# | Line 36 | Line 36 | |
---|---|---|
36 | * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | |
37 | * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | |
38 | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | |
39 | < | * [4] Vardeman & Gezelter, in progress (2009). |
39 | > | * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 | > | * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 | */ | |
42 | #include "parallel/ForceMatrixDecomposition.hpp" | |
43 | #include "math/SquareMatrix3.hpp" | |
# | Line 94 | Line 95 | namespace OpenMD { | |
95 | storageLayout_ = sman_->getStorageLayout(); | |
96 | ff_ = info_->getForceField(); | |
97 | nLocal_ = snap_->getNumberOfAtoms(); | |
98 | < | |
98 | > | |
99 | nGroups_ = info_->getNLocalCutoffGroups(); | |
100 | // gather the information for atomtype IDs (atids): | |
101 | idents = info_->getIdentArray(); | |
# | Line 108 | Line 109 | namespace OpenMD { | |
109 | PairList* oneTwo = info_->getOneTwoInteractions(); | |
110 | PairList* oneThree = info_->getOneThreeInteractions(); | |
111 | PairList* oneFour = info_->getOneFourInteractions(); | |
112 | < | |
112 | > | |
113 | > | if (needVelocities_) |
114 | > | snap_->cgData.setStorageLayout(DataStorage::dslPosition | |
115 | > | DataStorage::dslVelocity); |
116 | > | else |
117 | > | snap_->cgData.setStorageLayout(DataStorage::dslPosition); |
118 | > | |
119 | #ifdef IS_MPI | |
120 | ||
121 | MPI::Intracomm row = rowComm.getComm(); | |
# | Line 144 | Line 151 | namespace OpenMD { | |
151 | cgRowData.resize(nGroupsInRow_); | |
152 | cgRowData.setStorageLayout(DataStorage::dslPosition); | |
153 | cgColData.resize(nGroupsInCol_); | |
154 | < | cgColData.setStorageLayout(DataStorage::dslPosition); |
155 | < | |
154 | > | if (needVelocities_) |
155 | > | // we only need column velocities if we need them. |
156 | > | cgColData.setStorageLayout(DataStorage::dslPosition | |
157 | > | DataStorage::dslVelocity); |
158 | > | else |
159 | > | cgColData.setStorageLayout(DataStorage::dslPosition); |
160 | > | |
161 | identsRow.resize(nAtomsInRow_); | |
162 | identsCol.resize(nAtomsInCol_); | |
163 | ||
# | Line 164 | Line 176 | namespace OpenMD { | |
176 | pot_row.resize(nAtomsInRow_); | |
177 | pot_col.resize(nAtomsInCol_); | |
178 | ||
179 | + | expot_row.resize(nAtomsInRow_); |
180 | + | expot_col.resize(nAtomsInCol_); |
181 | + | |
182 | AtomRowToGlobal.resize(nAtomsInRow_); | |
183 | AtomColToGlobal.resize(nAtomsInCol_); | |
184 | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | |
# | Line 233 | Line 248 | namespace OpenMD { | |
248 | } | |
249 | } | |
250 | ||
251 | < | #endif |
237 | < | |
238 | < | // allocate memory for the parallel objects |
239 | < | atypesLocal.resize(nLocal_); |
240 | < | |
241 | < | for (int i = 0; i < nLocal_; i++) |
242 | < | atypesLocal[i] = ff_->getAtomType(idents[i]); |
243 | < | |
244 | < | groupList_.clear(); |
245 | < | groupList_.resize(nGroups_); |
246 | < | for (int i = 0; i < nGroups_; i++) { |
247 | < | int gid = cgLocalToGlobal[i]; |
248 | < | for (int j = 0; j < nLocal_; j++) { |
249 | < | int aid = AtomLocalToGlobal[j]; |
250 | < | if (globalGroupMembership[aid] == gid) { |
251 | < | groupList_[i].push_back(j); |
252 | < | } |
253 | < | } |
254 | < | } |
255 | < | |
251 | > | #else |
252 | excludesForAtom.clear(); | |
253 | excludesForAtom.resize(nLocal_); | |
254 | toposForAtom.clear(); | |
# | Line 285 | Line 281 | namespace OpenMD { | |
281 | } | |
282 | } | |
283 | } | |
284 | < | |
284 | > | #endif |
285 | > | |
286 | > | // allocate memory for the parallel objects |
287 | > | atypesLocal.resize(nLocal_); |
288 | > | |
289 | > | for (int i = 0; i < nLocal_; i++) |
290 | > | atypesLocal[i] = ff_->getAtomType(idents[i]); |
291 | > | |
292 | > | groupList_.clear(); |
293 | > | groupList_.resize(nGroups_); |
294 | > | for (int i = 0; i < nGroups_; i++) { |
295 | > | int gid = cgLocalToGlobal[i]; |
296 | > | for (int j = 0; j < nLocal_; j++) { |
297 | > | int aid = AtomLocalToGlobal[j]; |
298 | > | if (globalGroupMembership[aid] == gid) { |
299 | > | groupList_[i].push_back(j); |
300 | > | } |
301 | > | } |
302 | > | } |
303 | > | |
304 | > | |
305 | createGtypeCutoffMap(); | |
306 | ||
307 | } | |
# | Line 448 | Line 464 | namespace OpenMD { | |
464 | } | |
465 | } | |
466 | ||
451 | – | |
467 | groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { | |
468 | int i, j; | |
469 | #ifdef IS_MPI | |
# | Line 472 | Line 487 | namespace OpenMD { | |
487 | void ForceMatrixDecomposition::zeroWorkArrays() { | |
488 | pairwisePot = 0.0; | |
489 | embeddingPot = 0.0; | |
490 | + | excludedPot = 0.0; |
491 | ||
492 | #ifdef IS_MPI | |
493 | if (storageLayout_ & DataStorage::dslForce) { | |
# | Line 490 | Line 506 | namespace OpenMD { | |
506 | fill(pot_col.begin(), pot_col.end(), | |
507 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
508 | ||
509 | + | fill(expot_row.begin(), expot_row.end(), |
510 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
511 | + | |
512 | + | fill(expot_col.begin(), expot_col.end(), |
513 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
514 | + | |
515 | if (storageLayout_ & DataStorage::dslParticlePot) { | |
516 | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), | |
517 | 0.0); | |
# | Line 523 | Line 545 | namespace OpenMD { | |
545 | atomColData.skippedCharge.end(), 0.0); | |
546 | } | |
547 | ||
548 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
549 | + | fill(atomRowData.flucQFrc.begin(), |
550 | + | atomRowData.flucQFrc.end(), 0.0); |
551 | + | fill(atomColData.flucQFrc.begin(), |
552 | + | atomColData.flucQFrc.end(), 0.0); |
553 | + | } |
554 | + | |
555 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
556 | + | fill(atomRowData.electricField.begin(), |
557 | + | atomRowData.electricField.end(), V3Zero); |
558 | + | fill(atomColData.electricField.begin(), |
559 | + | atomColData.electricField.end(), V3Zero); |
560 | + | } |
561 | + | |
562 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
563 | + | fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), |
564 | + | 0.0); |
565 | + | fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), |
566 | + | 0.0); |
567 | + | } |
568 | + | |
569 | #endif | |
570 | // even in parallel, we need to zero out the local arrays: | |
571 | ||
# | Line 535 | Line 578 | namespace OpenMD { | |
578 | fill(snap_->atomData.density.begin(), | |
579 | snap_->atomData.density.end(), 0.0); | |
580 | } | |
581 | + | |
582 | if (storageLayout_ & DataStorage::dslFunctional) { | |
583 | fill(snap_->atomData.functional.begin(), | |
584 | snap_->atomData.functional.end(), 0.0); | |
585 | } | |
586 | + | |
587 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
588 | fill(snap_->atomData.functionalDerivative.begin(), | |
589 | snap_->atomData.functionalDerivative.end(), 0.0); | |
590 | } | |
591 | + | |
592 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | |
593 | fill(snap_->atomData.skippedCharge.begin(), | |
594 | snap_->atomData.skippedCharge.end(), 0.0); | |
595 | } | |
596 | < | |
596 | > | |
597 | > | if (storageLayout_ & DataStorage::dslElectricField) { |
598 | > | fill(snap_->atomData.electricField.begin(), |
599 | > | snap_->atomData.electricField.end(), V3Zero); |
600 | > | } |
601 | } | |
602 | ||
603 | ||
# | Line 570 | Line 620 | namespace OpenMD { | |
620 | cgPlanVectorColumn->gather(snap_->cgData.position, | |
621 | cgColData.position); | |
622 | ||
623 | + | |
624 | + | |
625 | + | if (needVelocities_) { |
626 | + | // gather up the atomic velocities |
627 | + | AtomPlanVectorColumn->gather(snap_->atomData.velocity, |
628 | + | atomColData.velocity); |
629 | + | |
630 | + | cgPlanVectorColumn->gather(snap_->cgData.velocity, |
631 | + | cgColData.velocity); |
632 | + | } |
633 | + | |
634 | ||
635 | // if needed, gather the atomic rotation matrices | |
636 | if (storageLayout_ & DataStorage::dslAmat) { | |
# | Line 587 | Line 648 | namespace OpenMD { | |
648 | atomColData.electroFrame); | |
649 | } | |
650 | ||
651 | + | // if needed, gather the atomic fluctuating charge values |
652 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
653 | + | AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
654 | + | atomRowData.flucQPos); |
655 | + | AtomPlanRealColumn->gather(snap_->atomData.flucQPos, |
656 | + | atomColData.flucQPos); |
657 | + | } |
658 | + | |
659 | #endif | |
660 | } | |
661 | ||
# | Line 609 | Line 678 | namespace OpenMD { | |
678 | for (int i = 0; i < n; i++) | |
679 | snap_->atomData.density[i] += rho_tmp[i]; | |
680 | } | |
681 | + | |
682 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
683 | + | |
684 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, |
685 | + | snap_->atomData.electricField); |
686 | + | |
687 | + | int n = snap_->atomData.electricField.size(); |
688 | + | vector<Vector3d> field_tmp(n, V3Zero); |
689 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); |
690 | + | for (int i = 0; i < n; i++) |
691 | + | snap_->atomData.electricField[i] += field_tmp[i]; |
692 | + | } |
693 | #endif | |
694 | } | |
695 | ||
# | Line 683 | Line 764 | namespace OpenMD { | |
764 | } | |
765 | ||
766 | AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); | |
767 | < | for (int i = 0; i < ns; i++) |
767 | > | for (int i = 0; i < ns; i++) |
768 | snap_->atomData.skippedCharge[i] += skch_tmp[i]; | |
769 | + | |
770 | } | |
771 | ||
772 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
773 | + | |
774 | + | int nq = snap_->atomData.flucQFrc.size(); |
775 | + | vector<RealType> fqfrc_tmp(nq, 0.0); |
776 | + | |
777 | + | AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); |
778 | + | for (int i = 0; i < nq; i++) { |
779 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
780 | + | fqfrc_tmp[i] = 0.0; |
781 | + | } |
782 | + | |
783 | + | AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); |
784 | + | for (int i = 0; i < nq; i++) |
785 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
786 | + | |
787 | + | } |
788 | + | |
789 | nLocal_ = snap_->getNumberOfAtoms(); | |
790 | ||
791 | vector<potVec> pot_temp(nLocal_, | |
792 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
793 | + | vector<potVec> expot_temp(nLocal_, |
794 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
795 | ||
796 | // scatter/gather pot_row into the members of my column | |
797 | ||
798 | AtomPlanPotRow->scatter(pot_row, pot_temp); | |
799 | + | AtomPlanPotRow->scatter(expot_row, expot_temp); |
800 | ||
801 | < | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
801 | > | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
802 | pairwisePot += pot_temp[ii]; | |
803 | < | |
803 | > | |
804 | > | for (int ii = 0; ii < expot_temp.size(); ii++ ) |
805 | > | excludedPot += expot_temp[ii]; |
806 | > | |
807 | > | if (storageLayout_ & DataStorage::dslParticlePot) { |
808 | > | // This is the pairwise contribution to the particle pot. The |
809 | > | // embedding contribution is added in each of the low level |
810 | > | // non-bonded routines. In single processor, this is done in |
811 | > | // unpackInteractionData, not in collectData. |
812 | > | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
813 | > | for (int i = 0; i < nLocal_; i++) { |
814 | > | // factor of two is because the total potential terms are divided |
815 | > | // by 2 in parallel due to row/ column scatter |
816 | > | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
817 | > | } |
818 | > | } |
819 | > | } |
820 | > | |
821 | fill(pot_temp.begin(), pot_temp.end(), | |
822 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
823 | + | fill(expot_temp.begin(), expot_temp.end(), |
824 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
825 | ||
826 | AtomPlanPotColumn->scatter(pot_col, pot_temp); | |
827 | + | AtomPlanPotColumn->scatter(expot_col, expot_temp); |
828 | ||
829 | for (int ii = 0; ii < pot_temp.size(); ii++ ) | |
830 | pairwisePot += pot_temp[ii]; | |
831 | + | |
832 | + | for (int ii = 0; ii < expot_temp.size(); ii++ ) |
833 | + | excludedPot += expot_temp[ii]; |
834 | + | |
835 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
836 | + | // This is the pairwise contribution to the particle pot. The |
837 | + | // embedding contribution is added in each of the low level |
838 | + | // non-bonded routines. In single processor, this is done in |
839 | + | // unpackInteractionData, not in collectData. |
840 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
841 | + | for (int i = 0; i < nLocal_; i++) { |
842 | + | // factor of two is because the total potential terms are divided |
843 | + | // by 2 in parallel due to row/ column scatter |
844 | + | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
845 | + | } |
846 | + | } |
847 | + | } |
848 | ||
849 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
850 | + | int npp = snap_->atomData.particlePot.size(); |
851 | + | vector<RealType> ppot_temp(npp, 0.0); |
852 | + | |
853 | + | // This is the direct or embedding contribution to the particle |
854 | + | // pot. |
855 | + | |
856 | + | AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); |
857 | + | for (int i = 0; i < npp; i++) { |
858 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; |
859 | + | } |
860 | + | |
861 | + | fill(ppot_temp.begin(), ppot_temp.end(), 0.0); |
862 | + | |
863 | + | AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); |
864 | + | for (int i = 0; i < npp; i++) { |
865 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; |
866 | + | } |
867 | + | } |
868 | + | |
869 | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | |
870 | RealType ploc1 = pairwisePot[ii]; | |
871 | RealType ploc2 = 0.0; | |
# | Line 714 | Line 873 | namespace OpenMD { | |
873 | pairwisePot[ii] = ploc2; | |
874 | } | |
875 | ||
876 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
877 | + | RealType ploc1 = excludedPot[ii]; |
878 | + | RealType ploc2 = 0.0; |
879 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
880 | + | excludedPot[ii] = ploc2; |
881 | + | } |
882 | + | |
883 | + | // Here be dragons. |
884 | + | MPI::Intracomm col = colComm.getComm(); |
885 | + | |
886 | + | col.Allreduce(MPI::IN_PLACE, |
887 | + | &snap_->frameData.conductiveHeatFlux[0], 3, |
888 | + | MPI::REALTYPE, MPI::SUM); |
889 | + | |
890 | + | |
891 | #endif | |
892 | ||
893 | } | |
894 | ||
895 | + | /** |
896 | + | * Collects information obtained during the post-pair (and embedding |
897 | + | * functional) loops onto local data structures. |
898 | + | */ |
899 | + | void ForceMatrixDecomposition::collectSelfData() { |
900 | + | snap_ = sman_->getCurrentSnapshot(); |
901 | + | storageLayout_ = sman_->getStorageLayout(); |
902 | + | |
903 | + | #ifdef IS_MPI |
904 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
905 | + | RealType ploc1 = embeddingPot[ii]; |
906 | + | RealType ploc2 = 0.0; |
907 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
908 | + | embeddingPot[ii] = ploc2; |
909 | + | } |
910 | + | #endif |
911 | + | |
912 | + | } |
913 | + | |
914 | + | |
915 | + | |
916 | int ForceMatrixDecomposition::getNAtomsInRow() { | |
917 | #ifdef IS_MPI | |
918 | return nAtomsInRow_; | |
# | Line 758 | Line 953 | namespace OpenMD { | |
953 | return d; | |
954 | } | |
955 | ||
956 | + | Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ |
957 | + | #ifdef IS_MPI |
958 | + | return cgColData.velocity[cg2]; |
959 | + | #else |
960 | + | return snap_->cgData.velocity[cg2]; |
961 | + | #endif |
962 | + | } |
963 | ||
964 | + | Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ |
965 | + | #ifdef IS_MPI |
966 | + | return atomColData.velocity[atom2]; |
967 | + | #else |
968 | + | return snap_->atomData.velocity[atom2]; |
969 | + | #endif |
970 | + | } |
971 | + | |
972 | + | |
973 | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ | |
974 | ||
975 | Vector3d d; | |
# | Line 824 | Line 1035 | namespace OpenMD { | |
1035 | * We need to exclude some overcounted interactions that result from | |
1036 | * the parallel decomposition. | |
1037 | */ | |
1038 | < | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
1039 | < | int unique_id_1, unique_id_2; |
1040 | < | |
1038 | > | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { |
1039 | > | int unique_id_1, unique_id_2, group1, group2; |
1040 | > | |
1041 | #ifdef IS_MPI | |
1042 | // in MPI, we have to look up the unique IDs for each atom | |
1043 | unique_id_1 = AtomRowToGlobal[atom1]; | |
1044 | unique_id_2 = AtomColToGlobal[atom2]; | |
1045 | + | group1 = cgRowToGlobal[cg1]; |
1046 | + | group2 = cgColToGlobal[cg2]; |
1047 | + | #else |
1048 | + | unique_id_1 = AtomLocalToGlobal[atom1]; |
1049 | + | unique_id_2 = AtomLocalToGlobal[atom2]; |
1050 | + | group1 = cgLocalToGlobal[cg1]; |
1051 | + | group2 = cgLocalToGlobal[cg2]; |
1052 | + | #endif |
1053 | ||
835 | – | // this situation should only arise in MPI simulations |
1054 | if (unique_id_1 == unique_id_2) return true; | |
1055 | < | |
1055 | > | |
1056 | > | #ifdef IS_MPI |
1057 | // this prevents us from doing the pair on multiple processors | |
1058 | if (unique_id_1 < unique_id_2) { | |
1059 | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; | |
1060 | } else { | |
1061 | < | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
1061 | > | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
1062 | } | |
1063 | + | #endif |
1064 | + | |
1065 | + | #ifndef IS_MPI |
1066 | + | if (group1 == group2) { |
1067 | + | if (unique_id_1 < unique_id_2) return true; |
1068 | + | } |
1069 | #endif | |
1070 | + | |
1071 | return false; | |
1072 | } | |
1073 | ||
# | Line 855 | Line 1081 | namespace OpenMD { | |
1081 | * field) must still be handled for these pairs. | |
1082 | */ | |
1083 | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { | |
1084 | < | int unique_id_2; |
1085 | < | #ifdef IS_MPI |
1086 | < | // in MPI, we have to look up the unique IDs for the row atom. |
861 | < | unique_id_2 = AtomColToGlobal[atom2]; |
862 | < | #else |
863 | < | // in the normal loop, the atom numbers are unique |
864 | < | unique_id_2 = atom2; |
865 | < | #endif |
1084 | > | |
1085 | > | // excludesForAtom was constructed to use row/column indices in the MPI |
1086 | > | // version, and to use local IDs in the non-MPI version: |
1087 | ||
1088 | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); | |
1089 | i != excludesForAtom[atom1].end(); ++i) { | |
1090 | < | if ( (*i) == unique_id_2 ) return true; |
1090 | > | if ( (*i) == atom2 ) return true; |
1091 | } | |
1092 | ||
1093 | return false; | |
# | Line 940 | Line 1161 | namespace OpenMD { | |
1161 | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); | |
1162 | } | |
1163 | ||
1164 | < | #else |
1164 | > | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1165 | > | idat.flucQ1 = &(atomRowData.flucQPos[atom1]); |
1166 | > | idat.flucQ2 = &(atomColData.flucQPos[atom2]); |
1167 | > | } |
1168 | ||
1169 | + | #else |
1170 | + | |
1171 | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); | |
946 | – | //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
947 | – | // ff_->getAtomType(idents[atom2]) ); |
1172 | ||
1173 | if (storageLayout_ & DataStorage::dslAmat) { | |
1174 | idat.A1 = &(snap_->atomData.aMat[atom1]); | |
# | Line 985 | Line 1209 | namespace OpenMD { | |
1209 | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); | |
1210 | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); | |
1211 | } | |
1212 | + | |
1213 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1214 | + | idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); |
1215 | + | idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); |
1216 | + | } |
1217 | + | |
1218 | #endif | |
1219 | } | |
1220 | ||
1221 | ||
1222 | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { | |
1223 | #ifdef IS_MPI | |
1224 | < | pot_row[atom1] += 0.5 * *(idat.pot); |
1225 | < | pot_col[atom2] += 0.5 * *(idat.pot); |
1224 | > | pot_row[atom1] += RealType(0.5) * *(idat.pot); |
1225 | > | pot_col[atom2] += RealType(0.5) * *(idat.pot); |
1226 | > | expot_row[atom1] += RealType(0.5) * *(idat.excludedPot); |
1227 | > | expot_col[atom2] += RealType(0.5) * *(idat.excludedPot); |
1228 | ||
1229 | atomRowData.force[atom1] += *(idat.f1); | |
1230 | atomColData.force[atom2] -= *(idat.f1); | |
1231 | + | |
1232 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
1233 | + | atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1234 | + | atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1235 | + | } |
1236 | + | |
1237 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
1238 | + | atomRowData.electricField[atom1] += *(idat.eField1); |
1239 | + | atomColData.electricField[atom2] += *(idat.eField2); |
1240 | + | } |
1241 | + | |
1242 | #else | |
1243 | pairwisePot += *(idat.pot); | |
1244 | + | excludedPot += *(idat.excludedPot); |
1245 | ||
1246 | snap_->atomData.force[atom1] += *(idat.f1); | |
1247 | snap_->atomData.force[atom2] -= *(idat.f1); | |
1248 | + | |
1249 | + | if (idat.doParticlePot) { |
1250 | + | // This is the pairwise contribution to the particle pot. The |
1251 | + | // embedding contribution is added in each of the low level |
1252 | + | // non-bonded routines. In parallel, this calculation is done |
1253 | + | // in collectData, not in unpackInteractionData. |
1254 | + | snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); |
1255 | + | snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); |
1256 | + | } |
1257 | + | |
1258 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
1259 | + | snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1260 | + | snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1261 | + | } |
1262 | + | |
1263 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
1264 | + | snap_->atomData.electricField[atom1] += *(idat.eField1); |
1265 | + | snap_->atomData.electricField[atom2] += *(idat.eField2); |
1266 | + | } |
1267 | + | |
1268 | #endif | |
1269 | ||
1270 | } | |
# | Line 1185 | Line 1449 | namespace OpenMD { | |
1449 | } | |
1450 | } | |
1451 | #else | |
1188 | – | |
1452 | for (vector<int>::iterator j1 = cellList_[m1].begin(); | |
1453 | j1 != cellList_[m1].end(); ++j1) { | |
1454 | for (vector<int>::iterator j2 = cellList_[m2].begin(); | |
1455 | j2 != cellList_[m2].end(); ++j2) { | |
1456 | < | |
1456 | > | |
1457 | // Always do this if we're in different cells or if | |
1458 | < | // we're in the same cell and the global index of the |
1459 | < | // j2 cutoff group is less than the j1 cutoff group |
1460 | < | |
1461 | < | if (m2 != m1 || (*j2) < (*j1)) { |
1458 | > | // we're in the same cell and the global index of |
1459 | > | // the j2 cutoff group is greater than or equal to |
1460 | > | // the j1 cutoff group. Note that Rappaport's code |
1461 | > | // has a "less than" conditional here, but that |
1462 | > | // deals with atom-by-atom computation. OpenMD |
1463 | > | // allows atoms within a single cutoff group to |
1464 | > | // interact with each other. |
1465 | > | |
1466 | > | |
1467 | > | |
1468 | > | if (m2 != m1 || (*j2) >= (*j1) ) { |
1469 | > | |
1470 | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | |
1471 | snap_->wrapVector(dr); | |
1472 | cuts = getGroupCutoffs( (*j1), (*j2) ); | |
# | Line 1214 | Line 1485 | namespace OpenMD { | |
1485 | // branch to do all cutoff group pairs | |
1486 | #ifdef IS_MPI | |
1487 | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { | |
1488 | < | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1488 | > | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1489 | dr = cgColData.position[j2] - cgRowData.position[j1]; | |
1490 | snap_->wrapVector(dr); | |
1491 | cuts = getGroupCutoffs( j1, j2 ); | |
# | Line 1222 | Line 1493 | namespace OpenMD { | |
1493 | neighborList.push_back(make_pair(j1, j2)); | |
1494 | } | |
1495 | } | |
1496 | < | } |
1496 | > | } |
1497 | #else | |
1498 | < | for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1499 | < | for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1498 | > | // include all groups here. |
1499 | > | for (int j1 = 0; j1 < nGroups_; j1++) { |
1500 | > | // include self group interactions j2 == j1 |
1501 | > | for (int j2 = j1; j2 < nGroups_; j2++) { |
1502 | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; | |
1503 | snap_->wrapVector(dr); | |
1504 | cuts = getGroupCutoffs( j1, j2 ); | |
1505 | if (dr.lengthSquare() < cuts.third) { | |
1506 | neighborList.push_back(make_pair(j1, j2)); | |
1507 | } | |
1508 | < | } |
1509 | < | } |
1508 | > | } |
1509 | > | } |
1510 | #endif | |
1511 | } | |
1512 |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |