_; i++) |
163 | > | atypesCol[i] = ff_->getAtomType(identsCol[i]); |
164 | ||
165 | + | pot_row.resize(nAtomsInRow_); |
166 | + | pot_col.resize(nAtomsInCol_); |
167 | + | |
168 | + | AtomRowToGlobal.resize(nAtomsInRow_); |
169 | + | AtomColToGlobal.resize(nAtomsInCol_); |
170 | + | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
171 | + | AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
172 | + | |
173 | + | cgRowToGlobal.resize(nGroupsInRow_); |
174 | + | cgColToGlobal.resize(nGroupsInCol_); |
175 | + | cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
176 | + | cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
177 | + | |
178 | + | massFactorsRow.resize(nAtomsInRow_); |
179 | + | massFactorsCol.resize(nAtomsInCol_); |
180 | + | AtomPlanRealRow->gather(massFactors, massFactorsRow); |
181 | + | AtomPlanRealColumn->gather(massFactors, massFactorsCol); |
182 | + | |
183 | groupListRow_.clear(); | |
184 | < | groupListRow_.reserve(nGroupsInRow_); |
184 | > | groupListRow_.resize(nGroupsInRow_); |
185 | for (int i = 0; i < nGroupsInRow_; i++) { | |
186 | int gid = cgRowToGlobal[i]; | |
187 | for (int j = 0; j < nAtomsInRow_; j++) { | |
# | Line 131 | Line 192 | namespace OpenMD { | |
192 | } | |
193 | ||
194 | groupListCol_.clear(); | |
195 | < | groupListCol_.reserve(nGroupsInCol_); |
195 | > | groupListCol_.resize(nGroupsInCol_); |
196 | for (int i = 0; i < nGroupsInCol_; i++) { | |
197 | int gid = cgColToGlobal[i]; | |
198 | for (int j = 0; j < nAtomsInCol_; j++) { | |
# | Line 141 | Line 202 | namespace OpenMD { | |
202 | } | |
203 | } | |
204 | ||
205 | < | skipsForRowAtom.clear(); |
206 | < | skipsForRowAtom.reserve(nAtomsInRow_); |
205 | > | excludesForAtom.clear(); |
206 | > | excludesForAtom.resize(nAtomsInRow_); |
207 | > | toposForAtom.clear(); |
208 | > | toposForAtom.resize(nAtomsInRow_); |
209 | > | topoDist.clear(); |
210 | > | topoDist.resize(nAtomsInRow_); |
211 | for (int i = 0; i < nAtomsInRow_; i++) { | |
212 | int iglob = AtomRowToGlobal[i]; | |
213 | + | |
214 | for (int j = 0; j < nAtomsInCol_; j++) { | |
215 | < | int jglob = AtomColToGlobal[j]; |
216 | < | if (excludes.hasPair(iglob, jglob)) |
217 | < | skipsForRowAtom[i].push_back(j); |
215 | > | int jglob = AtomColToGlobal[j]; |
216 | > | |
217 | > | if (excludes->hasPair(iglob, jglob)) |
218 | > | excludesForAtom[i].push_back(j); |
219 | > | |
220 | > | if (oneTwo->hasPair(iglob, jglob)) { |
221 | > | toposForAtom[i].push_back(j); |
222 | > | topoDist[i].push_back(1); |
223 | > | } else { |
224 | > | if (oneThree->hasPair(iglob, jglob)) { |
225 | > | toposForAtom[i].push_back(j); |
226 | > | topoDist[i].push_back(2); |
227 | > | } else { |
228 | > | if (oneFour->hasPair(iglob, jglob)) { |
229 | > | toposForAtom[i].push_back(j); |
230 | > | topoDist[i].push_back(3); |
231 | > | } |
232 | > | } |
233 | > | } |
234 | } | |
235 | } | |
236 | ||
237 | < | toposForRowAtom.clear(); |
238 | < | toposForRowAtom.reserve(nAtomsInRow_); |
239 | < | for (int i = 0; i < nAtomsInRow_; i++) { |
240 | < | int iglob = AtomRowToGlobal[i]; |
241 | < | int nTopos = 0; |
242 | < | for (int j = 0; j < nAtomsInCol_; j++) { |
243 | < | int jglob = AtomColToGlobal[j]; |
244 | < | if (oneTwo.hasPair(iglob, jglob)) { |
245 | < | toposForRowAtom[i].push_back(j); |
246 | < | topoDistRow[i][nTopos] = 1; |
247 | < | nTopos++; |
237 | > | #else |
238 | > | excludesForAtom.clear(); |
239 | > | excludesForAtom.resize(nLocal_); |
240 | > | toposForAtom.clear(); |
241 | > | toposForAtom.resize(nLocal_); |
242 | > | topoDist.clear(); |
243 | > | topoDist.resize(nLocal_); |
244 | > | |
245 | > | for (int i = 0; i < nLocal_; i++) { |
246 | > | int iglob = AtomLocalToGlobal[i]; |
247 | > | |
248 | > | for (int j = 0; j < nLocal_; j++) { |
249 | > | int jglob = AtomLocalToGlobal[j]; |
250 | > | |
251 | > | if (excludes->hasPair(iglob, jglob)) |
252 | > | excludesForAtom[i].push_back(j); |
253 | > | |
254 | > | if (oneTwo->hasPair(iglob, jglob)) { |
255 | > | toposForAtom[i].push_back(j); |
256 | > | topoDist[i].push_back(1); |
257 | > | } else { |
258 | > | if (oneThree->hasPair(iglob, jglob)) { |
259 | > | toposForAtom[i].push_back(j); |
260 | > | topoDist[i].push_back(2); |
261 | > | } else { |
262 | > | if (oneFour->hasPair(iglob, jglob)) { |
263 | > | toposForAtom[i].push_back(j); |
264 | > | topoDist[i].push_back(3); |
265 | > | } |
266 | > | } |
267 | } | |
167 | – | if (oneThree.hasPair(iglob, jglob)) { |
168 | – | toposForRowAtom[i].push_back(j); |
169 | – | topoDistRow[i][nTopos] = 2; |
170 | – | nTopos++; |
171 | – | } |
172 | – | if (oneFour.hasPair(iglob, jglob)) { |
173 | – | toposForRowAtom[i].push_back(j); |
174 | – | topoDistRow[i][nTopos] = 3; |
175 | – | nTopos++; |
176 | – | } |
268 | } | |
269 | } | |
179 | – | |
270 | #endif | |
271 | ||
272 | + | // allocate memory for the parallel objects |
273 | + | atypesLocal.resize(nLocal_); |
274 | + | |
275 | + | for (int i = 0; i < nLocal_; i++) |
276 | + | atypesLocal[i] = ff_->getAtomType(idents[i]); |
277 | + | |
278 | groupList_.clear(); | |
279 | < | groupList_.reserve(nGroups_); |
279 | > | groupList_.resize(nGroups_); |
280 | for (int i = 0; i < nGroups_; i++) { | |
281 | int gid = cgLocalToGlobal[i]; | |
282 | for (int j = 0; j < nLocal_; j++) { | |
283 | int aid = AtomLocalToGlobal[j]; | |
284 | < | if (globalGroupMembership[aid] == gid) |
284 | > | if (globalGroupMembership[aid] == gid) { |
285 | groupList_[i].push_back(j); | |
286 | + | } |
287 | } | |
288 | } | |
289 | ||
193 | – | skipsForLocalAtom.clear(); |
194 | – | skipsForLocalAtom.reserve(nLocal_); |
290 | ||
291 | < | for (int i = 0; i < nLocal_; i++) { |
197 | < | int iglob = AtomLocalToGlobal[i]; |
198 | < | for (int j = 0; j < nLocal_; j++) { |
199 | < | int jglob = AtomLocalToGlobal[j]; |
200 | < | if (excludes.hasPair(iglob, jglob)) |
201 | < | skipsForLocalAtom[i].push_back(j); |
202 | < | } |
203 | < | } |
291 | > | createGtypeCutoffMap(); |
292 | ||
293 | < | toposForLocalAtom.clear(); |
294 | < | toposForLocalAtom.reserve(nLocal_); |
295 | < | for (int i = 0; i < nLocal_; i++) { |
296 | < | int iglob = AtomLocalToGlobal[i]; |
297 | < | int nTopos = 0; |
298 | < | for (int j = 0; j < nLocal_; j++) { |
299 | < | int jglob = AtomLocalToGlobal[j]; |
300 | < | if (oneTwo.hasPair(iglob, jglob)) { |
301 | < | toposForLocalAtom[i].push_back(j); |
302 | < | topoDistLocal[i][nTopos] = 1; |
303 | < | nTopos++; |
304 | < | } |
305 | < | if (oneThree.hasPair(iglob, jglob)) { |
306 | < | toposForLocalAtom[i].push_back(j); |
307 | < | topoDistLocal[i][nTopos] = 2; |
308 | < | nTopos++; |
309 | < | } |
310 | < | if (oneFour.hasPair(iglob, jglob)) { |
311 | < | toposForLocalAtom[i].push_back(j); |
312 | < | topoDistLocal[i][nTopos] = 3; |
313 | < | nTopos++; |
293 | > | } |
294 | > | |
295 | > | void ForceMatrixDecomposition::createGtypeCutoffMap() { |
296 | > | |
297 | > | RealType tol = 1e-6; |
298 | > | largestRcut_ = 0.0; |
299 | > | RealType rc; |
300 | > | int atid; |
301 | > | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
302 | > | |
303 | > | map<int, RealType> atypeCutoff; |
304 | > | |
305 | > | for (set<AtomType*>::iterator at = atypes.begin(); |
306 | > | at != atypes.end(); ++at){ |
307 | > | atid = (*at)->getIdent(); |
308 | > | if (userChoseCutoff_) |
309 | > | atypeCutoff[atid] = userCutoff_; |
310 | > | else |
311 | > | atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
312 | > | } |
313 | > | |
314 | > | vector<RealType> gTypeCutoffs; |
315 | > | // first we do a single loop over the cutoff groups to find the |
316 | > | // largest cutoff for any atypes present in this group. |
317 | > | #ifdef IS_MPI |
318 | > | vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); |
319 | > | groupRowToGtype.resize(nGroupsInRow_); |
320 | > | for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { |
321 | > | vector<int> atomListRow = getAtomsInGroupRow(cg1); |
322 | > | for (vector<int>::iterator ia = atomListRow.begin(); |
323 | > | ia != atomListRow.end(); ++ia) { |
324 | > | int atom1 = (*ia); |
325 | > | atid = identsRow[atom1]; |
326 | > | if (atypeCutoff[atid] > groupCutoffRow[cg1]) { |
327 | > | groupCutoffRow[cg1] = atypeCutoff[atid]; |
328 | } | |
329 | + | } |
330 | + | |
331 | + | bool gTypeFound = false; |
332 | + | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
333 | + | if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) { |
334 | + | groupRowToGtype[cg1] = gt; |
335 | + | gTypeFound = true; |
336 | + | } |
337 | + | } |
338 | + | if (!gTypeFound) { |
339 | + | gTypeCutoffs.push_back( groupCutoffRow[cg1] ); |
340 | + | groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; |
341 | + | } |
342 | + | |
343 | + | } |
344 | + | vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); |
345 | + | groupColToGtype.resize(nGroupsInCol_); |
346 | + | for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { |
347 | + | vector<int> atomListCol = getAtomsInGroupColumn(cg2); |
348 | + | for (vector<int>::iterator jb = atomListCol.begin(); |
349 | + | jb != atomListCol.end(); ++jb) { |
350 | + | int atom2 = (*jb); |
351 | + | atid = identsCol[atom2]; |
352 | + | if (atypeCutoff[atid] > groupCutoffCol[cg2]) { |
353 | + | groupCutoffCol[cg2] = atypeCutoff[atid]; |
354 | + | } |
355 | + | } |
356 | + | bool gTypeFound = false; |
357 | + | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
358 | + | if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) { |
359 | + | groupColToGtype[cg2] = gt; |
360 | + | gTypeFound = true; |
361 | + | } |
362 | + | } |
363 | + | if (!gTypeFound) { |
364 | + | gTypeCutoffs.push_back( groupCutoffCol[cg2] ); |
365 | + | groupColToGtype[cg2] = gTypeCutoffs.size() - 1; |
366 | + | } |
367 | + | } |
368 | + | #else |
369 | + | |
370 | + | vector<RealType> groupCutoff(nGroups_, 0.0); |
371 | + | groupToGtype.resize(nGroups_); |
372 | + | for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
373 | + | groupCutoff[cg1] = 0.0; |
374 | + | vector<int> atomList = getAtomsInGroupRow(cg1); |
375 | + | for (vector<int>::iterator ia = atomList.begin(); |
376 | + | ia != atomList.end(); ++ia) { |
377 | + | int atom1 = (*ia); |
378 | + | atid = idents[atom1]; |
379 | + | if (atypeCutoff[atid] > groupCutoff[cg1]) |
380 | + | groupCutoff[cg1] = atypeCutoff[atid]; |
381 | + | } |
382 | + | |
383 | + | bool gTypeFound = false; |
384 | + | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
385 | + | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
386 | + | groupToGtype[cg1] = gt; |
387 | + | gTypeFound = true; |
388 | + | } |
389 | + | } |
390 | + | if (!gTypeFound) { |
391 | + | gTypeCutoffs.push_back( groupCutoff[cg1] ); |
392 | + | groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
393 | } | |
394 | } | |
395 | < | } |
230 | < | |
231 | < | void ForceMatrixDecomposition::zeroWorkArrays() { |
395 | > | #endif |
396 | ||
397 | < | for (int j = 0; j < N_INTERACTION_FAMILIES; j++) { |
398 | < | longRangePot_[j] = 0.0; |
397 | > | // Now we find the maximum group cutoff value present in the simulation |
398 | > | |
399 | > | RealType groupMax = *max_element(gTypeCutoffs.begin(), |
400 | > | gTypeCutoffs.end()); |
401 | > | |
402 | > | #ifdef IS_MPI |
403 | > | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, |
404 | > | MPI::MAX); |
405 | > | #endif |
406 | > | |
407 | > | RealType tradRcut = groupMax; |
408 | > | |
409 | > | for (int i = 0; i < gTypeCutoffs.size(); i++) { |
410 | > | for (int j = 0; j < gTypeCutoffs.size(); j++) { |
411 | > | RealType thisRcut; |
412 | > | switch(cutoffPolicy_) { |
413 | > | case TRADITIONAL: |
414 | > | thisRcut = tradRcut; |
415 | > | break; |
416 | > | case MIX: |
417 | > | thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); |
418 | > | break; |
419 | > | case MAX: |
420 | > | thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); |
421 | > | break; |
422 | > | default: |
423 | > | sprintf(painCave.errMsg, |
424 | > | "ForceMatrixDecomposition::createGtypeCutoffMap " |
425 | > | "hit an unknown cutoff policy!\n"); |
426 | > | painCave.severity = OPENMD_ERROR; |
427 | > | painCave.isFatal = 1; |
428 | > | simError(); |
429 | > | break; |
430 | > | } |
431 | > | |
432 | > | pair<int,int> key = make_pair(i,j); |
433 | > | gTypeCutoffMap[key].first = thisRcut; |
434 | > | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
435 | > | gTypeCutoffMap[key].second = thisRcut*thisRcut; |
436 | > | gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
437 | > | // sanity check |
438 | > | |
439 | > | if (userChoseCutoff_) { |
440 | > | if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
441 | > | sprintf(painCave.errMsg, |
442 | > | "ForceMatrixDecomposition::createGtypeCutoffMap " |
443 | > | "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
444 | > | painCave.severity = OPENMD_ERROR; |
445 | > | painCave.isFatal = 1; |
446 | > | simError(); |
447 | > | } |
448 | > | } |
449 | > | } |
450 | } | |
451 | + | } |
452 | ||
453 | + | |
454 | + | groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
455 | + | int i, j; |
456 | #ifdef IS_MPI | |
457 | + | i = groupRowToGtype[cg1]; |
458 | + | j = groupColToGtype[cg2]; |
459 | + | #else |
460 | + | i = groupToGtype[cg1]; |
461 | + | j = groupToGtype[cg2]; |
462 | + | #endif |
463 | + | return gTypeCutoffMap[make_pair(i,j)]; |
464 | + | } |
465 | + | |
466 | + | int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
467 | + | for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
468 | + | if (toposForAtom[atom1][j] == atom2) |
469 | + | return topoDist[atom1][j]; |
470 | + | } |
471 | + | return 0; |
472 | + | } |
473 | + | |
474 | + | void ForceMatrixDecomposition::zeroWorkArrays() { |
475 | + | pairwisePot = 0.0; |
476 | + | embeddingPot = 0.0; |
477 | + | |
478 | + | #ifdef IS_MPI |
479 | if (storageLayout_ & DataStorage::dslForce) { | |
480 | fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); | |
481 | fill(atomColData.force.begin(), atomColData.force.end(), V3Zero); | |
# | Line 249 | Line 490 | namespace OpenMD { | |
490 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
491 | ||
492 | fill(pot_col.begin(), pot_col.end(), | |
493 | < | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
253 | < | |
254 | < | pot_local = Vector<RealType, N_INTERACTION_FAMILIES>(0.0); |
493 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
494 | ||
495 | if (storageLayout_ & DataStorage::dslParticlePot) { | |
496 | < | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); |
497 | < | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); |
496 | > | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
497 | > | 0.0); |
498 | > | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), |
499 | > | 0.0); |
500 | } | |
501 | ||
502 | if (storageLayout_ & DataStorage::dslDensity) { | |
# | Line 264 | Line 505 | namespace OpenMD { | |
505 | } | |
506 | ||
507 | if (storageLayout_ & DataStorage::dslFunctional) { | |
508 | < | fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); |
509 | < | fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); |
508 | > | fill(atomRowData.functional.begin(), atomRowData.functional.end(), |
509 | > | 0.0); |
510 | > | fill(atomColData.functional.begin(), atomColData.functional.end(), |
511 | > | 0.0); |
512 | } | |
513 | ||
514 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
# | Line 275 | Line 518 | namespace OpenMD { | |
518 | atomColData.functionalDerivative.end(), 0.0); | |
519 | } | |
520 | ||
521 | < | #else |
522 | < | |
521 | > | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
522 | > | fill(atomRowData.skippedCharge.begin(), |
523 | > | atomRowData.skippedCharge.end(), 0.0); |
524 | > | fill(atomColData.skippedCharge.begin(), |
525 | > | atomColData.skippedCharge.end(), 0.0); |
526 | > | } |
527 | > | |
528 | > | #endif |
529 | > | // even in parallel, we need to zero out the local arrays: |
530 | > | |
531 | if (storageLayout_ & DataStorage::dslParticlePot) { | |
532 | fill(snap_->atomData.particlePot.begin(), | |
533 | snap_->atomData.particlePot.end(), 0.0); | |
# | Line 294 | Line 545 | namespace OpenMD { | |
545 | fill(snap_->atomData.functionalDerivative.begin(), | |
546 | snap_->atomData.functionalDerivative.end(), 0.0); | |
547 | } | |
548 | < | #endif |
548 | > | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
549 | > | fill(snap_->atomData.skippedCharge.begin(), |
550 | > | snap_->atomData.skippedCharge.end(), 0.0); |
551 | > | } |
552 | ||
553 | } | |
554 | ||
# | Line 305 | Line 559 | namespace OpenMD { | |
559 | #ifdef IS_MPI | |
560 | ||
561 | // gather up the atomic positions | |
562 | < | AtomCommVectorRow->gather(snap_->atomData.position, |
562 | > | AtomPlanVectorRow->gather(snap_->atomData.position, |
563 | atomRowData.position); | |
564 | < | AtomCommVectorColumn->gather(snap_->atomData.position, |
564 | > | AtomPlanVectorColumn->gather(snap_->atomData.position, |
565 | atomColData.position); | |
566 | ||
567 | // gather up the cutoff group positions | |
568 | < | cgCommVectorRow->gather(snap_->cgData.position, |
568 | > | |
569 | > | cgPlanVectorRow->gather(snap_->cgData.position, |
570 | cgRowData.position); | |
571 | < | cgCommVectorColumn->gather(snap_->cgData.position, |
571 | > | |
572 | > | cgPlanVectorColumn->gather(snap_->cgData.position, |
573 | cgColData.position); | |
574 | + | |
575 | ||
576 | // if needed, gather the atomic rotation matrices | |
577 | if (storageLayout_ & DataStorage::dslAmat) { | |
578 | < | AtomCommMatrixRow->gather(snap_->atomData.aMat, |
578 | > | AtomPlanMatrixRow->gather(snap_->atomData.aMat, |
579 | atomRowData.aMat); | |
580 | < | AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
580 | > | AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
581 | atomColData.aMat); | |
582 | } | |
583 | ||
584 | // if needed, gather the atomic eletrostatic frames | |
585 | if (storageLayout_ & DataStorage::dslElectroFrame) { | |
586 | < | AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
586 | > | AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
587 | atomRowData.electroFrame); | |
588 | < | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
588 | > | AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
589 | atomColData.electroFrame); | |
590 | } | |
591 | + | |
592 | #endif | |
593 | } | |
594 | ||
# | Line 344 | Line 602 | namespace OpenMD { | |
602 | ||
603 | if (storageLayout_ & DataStorage::dslDensity) { | |
604 | ||
605 | < | AtomCommRealRow->scatter(atomRowData.density, |
605 | > | AtomPlanRealRow->scatter(atomRowData.density, |
606 | snap_->atomData.density); | |
607 | ||
608 | int n = snap_->atomData.density.size(); | |
609 | vector<RealType> rho_tmp(n, 0.0); | |
610 | < | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
610 | > | AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); |
611 | for (int i = 0; i < n; i++) | |
612 | snap_->atomData.density[i] += rho_tmp[i]; | |
613 | } | |
# | Line 365 | Line 623 | namespace OpenMD { | |
623 | storageLayout_ = sman_->getStorageLayout(); | |
624 | #ifdef IS_MPI | |
625 | if (storageLayout_ & DataStorage::dslFunctional) { | |
626 | < | AtomCommRealRow->gather(snap_->atomData.functional, |
626 | > | AtomPlanRealRow->gather(snap_->atomData.functional, |
627 | atomRowData.functional); | |
628 | < | AtomCommRealColumn->gather(snap_->atomData.functional, |
628 | > | AtomPlanRealColumn->gather(snap_->atomData.functional, |
629 | atomColData.functional); | |
630 | } | |
631 | ||
632 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
633 | < | AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
633 | > | AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, |
634 | atomRowData.functionalDerivative); | |
635 | < | AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
635 | > | AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, |
636 | atomColData.functionalDerivative); | |
637 | } | |
638 | #endif | |
# | Line 388 | Line 646 | namespace OpenMD { | |
646 | int n = snap_->atomData.force.size(); | |
647 | vector<Vector3d> frc_tmp(n, V3Zero); | |
648 | ||
649 | < | AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
649 | > | AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); |
650 | for (int i = 0; i < n; i++) { | |
651 | snap_->atomData.force[i] += frc_tmp[i]; | |
652 | frc_tmp[i] = 0.0; | |
653 | } | |
654 | ||
655 | < | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
656 | < | for (int i = 0; i < n; i++) |
655 | > | AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); |
656 | > | for (int i = 0; i < n; i++) { |
657 | snap_->atomData.force[i] += frc_tmp[i]; | |
658 | < | |
659 | < | |
658 | > | } |
659 | > | |
660 | if (storageLayout_ & DataStorage::dslTorque) { | |
661 | ||
662 | < | int nt = snap_->atomData.force.size(); |
662 | > | int nt = snap_->atomData.torque.size(); |
663 | vector<Vector3d> trq_tmp(nt, V3Zero); | |
664 | ||
665 | < | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
666 | < | for (int i = 0; i < n; i++) { |
665 | > | AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); |
666 | > | for (int i = 0; i < nt; i++) { |
667 | snap_->atomData.torque[i] += trq_tmp[i]; | |
668 | trq_tmp[i] = 0.0; | |
669 | } | |
670 | ||
671 | < | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
672 | < | for (int i = 0; i < n; i++) |
671 | > | AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); |
672 | > | for (int i = 0; i < nt; i++) |
673 | snap_->atomData.torque[i] += trq_tmp[i]; | |
674 | } | |
675 | + | |
676 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
677 | + | |
678 | + | int ns = snap_->atomData.skippedCharge.size(); |
679 | + | vector<RealType> skch_tmp(ns, 0.0); |
680 | + | |
681 | + | AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
682 | + | for (int i = 0; i < ns; i++) { |
683 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
684 | + | skch_tmp[i] = 0.0; |
685 | + | } |
686 | + | |
687 | + | AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
688 | + | for (int i = 0; i < ns; i++) |
689 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
690 | + | |
691 | + | } |
692 | ||
693 | nLocal_ = snap_->getNumberOfAtoms(); | |
694 | ||
# | Line 422 | Line 697 | namespace OpenMD { | |
697 | ||
698 | // scatter/gather pot_row into the members of my column | |
699 | ||
700 | < | AtomCommPotRow->scatter(pot_row, pot_temp); |
700 | > | AtomPlanPotRow->scatter(pot_row, pot_temp); |
701 | ||
702 | for (int ii = 0; ii < pot_temp.size(); ii++ ) | |
703 | < | pot_local += pot_temp[ii]; |
703 | > | pairwisePot += pot_temp[ii]; |
704 | ||
705 | fill(pot_temp.begin(), pot_temp.end(), | |
706 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
707 | ||
708 | < | AtomCommPotColumn->scatter(pot_col, pot_temp); |
708 | > | AtomPlanPotColumn->scatter(pot_col, pot_temp); |
709 | ||
710 | for (int ii = 0; ii < pot_temp.size(); ii++ ) | |
711 | < | pot_local += pot_temp[ii]; |
711 | > | pairwisePot += pot_temp[ii]; |
712 | ||
713 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
714 | + | RealType ploc1 = pairwisePot[ii]; |
715 | + | RealType ploc2 = 0.0; |
716 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
717 | + | pairwisePot[ii] = ploc2; |
718 | + | } |
719 | + | |
720 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
721 | + | RealType ploc1 = embeddingPot[ii]; |
722 | + | RealType ploc2 = 0.0; |
723 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
724 | + | embeddingPot[ii] = ploc2; |
725 | + | } |
726 | + | |
727 | #endif | |
728 | + | |
729 | } | |
730 | ||
731 | int ForceMatrixDecomposition::getNAtomsInRow() { | |
# | Line 510 | Line 800 | namespace OpenMD { | |
800 | #ifdef IS_MPI | |
801 | return massFactorsRow[atom1]; | |
802 | #else | |
803 | < | return massFactorsLocal[atom1]; |
803 | > | return massFactors[atom1]; |
804 | #endif | |
805 | } | |
806 | ||
# | Line 518 | Line 808 | namespace OpenMD { | |
808 | #ifdef IS_MPI | |
809 | return massFactorsCol[atom2]; | |
810 | #else | |
811 | < | return massFactorsLocal[atom2]; |
811 | > | return massFactors[atom2]; |
812 | #endif | |
813 | ||
814 | } | |
# | Line 536 | Line 826 | namespace OpenMD { | |
826 | return d; | |
827 | } | |
828 | ||
829 | < | vector<int> ForceMatrixDecomposition::getSkipsForRowAtom(int atom1) { |
830 | < | #ifdef IS_MPI |
541 | < | return skipsForRowAtom[atom1]; |
542 | < | #else |
543 | < | return skipsForLocalAtom[atom1]; |
544 | < | #endif |
829 | > | vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
830 | > | return excludesForAtom[atom1]; |
831 | } | |
832 | ||
833 | /** | |
834 | < | * There are a number of reasons to skip a pair or a |
549 | < | * particle. Mostly we do this to exclude atoms who are involved in |
550 | < | * short range interactions (bonds, bends, torsions), but we also |
551 | < | * need to exclude some overcounted interactions that result from |
834 | > | * We need to exclude some overcounted interactions that result from |
835 | * the parallel decomposition. | |
836 | */ | |
837 | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { | |
838 | int unique_id_1, unique_id_2; | |
839 | < | |
839 | > | |
840 | #ifdef IS_MPI | |
841 | // in MPI, we have to look up the unique IDs for each atom | |
842 | unique_id_1 = AtomRowToGlobal[atom1]; | |
843 | unique_id_2 = AtomColToGlobal[atom2]; | |
844 | + | #else |
845 | + | unique_id_1 = AtomLocalToGlobal[atom1]; |
846 | + | unique_id_2 = AtomLocalToGlobal[atom2]; |
847 | + | #endif |
848 | ||
562 | – | // this situation should only arise in MPI simulations |
849 | if (unique_id_1 == unique_id_2) return true; | |
850 | < | |
850 | > | |
851 | > | #ifdef IS_MPI |
852 | // this prevents us from doing the pair on multiple processors | |
853 | if (unique_id_1 < unique_id_2) { | |
854 | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; | |
855 | } else { | |
856 | < | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
856 | > | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
857 | } | |
571 | – | #else |
572 | – | // in the normal loop, the atom numbers are unique |
573 | – | unique_id_1 = atom1; |
574 | – | unique_id_2 = atom2; |
858 | #endif | |
859 | ||
860 | < | #ifdef IS_MPI |
578 | < | for (vector<int>::iterator i = skipsForRowAtom[atom1].begin(); |
579 | < | i != skipsForRowAtom[atom1].end(); ++i) { |
580 | < | if ( (*i) == unique_id_2 ) return true; |
581 | < | } |
582 | < | #else |
583 | < | for (vector<int>::iterator i = skipsForLocalAtom[atom1].begin(); |
584 | < | i != skipsForLocalAtom[atom1].end(); ++i) { |
585 | < | if ( (*i) == unique_id_2 ) return true; |
586 | < | } |
587 | < | #endif |
860 | > | return false; |
861 | } | |
862 | ||
863 | < | int ForceMatrixDecomposition::getTopoDistance(int atom1, int atom2) { |
863 | > | /** |
864 | > | * We need to handle the interactions for atoms who are involved in |
865 | > | * the same rigid body as well as some short range interactions |
866 | > | * (bonds, bends, torsions) differently from other interactions. |
867 | > | * We'll still visit the pairwise routines, but with a flag that |
868 | > | * tells those routines to exclude the pair from direct long range |
869 | > | * interactions. Some indirect interactions (notably reaction |
870 | > | * field) must still be handled for these pairs. |
871 | > | */ |
872 | > | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
873 | > | |
874 | > | // excludesForAtom was constructed to use row/column indices in the MPI |
875 | > | // version, and to use local IDs in the non-MPI version: |
876 | ||
877 | < | #ifdef IS_MPI |
878 | < | for (int i = 0; i < toposForRowAtom[atom1].size(); i++) { |
879 | < | if ( toposForRowAtom[atom1][i] == atom2 ) return topoDistRow[atom1][i]; |
877 | > | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
878 | > | i != excludesForAtom[atom1].end(); ++i) { |
879 | > | if ( (*i) == atom2 ) return true; |
880 | } | |
596 | – | #else |
597 | – | for (int i = 0; i < toposForLocalAtom[atom1].size(); i++) { |
598 | – | if ( toposForLocalAtom[atom1][i] == atom2 ) return topoDistLocal[atom1][i]; |
599 | – | } |
600 | – | #endif |
881 | ||
882 | < | // zero is default for unconnected (i.e. normal) pair interactions |
603 | < | return 0; |
882 | > | return false; |
883 | } | |
884 | ||
885 | + | |
886 | void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ | |
887 | #ifdef IS_MPI | |
888 | atomRowData.force[atom1] += fg; | |
# | Line 620 | Line 900 | namespace OpenMD { | |
900 | } | |
901 | ||
902 | // filling interaction blocks with pointers | |
903 | < | InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) { |
904 | < | InteractionData idat; |
903 | > | void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
904 | > | int atom1, int atom2) { |
905 | ||
906 | + | idat.excluded = excludeAtomPair(atom1, atom2); |
907 | + | |
908 | #ifdef IS_MPI | |
909 | + | idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
910 | + | //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
911 | + | // ff_->getAtomType(identsCol[atom2]) ); |
912 | ||
628 | – | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
629 | – | ff_->getAtomType(identsCol[atom2]) ); |
630 | – | |
631 | – | |
913 | if (storageLayout_ & DataStorage::dslAmat) { | |
914 | idat.A1 = &(atomRowData.aMat[atom1]); | |
915 | idat.A2 = &(atomColData.aMat[atom2]); | |
# | Line 664 | Line 945 | namespace OpenMD { | |
945 | idat.particlePot2 = &(atomColData.particlePot[atom2]); | |
946 | } | |
947 | ||
948 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
949 | + | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
950 | + | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
951 | + | } |
952 | + | |
953 | #else | |
954 | ||
955 | < | idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), |
956 | < | ff_->getAtomType(identsLocal[atom2]) ); |
955 | > | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
956 | > | //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
957 | > | // ff_->getAtomType(idents[atom2]) ); |
958 | ||
959 | if (storageLayout_ & DataStorage::dslAmat) { | |
960 | idat.A1 = &(snap_->atomData.aMat[atom1]); | |
# | Line 684 | Line 971 | namespace OpenMD { | |
971 | idat.t2 = &(snap_->atomData.torque[atom2]); | |
972 | } | |
973 | ||
974 | < | if (storageLayout_ & DataStorage::dslDensity) { |
974 | > | if (storageLayout_ & DataStorage::dslDensity) { |
975 | idat.rho1 = &(snap_->atomData.density[atom1]); | |
976 | idat.rho2 = &(snap_->atomData.density[atom2]); | |
977 | } | |
# | Line 704 | Line 991 | namespace OpenMD { | |
991 | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); | |
992 | } | |
993 | ||
994 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
995 | + | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
996 | + | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
997 | + | } |
998 | #endif | |
708 | – | return idat; |
999 | } | |
1000 | ||
1001 | ||
1002 | < | void ForceMatrixDecomposition::unpackInteractionData(InteractionData idat, int atom1, int atom2) { |
1002 | > | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
1003 | #ifdef IS_MPI | |
1004 | pot_row[atom1] += 0.5 * *(idat.pot); | |
1005 | pot_col[atom2] += 0.5 * *(idat.pot); | |
# | Line 717 | Line 1007 | namespace OpenMD { | |
1007 | atomRowData.force[atom1] += *(idat.f1); | |
1008 | atomColData.force[atom2] -= *(idat.f1); | |
1009 | #else | |
1010 | < | longRangePot_ += *(idat.pot); |
1011 | < | |
1010 | > | pairwisePot += *(idat.pot); |
1011 | > | |
1012 | snap_->atomData.force[atom1] += *(idat.f1); | |
1013 | snap_->atomData.force[atom2] -= *(idat.f1); | |
1014 | #endif | |
1015 | < | |
1015 | > | |
1016 | } | |
1017 | ||
728 | – | |
729 | – | InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ |
730 | – | |
731 | – | InteractionData idat; |
732 | – | #ifdef IS_MPI |
733 | – | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
734 | – | ff_->getAtomType(identsCol[atom2]) ); |
735 | – | |
736 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { |
737 | – | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
738 | – | idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
739 | – | } |
740 | – | if (storageLayout_ & DataStorage::dslTorque) { |
741 | – | idat.t1 = &(atomRowData.torque[atom1]); |
742 | – | idat.t2 = &(atomColData.torque[atom2]); |
743 | – | } |
744 | – | #else |
745 | – | idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), |
746 | – | ff_->getAtomType(identsLocal[atom2]) ); |
747 | – | |
748 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { |
749 | – | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
750 | – | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
751 | – | } |
752 | – | if (storageLayout_ & DataStorage::dslTorque) { |
753 | – | idat.t1 = &(snap_->atomData.torque[atom1]); |
754 | – | idat.t2 = &(snap_->atomData.torque[atom2]); |
755 | – | } |
756 | – | #endif |
757 | – | } |
758 | – | |
1018 | /* | |
1019 | * buildNeighborList | |
1020 | * | |
# | Line 765 | Line 1024 | namespace OpenMD { | |
1024 | vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { | |
1025 | ||
1026 | vector<pair<int, int> > neighborList; | |
1027 | + | groupCutoffs cuts; |
1028 | + | bool doAllPairs = false; |
1029 | + | |
1030 | #ifdef IS_MPI | |
1031 | cellListRow_.clear(); | |
1032 | cellListCol_.clear(); | |
# | Line 772 | Line 1034 | namespace OpenMD { | |
1034 | cellList_.clear(); | |
1035 | #endif | |
1036 | ||
1037 | < | // dangerous to not do error checking. |
776 | < | RealType rCut_; |
777 | < | |
778 | < | RealType rList_ = (rCut_ + skinThickness_); |
1037 | > | RealType rList_ = (largestRcut_ + skinThickness_); |
1038 | RealType rl2 = rList_ * rList_; | |
1039 | Snapshot* snap_ = sman_->getCurrentSnapshot(); | |
1040 | Mat3x3d Hmat = snap_->getHmat(); | |
# | Line 787 | Line 1046 | namespace OpenMD { | |
1046 | nCells_.y() = (int) ( Hy.length() )/ rList_; | |
1047 | nCells_.z() = (int) ( Hz.length() )/ rList_; | |
1048 | ||
1049 | + | // handle small boxes where the cell offsets can end up repeating cells |
1050 | + | |
1051 | + | if (nCells_.x() < 3) doAllPairs = true; |
1052 | + | if (nCells_.y() < 3) doAllPairs = true; |
1053 | + | if (nCells_.z() < 3) doAllPairs = true; |
1054 | + | |
1055 | Mat3x3d invHmat = snap_->getInvHmat(); | |
1056 | Vector3d rs, scaled, dr; | |
1057 | Vector3i whichCell; | |
1058 | int cellIndex; | |
1059 | + | int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
1060 | ||
1061 | #ifdef IS_MPI | |
1062 | < | for (int i = 0; i < nGroupsInRow_; i++) { |
1063 | < | rs = cgRowData.position[i]; |
1064 | < | // scaled positions relative to the box vectors |
1065 | < | scaled = invHmat * rs; |
1066 | < | // wrap the vector back into the unit box by subtracting integer box |
801 | < | // numbers |
802 | < | for (int j = 0; j < 3; j++) |
803 | < | scaled[j] -= roundMe(scaled[j]); |
804 | < | |
805 | < | // find xyz-indices of cell that cutoffGroup is in. |
806 | < | whichCell.x() = nCells_.x() * scaled.x(); |
807 | < | whichCell.y() = nCells_.y() * scaled.y(); |
808 | < | whichCell.z() = nCells_.z() * scaled.z(); |
1062 | > | cellListRow_.resize(nCtot); |
1063 | > | cellListCol_.resize(nCtot); |
1064 | > | #else |
1065 | > | cellList_.resize(nCtot); |
1066 | > | #endif |
1067 | ||
1068 | < | // find single index of this cell: |
1069 | < | cellIndex = Vlinear(whichCell, nCells_); |
812 | < | // add this cutoff group to the list of groups in this cell; |
813 | < | cellListRow_[cellIndex].push_back(i); |
814 | < | } |
1068 | > | if (!doAllPairs) { |
1069 | > | #ifdef IS_MPI |
1070 | ||
1071 | < | for (int i = 0; i < nGroupsInCol_; i++) { |
1072 | < | rs = cgColData.position[i]; |
1073 | < | // scaled positions relative to the box vectors |
1074 | < | scaled = invHmat * rs; |
1075 | < | // wrap the vector back into the unit box by subtracting integer box |
1076 | < | // numbers |
1077 | < | for (int j = 0; j < 3; j++) |
1078 | < | scaled[j] -= roundMe(scaled[j]); |
1079 | < | |
1080 | < | // find xyz-indices of cell that cutoffGroup is in. |
1081 | < | whichCell.x() = nCells_.x() * scaled.x(); |
1082 | < | whichCell.y() = nCells_.y() * scaled.y(); |
1083 | < | whichCell.z() = nCells_.z() * scaled.z(); |
1084 | < | |
1085 | < | // find single index of this cell: |
1086 | < | cellIndex = Vlinear(whichCell, nCells_); |
1087 | < | // add this cutoff group to the list of groups in this cell; |
1088 | < | cellListCol_[cellIndex].push_back(i); |
1089 | < | } |
1071 | > | for (int i = 0; i < nGroupsInRow_; i++) { |
1072 | > | rs = cgRowData.position[i]; |
1073 | > | |
1074 | > | // scaled positions relative to the box vectors |
1075 | > | scaled = invHmat * rs; |
1076 | > | |
1077 | > | // wrap the vector back into the unit box by subtracting integer box |
1078 | > | // numbers |
1079 | > | for (int j = 0; j < 3; j++) { |
1080 | > | scaled[j] -= roundMe(scaled[j]); |
1081 | > | scaled[j] += 0.5; |
1082 | > | } |
1083 | > | |
1084 | > | // find xyz-indices of cell that cutoffGroup is in. |
1085 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1086 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1087 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1088 | > | |
1089 | > | // find single index of this cell: |
1090 | > | cellIndex = Vlinear(whichCell, nCells_); |
1091 | > | |
1092 | > | // add this cutoff group to the list of groups in this cell; |
1093 | > | cellListRow_[cellIndex].push_back(i); |
1094 | > | } |
1095 | > | for (int i = 0; i < nGroupsInCol_; i++) { |
1096 | > | rs = cgColData.position[i]; |
1097 | > | |
1098 | > | // scaled positions relative to the box vectors |
1099 | > | scaled = invHmat * rs; |
1100 | > | |
1101 | > | // wrap the vector back into the unit box by subtracting integer box |
1102 | > | // numbers |
1103 | > | for (int j = 0; j < 3; j++) { |
1104 | > | scaled[j] -= roundMe(scaled[j]); |
1105 | > | scaled[j] += 0.5; |
1106 | > | } |
1107 | > | |
1108 | > | // find xyz-indices of cell that cutoffGroup is in. |
1109 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1110 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1111 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1112 | > | |
1113 | > | // find single index of this cell: |
1114 | > | cellIndex = Vlinear(whichCell, nCells_); |
1115 | > | |
1116 | > | // add this cutoff group to the list of groups in this cell; |
1117 | > | cellListCol_[cellIndex].push_back(i); |
1118 | > | } |
1119 | > | |
1120 | #else | |
1121 | < | for (int i = 0; i < nGroups_; i++) { |
1122 | < | rs = snap_->cgData.position[i]; |
1123 | < | // scaled positions relative to the box vectors |
1124 | < | scaled = invHmat * rs; |
1125 | < | // wrap the vector back into the unit box by subtracting integer box |
1126 | < | // numbers |
1127 | < | for (int j = 0; j < 3; j++) |
1128 | < | scaled[j] -= roundMe(scaled[j]); |
1121 | > | for (int i = 0; i < nGroups_; i++) { |
1122 | > | rs = snap_->cgData.position[i]; |
1123 | > | |
1124 | > | // scaled positions relative to the box vectors |
1125 | > | scaled = invHmat * rs; |
1126 | > | |
1127 | > | // wrap the vector back into the unit box by subtracting integer box |
1128 | > | // numbers |
1129 | > | for (int j = 0; j < 3; j++) { |
1130 | > | scaled[j] -= roundMe(scaled[j]); |
1131 | > | scaled[j] += 0.5; |
1132 | > | } |
1133 | > | |
1134 | > | // find xyz-indices of cell that cutoffGroup is in. |
1135 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1136 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1137 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1138 | > | |
1139 | > | // find single index of this cell: |
1140 | > | cellIndex = Vlinear(whichCell, nCells_); |
1141 | > | |
1142 | > | // add this cutoff group to the list of groups in this cell; |
1143 | > | cellList_[cellIndex].push_back(i); |
1144 | > | } |
1145 | ||
845 | – | // find xyz-indices of cell that cutoffGroup is in. |
846 | – | whichCell.x() = nCells_.x() * scaled.x(); |
847 | – | whichCell.y() = nCells_.y() * scaled.y(); |
848 | – | whichCell.z() = nCells_.z() * scaled.z(); |
849 | – | |
850 | – | // find single index of this cell: |
851 | – | cellIndex = Vlinear(whichCell, nCells_); |
852 | – | // add this cutoff group to the list of groups in this cell; |
853 | – | cellList_[cellIndex].push_back(i); |
854 | – | } |
1146 | #endif | |
1147 | ||
1148 | < | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1149 | < | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1150 | < | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1151 | < | Vector3i m1v(m1x, m1y, m1z); |
1152 | < | int m1 = Vlinear(m1v, nCells_); |
862 | < | |
863 | < | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
864 | < | os != cellOffsets_.end(); ++os) { |
1148 | > | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1149 | > | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1150 | > | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1151 | > | Vector3i m1v(m1x, m1y, m1z); |
1152 | > | int m1 = Vlinear(m1v, nCells_); |
1153 | ||
1154 | < | Vector3i m2v = m1v + (*os); |
1155 | < | |
1156 | < | if (m2v.x() >= nCells_.x()) { |
1157 | < | m2v.x() = 0; |
1158 | < | } else if (m2v.x() < 0) { |
871 | < | m2v.x() = nCells_.x() - 1; |
872 | < | } |
873 | < | |
874 | < | if (m2v.y() >= nCells_.y()) { |
875 | < | m2v.y() = 0; |
876 | < | } else if (m2v.y() < 0) { |
877 | < | m2v.y() = nCells_.y() - 1; |
878 | < | } |
879 | < | |
880 | < | if (m2v.z() >= nCells_.z()) { |
881 | < | m2v.z() = 0; |
882 | < | } else if (m2v.z() < 0) { |
883 | < | m2v.z() = nCells_.z() - 1; |
884 | < | } |
885 | < | |
886 | < | int m2 = Vlinear (m2v, nCells_); |
1154 | > | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1155 | > | os != cellOffsets_.end(); ++os) { |
1156 | > | |
1157 | > | Vector3i m2v = m1v + (*os); |
1158 | > | |
1159 | ||
1160 | < | #ifdef IS_MPI |
1161 | < | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1162 | < | j1 != cellListRow_[m1].end(); ++j1) { |
1163 | < | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1164 | < | j2 != cellListCol_[m2].end(); ++j2) { |
1165 | < | |
1166 | < | // Always do this if we're in different cells or if |
1167 | < | // we're in the same cell and the global index of the |
1168 | < | // j2 cutoff group is less than the j1 cutoff group |
1160 | > | if (m2v.x() >= nCells_.x()) { |
1161 | > | m2v.x() = 0; |
1162 | > | } else if (m2v.x() < 0) { |
1163 | > | m2v.x() = nCells_.x() - 1; |
1164 | > | } |
1165 | > | |
1166 | > | if (m2v.y() >= nCells_.y()) { |
1167 | > | m2v.y() = 0; |
1168 | > | } else if (m2v.y() < 0) { |
1169 | > | m2v.y() = nCells_.y() - 1; |
1170 | > | } |
1171 | > | |
1172 | > | if (m2v.z() >= nCells_.z()) { |
1173 | > | m2v.z() = 0; |
1174 | > | } else if (m2v.z() < 0) { |
1175 | > | m2v.z() = nCells_.z() - 1; |
1176 | > | } |
1177 | ||
1178 | < | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1178 | > | int m2 = Vlinear (m2v, nCells_); |
1179 | > | |
1180 | > | #ifdef IS_MPI |
1181 | > | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1182 | > | j1 != cellListRow_[m1].end(); ++j1) { |
1183 | > | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1184 | > | j2 != cellListCol_[m2].end(); ++j2) { |
1185 | > | |
1186 | > | // In parallel, we need to visit *all* pairs of row |
1187 | > | // & column indicies and will divide labor in the |
1188 | > | // force evaluation later. |
1189 | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | |
1190 | snap_->wrapVector(dr); | |
1191 | < | if (dr.lengthSquare() < rl2) { |
1191 | > | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1192 | > | if (dr.lengthSquare() < cuts.third) { |
1193 | neighborList.push_back(make_pair((*j1), (*j2))); | |
1194 | < | } |
1194 | > | } |
1195 | } | |
1196 | } | |
906 | – | } |
1197 | #else | |
1198 | < | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1199 | < | j1 != cellList_[m1].end(); ++j1) { |
1200 | < | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1201 | < | j2 != cellList_[m2].end(); ++j2) { |
1202 | < | |
1203 | < | // Always do this if we're in different cells or if |
1204 | < | // we're in the same cell and the global index of the |
1205 | < | // j2 cutoff group is less than the j1 cutoff group |
1198 | > | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1199 | > | j1 != cellList_[m1].end(); ++j1) { |
1200 | > | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1201 | > | j2 != cellList_[m2].end(); ++j2) { |
1202 | > | |
1203 | > | // Always do this if we're in different cells or if |
1204 | > | // we're in the same cell and the global index of |
1205 | > | // the j2 cutoff group is greater than or equal to |
1206 | > | // the j1 cutoff group. Note that Rappaport's code |
1207 | > | // has a "less than" conditional here, but that |
1208 | > | // deals with atom-by-atom computation. OpenMD |
1209 | > | // allows atoms within a single cutoff group to |
1210 | > | // interact with each other. |
1211 | ||
1212 | < | if (m2 != m1 || (*j2) < (*j1)) { |
1213 | < | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1214 | < | snap_->wrapVector(dr); |
1215 | < | if (dr.lengthSquare() < rl2) { |
1216 | < | neighborList.push_back(make_pair((*j1), (*j2))); |
1212 | > | |
1213 | > | |
1214 | > | if (m2 != m1 || (*j2) >= (*j1) ) { |
1215 | > | |
1216 | > | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1217 | > | snap_->wrapVector(dr); |
1218 | > | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1219 | > | if (dr.lengthSquare() < cuts.third) { |
1220 | > | neighborList.push_back(make_pair((*j1), (*j2))); |
1221 | > | } |
1222 | } | |
1223 | } | |
1224 | } | |
925 | – | } |
1225 | #endif | |
1226 | + | } |
1227 | } | |
1228 | } | |
1229 | } | |
1230 | + | } else { |
1231 | + | // branch to do all cutoff group pairs |
1232 | + | #ifdef IS_MPI |
1233 | + | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1234 | + | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1235 | + | dr = cgColData.position[j2] - cgRowData.position[j1]; |
1236 | + | snap_->wrapVector(dr); |
1237 | + | cuts = getGroupCutoffs( j1, j2 ); |
1238 | + | if (dr.lengthSquare() < cuts.third) { |
1239 | + | neighborList.push_back(make_pair(j1, j2)); |
1240 | + | } |
1241 | + | } |
1242 | + | } |
1243 | + | #else |
1244 | + | // include all groups here. |
1245 | + | for (int j1 = 0; j1 < nGroups_; j1++) { |
1246 | + | // include self group interactions j2 == j1 |
1247 | + | for (int j2 = j1; j2 < nGroups_; j2++) { |
1248 | + | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1249 | + | snap_->wrapVector(dr); |
1250 | + | cuts = getGroupCutoffs( j1, j2 ); |
1251 | + | if (dr.lengthSquare() < cuts.third) { |
1252 | + | neighborList.push_back(make_pair(j1, j2)); |
1253 | + | } |
1254 | + | } |
1255 | + | } |
1256 | + | #endif |
1257 | } | |
1258 | < | |
1258 | > | |
1259 | // save the local cutoff group positions for the check that is | |
1260 | // done on each loop: | |
1261 | saved_CG_positions_.clear(); | |
1262 | for (int i = 0; i < nGroups_; i++) | |
1263 | saved_CG_positions_.push_back(snap_->cgData.position[i]); | |
1264 | < | |
1264 | > | |
1265 | return neighborList; | |
1266 | } | |
1267 | } //end namespace OpenMD |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |