# | Line 35 | Line 35 | |
---|---|---|
35 | * | |
36 | * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | |
37 | * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | |
38 | < | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
38 | > | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 | * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). | |
40 | * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | |
41 | */ | |
# | Line 99 | Line 99 | namespace OpenMD { | |
99 | nGroups_ = info_->getNLocalCutoffGroups(); | |
100 | // gather the information for atomtype IDs (atids): | |
101 | idents = info_->getIdentArray(); | |
102 | + | regions = info_->getRegions(); |
103 | AtomLocalToGlobal = info_->getGlobalAtomIndices(); | |
104 | cgLocalToGlobal = info_->getGlobalGroupIndices(); | |
105 | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); | |
# | Line 118 | Line 119 | namespace OpenMD { | |
119 | ||
120 | #ifdef IS_MPI | |
121 | ||
122 | < | MPI::Intracomm row = rowComm.getComm(); |
123 | < | MPI::Intracomm col = colComm.getComm(); |
122 | > | MPI_Comm row = rowComm.getComm(); |
123 | > | MPI_Comm col = colComm.getComm(); |
124 | ||
125 | AtomPlanIntRow = new Plan<int>(row, nLocal_); | |
126 | AtomPlanRealRow = new Plan<RealType>(row, nLocal_); | |
# | Line 163 | Line 164 | namespace OpenMD { | |
164 | ||
165 | AtomPlanIntRow->gather(idents, identsRow); | |
166 | AtomPlanIntColumn->gather(idents, identsCol); | |
167 | + | |
168 | + | regionsRow.resize(nAtomsInRow_); |
169 | + | regionsCol.resize(nAtomsInCol_); |
170 | ||
171 | + | AtomPlanIntRow->gather(regions, regionsRow); |
172 | + | AtomPlanIntColumn->gather(regions, regionsCol); |
173 | + | |
174 | // allocate memory for the parallel objects | |
175 | atypesRow.resize(nAtomsInRow_); | |
176 | atypesCol.resize(nAtomsInCol_); | |
# | Line 176 | Line 183 | namespace OpenMD { | |
183 | pot_row.resize(nAtomsInRow_); | |
184 | pot_col.resize(nAtomsInCol_); | |
185 | ||
186 | + | expot_row.resize(nAtomsInRow_); |
187 | + | expot_col.resize(nAtomsInCol_); |
188 | + | |
189 | AtomRowToGlobal.resize(nAtomsInRow_); | |
190 | AtomColToGlobal.resize(nAtomsInCol_); | |
191 | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | |
# | Line 305 | Line 315 | namespace OpenMD { | |
315 | ||
316 | void ForceMatrixDecomposition::createGtypeCutoffMap() { | |
317 | ||
318 | + | GrCut.clear(); |
319 | + | GrCutSq.clear(); |
320 | + | GrlistSq.clear(); |
321 | + | |
322 | RealType tol = 1e-6; | |
323 | largestRcut_ = 0.0; | |
310 | – | RealType rc; |
324 | int atid; | |
325 | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); | |
326 | ||
# | Line 392 | Line 405 | namespace OpenMD { | |
405 | } | |
406 | ||
407 | bool gTypeFound = false; | |
408 | < | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
408 | > | for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
409 | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { | |
410 | groupToGtype[cg1] = gt; | |
411 | gTypeFound = true; | |
# | Line 411 | Line 424 | namespace OpenMD { | |
424 | gTypeCutoffs.end()); | |
425 | ||
426 | #ifdef IS_MPI | |
427 | < | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, |
428 | < | MPI::MAX); |
427 | > | MPI_Allreduce(&groupMax, &groupMax, 1, MPI_REALTYPE, |
428 | > | MPI_MAX, MPI_COMM_WORLD); |
429 | #endif | |
430 | ||
431 | RealType tradRcut = groupMax; | |
432 | ||
433 | < | for (int i = 0; i < gTypeCutoffs.size(); i++) { |
434 | < | for (int j = 0; j < gTypeCutoffs.size(); j++) { |
433 | > | GrCut.resize( gTypeCutoffs.size() ); |
434 | > | GrCutSq.resize( gTypeCutoffs.size() ); |
435 | > | GrlistSq.resize( gTypeCutoffs.size() ); |
436 | > | |
437 | > | |
438 | > | for (unsigned int i = 0; i < gTypeCutoffs.size(); i++) { |
439 | > | GrCut[i].resize( gTypeCutoffs.size() , 0.0); |
440 | > | GrCutSq[i].resize( gTypeCutoffs.size(), 0.0 ); |
441 | > | GrlistSq[i].resize( gTypeCutoffs.size(), 0.0 ); |
442 | > | |
443 | > | for (unsigned int j = 0; j < gTypeCutoffs.size(); j++) { |
444 | RealType thisRcut; | |
445 | switch(cutoffPolicy_) { | |
446 | case TRADITIONAL: | |
# | Line 440 | Line 462 | namespace OpenMD { | |
462 | break; | |
463 | } | |
464 | ||
465 | < | pair<int,int> key = make_pair(i,j); |
444 | < | gTypeCutoffMap[key].first = thisRcut; |
465 | > | GrCut[i][j] = thisRcut; |
466 | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; | |
467 | < | gTypeCutoffMap[key].second = thisRcut*thisRcut; |
468 | < | gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
467 | > | GrCutSq[i][j] = thisRcut * thisRcut; |
468 | > | GrlistSq[i][j] = pow(thisRcut + skinThickness_, 2); |
469 | > | |
470 | > | // pair<int,int> key = make_pair(i,j); |
471 | > | // gTypeCutoffMap[key].first = thisRcut; |
472 | > | // gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
473 | // sanity check | |
474 | ||
475 | if (userChoseCutoff_) { | |
476 | < | if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
476 | > | if (abs(GrCut[i][j] - userCutoff_) > 0.0001) { |
477 | sprintf(painCave.errMsg, | |
478 | "ForceMatrixDecomposition::createGtypeCutoffMap " | |
479 | "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); | |
# | Line 461 | Line 486 | namespace OpenMD { | |
486 | } | |
487 | } | |
488 | ||
489 | < | |
465 | < | groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
489 | > | void ForceMatrixDecomposition::getGroupCutoffs(int &cg1, int &cg2, RealType &rcut, RealType &rcutsq, RealType &rlistsq) { |
490 | int i, j; | |
491 | #ifdef IS_MPI | |
492 | i = groupRowToGtype[cg1]; | |
# | Line 471 | Line 495 | namespace OpenMD { | |
495 | i = groupToGtype[cg1]; | |
496 | j = groupToGtype[cg2]; | |
497 | #endif | |
498 | < | return gTypeCutoffMap[make_pair(i,j)]; |
498 | > | rcut = GrCut[i][j]; |
499 | > | rcutsq = GrCutSq[i][j]; |
500 | > | rlistsq = GrlistSq[i][j]; |
501 | > | return; |
502 | > | //return gTypeCutoffMap[make_pair(i,j)]; |
503 | } | |
504 | ||
505 | int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { | |
506 | < | for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
506 | > | for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) { |
507 | if (toposForAtom[atom1][j] == atom2) | |
508 | return topoDist[atom1][j]; | |
509 | < | } |
509 | > | } |
510 | return 0; | |
511 | } | |
512 | ||
513 | void ForceMatrixDecomposition::zeroWorkArrays() { | |
514 | pairwisePot = 0.0; | |
515 | embeddingPot = 0.0; | |
516 | + | excludedPot = 0.0; |
517 | + | excludedSelfPot = 0.0; |
518 | ||
519 | #ifdef IS_MPI | |
520 | if (storageLayout_ & DataStorage::dslForce) { | |
# | Line 503 | Line 533 | namespace OpenMD { | |
533 | fill(pot_col.begin(), pot_col.end(), | |
534 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
535 | ||
536 | + | fill(expot_row.begin(), expot_row.end(), |
537 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
538 | + | |
539 | + | fill(expot_col.begin(), expot_col.end(), |
540 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
541 | + | |
542 | if (storageLayout_ & DataStorage::dslParticlePot) { | |
543 | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), | |
544 | 0.0); | |
# | Line 550 | Line 586 | namespace OpenMD { | |
586 | atomColData.electricField.end(), V3Zero); | |
587 | } | |
588 | ||
553 | – | if (storageLayout_ & DataStorage::dslFlucQForce) { |
554 | – | fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), |
555 | – | 0.0); |
556 | – | fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), |
557 | – | 0.0); |
558 | – | } |
559 | – | |
589 | #endif | |
590 | // even in parallel, we need to zero out the local arrays: | |
591 | ||
# | Line 630 | Line 659 | namespace OpenMD { | |
659 | AtomPlanMatrixColumn->gather(snap_->atomData.aMat, | |
660 | atomColData.aMat); | |
661 | } | |
662 | < | |
663 | < | // if needed, gather the atomic eletrostatic frames |
664 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { |
665 | < | AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
666 | < | atomRowData.electroFrame); |
667 | < | AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
668 | < | atomColData.electroFrame); |
662 | > | |
663 | > | // if needed, gather the atomic eletrostatic information |
664 | > | if (storageLayout_ & DataStorage::dslDipole) { |
665 | > | AtomPlanVectorRow->gather(snap_->atomData.dipole, |
666 | > | atomRowData.dipole); |
667 | > | AtomPlanVectorColumn->gather(snap_->atomData.dipole, |
668 | > | atomColData.dipole); |
669 | } | |
670 | ||
671 | + | if (storageLayout_ & DataStorage::dslQuadrupole) { |
672 | + | AtomPlanMatrixRow->gather(snap_->atomData.quadrupole, |
673 | + | atomRowData.quadrupole); |
674 | + | AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole, |
675 | + | atomColData.quadrupole); |
676 | + | } |
677 | + | |
678 | // if needed, gather the atomic fluctuating charge values | |
679 | if (storageLayout_ & DataStorage::dslFlucQPosition) { | |
680 | AtomPlanRealRow->gather(snap_->atomData.flucQPos, | |
# | Line 670 | Line 706 | namespace OpenMD { | |
706 | snap_->atomData.density[i] += rho_tmp[i]; | |
707 | } | |
708 | ||
709 | + | // this isn't necessary if we don't have polarizable atoms, but |
710 | + | // we'll leave it here for now. |
711 | if (storageLayout_ & DataStorage::dslElectricField) { | |
712 | ||
713 | AtomPlanVectorRow->scatter(atomRowData.electricField, | |
# | Line 677 | Line 715 | namespace OpenMD { | |
715 | ||
716 | int n = snap_->atomData.electricField.size(); | |
717 | vector<Vector3d> field_tmp(n, V3Zero); | |
718 | < | AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); |
718 | > | AtomPlanVectorColumn->scatter(atomColData.electricField, |
719 | > | field_tmp); |
720 | for (int i = 0; i < n; i++) | |
721 | snap_->atomData.electricField[i] += field_tmp[i]; | |
722 | } | |
# | Line 777 | Line 816 | namespace OpenMD { | |
816 | ||
817 | } | |
818 | ||
819 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
820 | + | |
821 | + | int nef = snap_->atomData.electricField.size(); |
822 | + | vector<Vector3d> efield_tmp(nef, V3Zero); |
823 | + | |
824 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp); |
825 | + | for (int i = 0; i < nef; i++) { |
826 | + | snap_->atomData.electricField[i] += efield_tmp[i]; |
827 | + | efield_tmp[i] = 0.0; |
828 | + | } |
829 | + | |
830 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp); |
831 | + | for (int i = 0; i < nef; i++) |
832 | + | snap_->atomData.electricField[i] += efield_tmp[i]; |
833 | + | } |
834 | + | |
835 | + | |
836 | nLocal_ = snap_->getNumberOfAtoms(); | |
837 | ||
838 | vector<potVec> pot_temp(nLocal_, | |
839 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
840 | + | vector<potVec> expot_temp(nLocal_, |
841 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
842 | ||
843 | // scatter/gather pot_row into the members of my column | |
844 | ||
845 | AtomPlanPotRow->scatter(pot_row, pot_temp); | |
846 | + | AtomPlanPotRow->scatter(expot_row, expot_temp); |
847 | ||
848 | < | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
848 | > | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
849 | pairwisePot += pot_temp[ii]; | |
850 | + | |
851 | + | for (int ii = 0; ii < expot_temp.size(); ii++ ) |
852 | + | excludedPot += expot_temp[ii]; |
853 | ||
854 | if (storageLayout_ & DataStorage::dslParticlePot) { | |
855 | // This is the pairwise contribution to the particle pot. The | |
# | Line 805 | Line 867 | namespace OpenMD { | |
867 | ||
868 | fill(pot_temp.begin(), pot_temp.end(), | |
869 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
870 | + | fill(expot_temp.begin(), expot_temp.end(), |
871 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
872 | ||
873 | AtomPlanPotColumn->scatter(pot_col, pot_temp); | |
874 | + | AtomPlanPotColumn->scatter(expot_col, expot_temp); |
875 | ||
876 | for (int ii = 0; ii < pot_temp.size(); ii++ ) | |
877 | pairwisePot += pot_temp[ii]; | |
878 | ||
879 | + | for (int ii = 0; ii < expot_temp.size(); ii++ ) |
880 | + | excludedPot += expot_temp[ii]; |
881 | + | |
882 | if (storageLayout_ & DataStorage::dslParticlePot) { | |
883 | // This is the pairwise contribution to the particle pot. The | |
884 | // embedding contribution is added in each of the low level | |
# | Line 848 | Line 916 | namespace OpenMD { | |
916 | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | |
917 | RealType ploc1 = pairwisePot[ii]; | |
918 | RealType ploc2 = 0.0; | |
919 | < | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
919 | > | MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
920 | pairwisePot[ii] = ploc2; | |
921 | } | |
922 | ||
923 | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | |
924 | < | RealType ploc1 = embeddingPot[ii]; |
924 | > | RealType ploc1 = excludedPot[ii]; |
925 | RealType ploc2 = 0.0; | |
926 | < | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
927 | < | embeddingPot[ii] = ploc2; |
926 | > | MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
927 | > | excludedPot[ii] = ploc2; |
928 | } | |
929 | < | |
929 | > | |
930 | // Here be dragons. | |
931 | < | MPI::Intracomm col = colComm.getComm(); |
931 | > | MPI_Comm col = colComm.getComm(); |
932 | ||
933 | < | col.Allreduce(MPI::IN_PLACE, |
933 | > | MPI_Allreduce(MPI_IN_PLACE, |
934 | &snap_->frameData.conductiveHeatFlux[0], 3, | |
935 | < | MPI::REALTYPE, MPI::SUM); |
935 | > | MPI_REALTYPE, MPI_SUM, col); |
936 | ||
937 | ||
938 | #endif | |
939 | ||
940 | } | |
941 | ||
942 | < | int ForceMatrixDecomposition::getNAtomsInRow() { |
942 | > | /** |
943 | > | * Collects information obtained during the post-pair (and embedding |
944 | > | * functional) loops onto local data structures. |
945 | > | */ |
946 | > | void ForceMatrixDecomposition::collectSelfData() { |
947 | > | snap_ = sman_->getCurrentSnapshot(); |
948 | > | storageLayout_ = sman_->getStorageLayout(); |
949 | > | |
950 | #ifdef IS_MPI | |
951 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
952 | + | RealType ploc1 = embeddingPot[ii]; |
953 | + | RealType ploc2 = 0.0; |
954 | + | MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
955 | + | embeddingPot[ii] = ploc2; |
956 | + | } |
957 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
958 | + | RealType ploc1 = excludedSelfPot[ii]; |
959 | + | RealType ploc2 = 0.0; |
960 | + | MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
961 | + | excludedSelfPot[ii] = ploc2; |
962 | + | } |
963 | + | #endif |
964 | + | |
965 | + | } |
966 | + | |
967 | + | |
968 | + | |
969 | + | int& ForceMatrixDecomposition::getNAtomsInRow() { |
970 | + | #ifdef IS_MPI |
971 | return nAtomsInRow_; | |
972 | #else | |
973 | return nLocal_; | |
# | Line 882 | Line 977 | namespace OpenMD { | |
977 | /** | |
978 | * returns the list of atoms belonging to this group. | |
979 | */ | |
980 | < | vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
980 | > | vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
981 | #ifdef IS_MPI | |
982 | return groupListRow_[cg1]; | |
983 | #else | |
# | Line 890 | Line 985 | namespace OpenMD { | |
985 | #endif | |
986 | } | |
987 | ||
988 | < | vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
988 | > | vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
989 | #ifdef IS_MPI | |
990 | return groupListCol_[cg2]; | |
991 | #else | |
# | Line 907 | Line 1002 | namespace OpenMD { | |
1002 | d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; | |
1003 | #endif | |
1004 | ||
1005 | < | snap_->wrapVector(d); |
1005 | > | if (usePeriodicBoundaryConditions_) { |
1006 | > | snap_->wrapVector(d); |
1007 | > | } |
1008 | return d; | |
1009 | } | |
1010 | ||
1011 | < | Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ |
1011 | > | Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ |
1012 | #ifdef IS_MPI | |
1013 | return cgColData.velocity[cg2]; | |
1014 | #else | |
# | Line 919 | Line 1016 | namespace OpenMD { | |
1016 | #endif | |
1017 | } | |
1018 | ||
1019 | < | Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ |
1019 | > | Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ |
1020 | #ifdef IS_MPI | |
1021 | return atomColData.velocity[atom2]; | |
1022 | #else | |
# | Line 937 | Line 1034 | namespace OpenMD { | |
1034 | #else | |
1035 | d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; | |
1036 | #endif | |
1037 | < | |
1038 | < | snap_->wrapVector(d); |
1037 | > | if (usePeriodicBoundaryConditions_) { |
1038 | > | snap_->wrapVector(d); |
1039 | > | } |
1040 | return d; | |
1041 | } | |
1042 | ||
# | Line 950 | Line 1048 | namespace OpenMD { | |
1048 | #else | |
1049 | d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; | |
1050 | #endif | |
1051 | < | |
1052 | < | snap_->wrapVector(d); |
1051 | > | if (usePeriodicBoundaryConditions_) { |
1052 | > | snap_->wrapVector(d); |
1053 | > | } |
1054 | return d; | |
1055 | } | |
1056 | ||
1057 | < | RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
1057 | > | RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
1058 | #ifdef IS_MPI | |
1059 | return massFactorsRow[atom1]; | |
1060 | #else | |
# | Line 963 | Line 1062 | namespace OpenMD { | |
1062 | #endif | |
1063 | } | |
1064 | ||
1065 | < | RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
1065 | > | RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
1066 | #ifdef IS_MPI | |
1067 | return massFactorsCol[atom2]; | |
1068 | #else | |
# | Line 980 | Line 1079 | namespace OpenMD { | |
1079 | #else | |
1080 | d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; | |
1081 | #endif | |
1082 | < | |
1083 | < | snap_->wrapVector(d); |
1082 | > | if (usePeriodicBoundaryConditions_) { |
1083 | > | snap_->wrapVector(d); |
1084 | > | } |
1085 | return d; | |
1086 | } | |
1087 | ||
1088 | < | vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
1088 | > | vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
1089 | return excludesForAtom[atom1]; | |
1090 | } | |
1091 | ||
# | Line 993 | Line 1093 | namespace OpenMD { | |
1093 | * We need to exclude some overcounted interactions that result from | |
1094 | * the parallel decomposition. | |
1095 | */ | |
1096 | < | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
1096 | > | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { |
1097 | int unique_id_1, unique_id_2; | |
1098 | ||
1099 | #ifdef IS_MPI | |
1100 | // in MPI, we have to look up the unique IDs for each atom | |
1101 | unique_id_1 = AtomRowToGlobal[atom1]; | |
1102 | unique_id_2 = AtomColToGlobal[atom2]; | |
1103 | + | // group1 = cgRowToGlobal[cg1]; |
1104 | + | // group2 = cgColToGlobal[cg2]; |
1105 | #else | |
1106 | unique_id_1 = AtomLocalToGlobal[atom1]; | |
1107 | unique_id_2 = AtomLocalToGlobal[atom2]; | |
1108 | + | int group1 = cgLocalToGlobal[cg1]; |
1109 | + | int group2 = cgLocalToGlobal[cg2]; |
1110 | #endif | |
1111 | ||
1112 | if (unique_id_1 == unique_id_2) return true; | |
# | Line 1014 | Line 1118 | namespace OpenMD { | |
1118 | } else { | |
1119 | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | |
1120 | } | |
1121 | + | #endif |
1122 | + | |
1123 | + | #ifndef IS_MPI |
1124 | + | if (group1 == group2) { |
1125 | + | if (unique_id_1 < unique_id_2) return true; |
1126 | + | } |
1127 | #endif | |
1128 | ||
1129 | return false; | |
# | Line 1065 | Line 1175 | namespace OpenMD { | |
1175 | idat.excluded = excludeAtomPair(atom1, atom2); | |
1176 | ||
1177 | #ifdef IS_MPI | |
1178 | < | idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
1179 | < | //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
1180 | < | // ff_->getAtomType(identsCol[atom2]) ); |
1181 | < | |
1178 | > | //idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
1179 | > | idat.atid1 = identsRow[atom1]; |
1180 | > | idat.atid2 = identsCol[atom2]; |
1181 | > | |
1182 | > | if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) { |
1183 | > | idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]); |
1184 | > | } else { |
1185 | > | idat.sameRegion = false; |
1186 | > | } |
1187 | > | |
1188 | if (storageLayout_ & DataStorage::dslAmat) { | |
1189 | idat.A1 = &(atomRowData.aMat[atom1]); | |
1190 | idat.A2 = &(atomColData.aMat[atom2]); | |
1191 | } | |
1192 | ||
1077 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { |
1078 | – | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
1079 | – | idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
1080 | – | } |
1081 | – | |
1193 | if (storageLayout_ & DataStorage::dslTorque) { | |
1194 | idat.t1 = &(atomRowData.torque[atom1]); | |
1195 | idat.t2 = &(atomColData.torque[atom2]); | |
1196 | } | |
1197 | ||
1198 | + | if (storageLayout_ & DataStorage::dslDipole) { |
1199 | + | idat.dipole1 = &(atomRowData.dipole[atom1]); |
1200 | + | idat.dipole2 = &(atomColData.dipole[atom2]); |
1201 | + | } |
1202 | + | |
1203 | + | if (storageLayout_ & DataStorage::dslQuadrupole) { |
1204 | + | idat.quadrupole1 = &(atomRowData.quadrupole[atom1]); |
1205 | + | idat.quadrupole2 = &(atomColData.quadrupole[atom2]); |
1206 | + | } |
1207 | + | |
1208 | if (storageLayout_ & DataStorage::dslDensity) { | |
1209 | idat.rho1 = &(atomRowData.density[atom1]); | |
1210 | idat.rho2 = &(atomColData.density[atom2]); | |
# | Line 1116 | Line 1237 | namespace OpenMD { | |
1237 | ||
1238 | #else | |
1239 | ||
1240 | + | //idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
1241 | + | idat.atid1 = idents[atom1]; |
1242 | + | idat.atid2 = idents[atom2]; |
1243 | ||
1244 | < | // cerr << "atoms = " << atom1 << " " << atom2 << "\n"; |
1245 | < | // cerr << "pos1 = " << snap_->atomData.position[atom1] << "\n"; |
1246 | < | // cerr << "pos2 = " << snap_->atomData.position[atom2] << "\n"; |
1244 | > | if (regions[atom1] >= 0 && regions[atom2] >= 0) { |
1245 | > | idat.sameRegion = (regions[atom1] == regions[atom2]); |
1246 | > | } else { |
1247 | > | idat.sameRegion = false; |
1248 | > | } |
1249 | ||
1124 | – | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
1125 | – | //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
1126 | – | // ff_->getAtomType(idents[atom2]) ); |
1127 | – | |
1250 | if (storageLayout_ & DataStorage::dslAmat) { | |
1251 | idat.A1 = &(snap_->atomData.aMat[atom1]); | |
1252 | idat.A2 = &(snap_->atomData.aMat[atom2]); | |
1253 | } | |
1254 | ||
1133 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { |
1134 | – | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
1135 | – | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
1136 | – | } |
1137 | – | |
1255 | if (storageLayout_ & DataStorage::dslTorque) { | |
1256 | idat.t1 = &(snap_->atomData.torque[atom1]); | |
1257 | idat.t2 = &(snap_->atomData.torque[atom2]); | |
1258 | } | |
1259 | ||
1260 | + | if (storageLayout_ & DataStorage::dslDipole) { |
1261 | + | idat.dipole1 = &(snap_->atomData.dipole[atom1]); |
1262 | + | idat.dipole2 = &(snap_->atomData.dipole[atom2]); |
1263 | + | } |
1264 | + | |
1265 | + | if (storageLayout_ & DataStorage::dslQuadrupole) { |
1266 | + | idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]); |
1267 | + | idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]); |
1268 | + | } |
1269 | + | |
1270 | if (storageLayout_ & DataStorage::dslDensity) { | |
1271 | idat.rho1 = &(snap_->atomData.density[atom1]); | |
1272 | idat.rho2 = &(snap_->atomData.density[atom2]); | |
# | Line 1178 | Line 1305 | namespace OpenMD { | |
1305 | #ifdef IS_MPI | |
1306 | pot_row[atom1] += RealType(0.5) * *(idat.pot); | |
1307 | pot_col[atom2] += RealType(0.5) * *(idat.pot); | |
1308 | + | expot_row[atom1] += RealType(0.5) * *(idat.excludedPot); |
1309 | + | expot_col[atom2] += RealType(0.5) * *(idat.excludedPot); |
1310 | ||
1311 | atomRowData.force[atom1] += *(idat.f1); | |
1312 | atomColData.force[atom2] -= *(idat.f1); | |
# | Line 1194 | Line 1323 | namespace OpenMD { | |
1323 | ||
1324 | #else | |
1325 | pairwisePot += *(idat.pot); | |
1326 | + | excludedPot += *(idat.excludedPot); |
1327 | ||
1328 | snap_->atomData.force[atom1] += *(idat.f1); | |
1329 | snap_->atomData.force[atom2] -= *(idat.f1); | |
# | Line 1227 | Line 1357 | namespace OpenMD { | |
1357 | * first element of pair is row-indexed CutoffGroup | |
1358 | * second element of pair is column-indexed CutoffGroup | |
1359 | */ | |
1360 | < | vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { |
1361 | < | |
1362 | < | vector<pair<int, int> > neighborList; |
1360 | > | void ForceMatrixDecomposition::buildNeighborList(vector<pair<int,int> >& neighborList) { |
1361 | > | |
1362 | > | neighborList.clear(); |
1363 | groupCutoffs cuts; | |
1364 | bool doAllPairs = false; | |
1365 | ||
1366 | + | RealType rList_ = (largestRcut_ + skinThickness_); |
1367 | + | RealType rcut, rcutsq, rlistsq; |
1368 | + | Snapshot* snap_ = sman_->getCurrentSnapshot(); |
1369 | + | Mat3x3d box; |
1370 | + | Mat3x3d invBox; |
1371 | + | |
1372 | + | Vector3d rs, scaled, dr; |
1373 | + | Vector3i whichCell; |
1374 | + | int cellIndex; |
1375 | + | |
1376 | #ifdef IS_MPI | |
1377 | cellListRow_.clear(); | |
1378 | cellListCol_.clear(); | |
1379 | #else | |
1380 | cellList_.clear(); | |
1381 | #endif | |
1382 | < | |
1383 | < | RealType rList_ = (largestRcut_ + skinThickness_); |
1384 | < | RealType rl2 = rList_ * rList_; |
1385 | < | Snapshot* snap_ = sman_->getCurrentSnapshot(); |
1386 | < | Mat3x3d Hmat = snap_->getHmat(); |
1387 | < | Vector3d Hx = Hmat.getColumn(0); |
1388 | < | Vector3d Hy = Hmat.getColumn(1); |
1389 | < | Vector3d Hz = Hmat.getColumn(2); |
1390 | < | |
1391 | < | nCells_.x() = (int) ( Hx.length() )/ rList_; |
1392 | < | nCells_.y() = (int) ( Hy.length() )/ rList_; |
1393 | < | nCells_.z() = (int) ( Hz.length() )/ rList_; |
1394 | < | |
1382 | > | |
1383 | > | if (!usePeriodicBoundaryConditions_) { |
1384 | > | box = snap_->getBoundingBox(); |
1385 | > | invBox = snap_->getInvBoundingBox(); |
1386 | > | } else { |
1387 | > | box = snap_->getHmat(); |
1388 | > | invBox = snap_->getInvHmat(); |
1389 | > | } |
1390 | > | |
1391 | > | Vector3d boxX = box.getColumn(0); |
1392 | > | Vector3d boxY = box.getColumn(1); |
1393 | > | Vector3d boxZ = box.getColumn(2); |
1394 | > | |
1395 | > | nCells_.x() = int( boxX.length() / rList_ ); |
1396 | > | nCells_.y() = int( boxY.length() / rList_ ); |
1397 | > | nCells_.z() = int( boxZ.length() / rList_ ); |
1398 | > | |
1399 | // handle small boxes where the cell offsets can end up repeating cells | |
1400 | ||
1401 | if (nCells_.x() < 3) doAllPairs = true; | |
1402 | if (nCells_.y() < 3) doAllPairs = true; | |
1403 | if (nCells_.z() < 3) doAllPairs = true; | |
1404 | < | |
1261 | < | Mat3x3d invHmat = snap_->getInvHmat(); |
1262 | < | Vector3d rs, scaled, dr; |
1263 | < | Vector3i whichCell; |
1264 | < | int cellIndex; |
1404 | > | |
1405 | int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); | |
1406 | < | |
1406 | > | |
1407 | #ifdef IS_MPI | |
1408 | cellListRow_.resize(nCtot); | |
1409 | cellListCol_.resize(nCtot); | |
1410 | #else | |
1411 | cellList_.resize(nCtot); | |
1412 | #endif | |
1413 | < | |
1413 | > | |
1414 | if (!doAllPairs) { | |
1415 | #ifdef IS_MPI | |
1416 | < | |
1416 | > | |
1417 | for (int i = 0; i < nGroupsInRow_; i++) { | |
1418 | rs = cgRowData.position[i]; | |
1419 | ||
1420 | // scaled positions relative to the box vectors | |
1421 | < | scaled = invHmat * rs; |
1421 | > | scaled = invBox * rs; |
1422 | ||
1423 | // wrap the vector back into the unit box by subtracting integer box | |
1424 | // numbers | |
1425 | for (int j = 0; j < 3; j++) { | |
1426 | scaled[j] -= roundMe(scaled[j]); | |
1427 | scaled[j] += 0.5; | |
1428 | + | // Handle the special case when an object is exactly on the |
1429 | + | // boundary (a scaled coordinate of 1.0 is the same as |
1430 | + | // scaled coordinate of 0.0) |
1431 | + | if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1432 | } | |
1433 | ||
1434 | // find xyz-indices of cell that cutoffGroup is in. | |
# | Line 1302 | Line 1446 | namespace OpenMD { | |
1446 | rs = cgColData.position[i]; | |
1447 | ||
1448 | // scaled positions relative to the box vectors | |
1449 | < | scaled = invHmat * rs; |
1449 | > | scaled = invBox * rs; |
1450 | ||
1451 | // wrap the vector back into the unit box by subtracting integer box | |
1452 | // numbers | |
1453 | for (int j = 0; j < 3; j++) { | |
1454 | scaled[j] -= roundMe(scaled[j]); | |
1455 | scaled[j] += 0.5; | |
1456 | + | // Handle the special case when an object is exactly on the |
1457 | + | // boundary (a scaled coordinate of 1.0 is the same as |
1458 | + | // scaled coordinate of 0.0) |
1459 | + | if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1460 | } | |
1461 | ||
1462 | // find xyz-indices of cell that cutoffGroup is in. | |
# | Line 1322 | Line 1470 | namespace OpenMD { | |
1470 | // add this cutoff group to the list of groups in this cell; | |
1471 | cellListCol_[cellIndex].push_back(i); | |
1472 | } | |
1473 | < | |
1473 | > | |
1474 | #else | |
1475 | for (int i = 0; i < nGroups_; i++) { | |
1476 | rs = snap_->cgData.position[i]; | |
1477 | ||
1478 | // scaled positions relative to the box vectors | |
1479 | < | scaled = invHmat * rs; |
1479 | > | scaled = invBox * rs; |
1480 | ||
1481 | // wrap the vector back into the unit box by subtracting integer box | |
1482 | // numbers | |
1483 | for (int j = 0; j < 3; j++) { | |
1484 | scaled[j] -= roundMe(scaled[j]); | |
1485 | scaled[j] += 0.5; | |
1486 | + | // Handle the special case when an object is exactly on the |
1487 | + | // boundary (a scaled coordinate of 1.0 is the same as |
1488 | + | // scaled coordinate of 0.0) |
1489 | + | if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1490 | } | |
1491 | ||
1492 | // find xyz-indices of cell that cutoffGroup is in. | |
1493 | < | whichCell.x() = nCells_.x() * scaled.x(); |
1494 | < | whichCell.y() = nCells_.y() * scaled.y(); |
1495 | < | whichCell.z() = nCells_.z() * scaled.z(); |
1493 | > | whichCell.x() = int(nCells_.x() * scaled.x()); |
1494 | > | whichCell.y() = int(nCells_.y() * scaled.y()); |
1495 | > | whichCell.z() = int(nCells_.z() * scaled.z()); |
1496 | ||
1497 | // find single index of this cell: | |
1498 | cellIndex = Vlinear(whichCell, nCells_); | |
# | Line 1393 | Line 1545 | namespace OpenMD { | |
1545 | // & column indicies and will divide labor in the | |
1546 | // force evaluation later. | |
1547 | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | |
1548 | < | snap_->wrapVector(dr); |
1549 | < | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1550 | < | if (dr.lengthSquare() < cuts.third) { |
1548 | > | if (usePeriodicBoundaryConditions_) { |
1549 | > | snap_->wrapVector(dr); |
1550 | > | } |
1551 | > | getGroupCutoffs( (*j1), (*j2), rcut, rcutsq, rlistsq ); |
1552 | > | if (dr.lengthSquare() < rlistsq) { |
1553 | neighborList.push_back(make_pair((*j1), (*j2))); | |
1554 | } | |
1555 | } | |
# | Line 1415 | Line 1569 | namespace OpenMD { | |
1569 | // allows atoms within a single cutoff group to | |
1570 | // interact with each other. | |
1571 | ||
1418 | – | |
1419 | – | |
1572 | if (m2 != m1 || (*j2) >= (*j1) ) { | |
1573 | ||
1574 | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | |
1575 | < | snap_->wrapVector(dr); |
1576 | < | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1577 | < | if (dr.lengthSquare() < cuts.third) { |
1575 | > | if (usePeriodicBoundaryConditions_) { |
1576 | > | snap_->wrapVector(dr); |
1577 | > | } |
1578 | > | getGroupCutoffs( (*j1), (*j2), rcut, rcutsq, rlistsq ); |
1579 | > | if (dr.lengthSquare() < rlistsq) { |
1580 | neighborList.push_back(make_pair((*j1), (*j2))); | |
1581 | } | |
1582 | } | |
# | Line 1439 | Line 1593 | namespace OpenMD { | |
1593 | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { | |
1594 | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { | |
1595 | dr = cgColData.position[j2] - cgRowData.position[j1]; | |
1596 | < | snap_->wrapVector(dr); |
1597 | < | cuts = getGroupCutoffs( j1, j2 ); |
1598 | < | if (dr.lengthSquare() < cuts.third) { |
1596 | > | if (usePeriodicBoundaryConditions_) { |
1597 | > | snap_->wrapVector(dr); |
1598 | > | } |
1599 | > | getGroupCutoffs( j1, j2, rcut, rcutsq, rlistsq); |
1600 | > | if (dr.lengthSquare() < rlistsq) { |
1601 | neighborList.push_back(make_pair(j1, j2)); | |
1602 | } | |
1603 | } | |
# | Line 1452 | Line 1608 | namespace OpenMD { | |
1608 | // include self group interactions j2 == j1 | |
1609 | for (int j2 = j1; j2 < nGroups_; j2++) { | |
1610 | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; | |
1611 | < | snap_->wrapVector(dr); |
1612 | < | cuts = getGroupCutoffs( j1, j2 ); |
1613 | < | if (dr.lengthSquare() < cuts.third) { |
1611 | > | if (usePeriodicBoundaryConditions_) { |
1612 | > | snap_->wrapVector(dr); |
1613 | > | } |
1614 | > | getGroupCutoffs( j1, j2, rcut, rcutsq, rlistsq ); |
1615 | > | if (dr.lengthSquare() < rlistsq) { |
1616 | neighborList.push_back(make_pair(j1, j2)); | |
1617 | } | |
1618 | } | |
# | Line 1467 | Line 1625 | namespace OpenMD { | |
1625 | saved_CG_positions_.clear(); | |
1626 | for (int i = 0; i < nGroups_; i++) | |
1627 | saved_CG_positions_.push_back(snap_->cgData.position[i]); | |
1470 | – | |
1471 | – | return neighborList; |
1628 | } | |
1629 | } //end namespace OpenMD |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |