# | Line 36 | Line 36 | |
---|---|---|
36 | * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | |
37 | * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | |
38 | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | |
39 | < | * [4] Vardeman & Gezelter, in progress (2009). |
39 | > | * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 | > | * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 | */ | |
42 | #include "parallel/ForceMatrixDecomposition.hpp" | |
43 | #include "math/SquareMatrix3.hpp" | |
# | Line 47 | Line 48 | namespace OpenMD { | |
48 | using namespace std; | |
49 | namespace OpenMD { | |
50 | ||
51 | + | ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { |
52 | + | |
53 | + | // In a parallel computation, row and colum scans must visit all |
54 | + | // surrounding cells (not just the 14 upper triangular blocks that |
55 | + | // are used when the processor can see all pairs) |
56 | + | #ifdef IS_MPI |
57 | + | cellOffsets_.clear(); |
58 | + | cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
59 | + | cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
60 | + | cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
61 | + | cellOffsets_.push_back( Vector3i(-1, 0,-1) ); |
62 | + | cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
63 | + | cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
64 | + | cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
65 | + | cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
66 | + | cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
67 | + | cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
68 | + | cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
69 | + | cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
70 | + | cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
71 | + | cellOffsets_.push_back( Vector3i( 0, 0, 0) ); |
72 | + | cellOffsets_.push_back( Vector3i( 1, 0, 0) ); |
73 | + | cellOffsets_.push_back( Vector3i(-1, 1, 0) ); |
74 | + | cellOffsets_.push_back( Vector3i( 0, 1, 0) ); |
75 | + | cellOffsets_.push_back( Vector3i( 1, 1, 0) ); |
76 | + | cellOffsets_.push_back( Vector3i(-1,-1, 1) ); |
77 | + | cellOffsets_.push_back( Vector3i( 0,-1, 1) ); |
78 | + | cellOffsets_.push_back( Vector3i( 1,-1, 1) ); |
79 | + | cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
80 | + | cellOffsets_.push_back( Vector3i( 0, 0, 1) ); |
81 | + | cellOffsets_.push_back( Vector3i( 1, 0, 1) ); |
82 | + | cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
83 | + | cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
84 | + | cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
85 | + | #endif |
86 | + | } |
87 | + | |
88 | + | |
89 | /** | |
90 | * distributeInitialData is essentially a copy of the older fortran | |
91 | * SimulationSetup | |
92 | */ | |
54 | – | |
93 | void ForceMatrixDecomposition::distributeInitialData() { | |
94 | snap_ = sman_->getCurrentSnapshot(); | |
95 | storageLayout_ = sman_->getStorageLayout(); | |
96 | ff_ = info_->getForceField(); | |
97 | nLocal_ = snap_->getNumberOfAtoms(); | |
98 | < | |
98 | > | |
99 | nGroups_ = info_->getNLocalCutoffGroups(); | |
100 | // gather the information for atomtype IDs (atids): | |
101 | idents = info_->getIdentArray(); | |
# | Line 71 | Line 109 | namespace OpenMD { | |
109 | PairList* oneTwo = info_->getOneTwoInteractions(); | |
110 | PairList* oneThree = info_->getOneThreeInteractions(); | |
111 | PairList* oneFour = info_->getOneFourInteractions(); | |
112 | < | |
112 | > | |
113 | > | if (needVelocities_) |
114 | > | snap_->cgData.setStorageLayout(DataStorage::dslPosition | |
115 | > | DataStorage::dslVelocity); |
116 | > | else |
117 | > | snap_->cgData.setStorageLayout(DataStorage::dslPosition); |
118 | > | |
119 | #ifdef IS_MPI | |
120 | ||
121 | < | AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
122 | < | AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
79 | < | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
80 | < | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
81 | < | AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
121 | > | MPI::Intracomm row = rowComm.getComm(); |
122 | > | MPI::Intracomm col = colComm.getComm(); |
123 | ||
124 | < | AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
125 | < | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
126 | < | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
127 | < | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
128 | < | AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
124 | > | AtomPlanIntRow = new Plan<int>(row, nLocal_); |
125 | > | AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
126 | > | AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); |
127 | > | AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); |
128 | > | AtomPlanPotRow = new Plan<potVec>(row, nLocal_); |
129 | ||
130 | < | cgCommIntRow = new Communicator<Row,int>(nGroups_); |
131 | < | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
132 | < | cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
133 | < | cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
130 | > | AtomPlanIntColumn = new Plan<int>(col, nLocal_); |
131 | > | AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); |
132 | > | AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); |
133 | > | AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); |
134 | > | AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); |
135 | ||
136 | < | nAtomsInRow_ = AtomCommIntRow->getSize(); |
137 | < | nAtomsInCol_ = AtomCommIntColumn->getSize(); |
138 | < | nGroupsInRow_ = cgCommIntRow->getSize(); |
139 | < | nGroupsInCol_ = cgCommIntColumn->getSize(); |
136 | > | cgPlanIntRow = new Plan<int>(row, nGroups_); |
137 | > | cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); |
138 | > | cgPlanIntColumn = new Plan<int>(col, nGroups_); |
139 | > | cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); |
140 | ||
141 | + | nAtomsInRow_ = AtomPlanIntRow->getSize(); |
142 | + | nAtomsInCol_ = AtomPlanIntColumn->getSize(); |
143 | + | nGroupsInRow_ = cgPlanIntRow->getSize(); |
144 | + | nGroupsInCol_ = cgPlanIntColumn->getSize(); |
145 | + | |
146 | // Modify the data storage objects with the correct layouts and sizes: | |
147 | atomRowData.resize(nAtomsInRow_); | |
148 | atomRowData.setStorageLayout(storageLayout_); | |
# | Line 104 | Line 151 | namespace OpenMD { | |
151 | cgRowData.resize(nGroupsInRow_); | |
152 | cgRowData.setStorageLayout(DataStorage::dslPosition); | |
153 | cgColData.resize(nGroupsInCol_); | |
154 | < | cgColData.setStorageLayout(DataStorage::dslPosition); |
155 | < | |
154 | > | if (needVelocities_) |
155 | > | // we only need column velocities if we need them. |
156 | > | cgColData.setStorageLayout(DataStorage::dslPosition | |
157 | > | DataStorage::dslVelocity); |
158 | > | else |
159 | > | cgColData.setStorageLayout(DataStorage::dslPosition); |
160 | > | |
161 | identsRow.resize(nAtomsInRow_); | |
162 | identsCol.resize(nAtomsInCol_); | |
163 | ||
164 | < | AtomCommIntRow->gather(idents, identsRow); |
165 | < | AtomCommIntColumn->gather(idents, identsCol); |
164 | > | AtomPlanIntRow->gather(idents, identsRow); |
165 | > | AtomPlanIntColumn->gather(idents, identsCol); |
166 | ||
167 | // allocate memory for the parallel objects | |
168 | atypesRow.resize(nAtomsInRow_); | |
# | Line 124 | Line 176 | namespace OpenMD { | |
176 | pot_row.resize(nAtomsInRow_); | |
177 | pot_col.resize(nAtomsInCol_); | |
178 | ||
179 | + | expot_row.resize(nAtomsInRow_); |
180 | + | expot_col.resize(nAtomsInCol_); |
181 | + | |
182 | AtomRowToGlobal.resize(nAtomsInRow_); | |
183 | AtomColToGlobal.resize(nAtomsInCol_); | |
184 | < | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
185 | < | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
186 | < | |
184 | > | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
185 | > | AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
186 | > | |
187 | cgRowToGlobal.resize(nGroupsInRow_); | |
188 | cgColToGlobal.resize(nGroupsInCol_); | |
189 | < | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
190 | < | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
189 | > | cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
190 | > | cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
191 | ||
192 | massFactorsRow.resize(nAtomsInRow_); | |
193 | massFactorsCol.resize(nAtomsInCol_); | |
194 | < | AtomCommRealRow->gather(massFactors, massFactorsRow); |
195 | < | AtomCommRealColumn->gather(massFactors, massFactorsCol); |
194 | > | AtomPlanRealRow->gather(massFactors, massFactorsRow); |
195 | > | AtomPlanRealColumn->gather(massFactors, massFactorsCol); |
196 | ||
197 | groupListRow_.clear(); | |
198 | groupListRow_.resize(nGroupsInRow_); | |
# | Line 193 | Line 248 | namespace OpenMD { | |
248 | } | |
249 | } | |
250 | ||
251 | < | #endif |
197 | < | |
198 | < | // allocate memory for the parallel objects |
199 | < | atypesLocal.resize(nLocal_); |
200 | < | |
201 | < | for (int i = 0; i < nLocal_; i++) |
202 | < | atypesLocal[i] = ff_->getAtomType(idents[i]); |
203 | < | |
204 | < | groupList_.clear(); |
205 | < | groupList_.resize(nGroups_); |
206 | < | for (int i = 0; i < nGroups_; i++) { |
207 | < | int gid = cgLocalToGlobal[i]; |
208 | < | for (int j = 0; j < nLocal_; j++) { |
209 | < | int aid = AtomLocalToGlobal[j]; |
210 | < | if (globalGroupMembership[aid] == gid) { |
211 | < | groupList_[i].push_back(j); |
212 | < | } |
213 | < | } |
214 | < | } |
215 | < | |
251 | > | #else |
252 | excludesForAtom.clear(); | |
253 | excludesForAtom.resize(nLocal_); | |
254 | toposForAtom.clear(); | |
# | Line 245 | Line 281 | namespace OpenMD { | |
281 | } | |
282 | } | |
283 | } | |
284 | < | |
284 | > | #endif |
285 | > | |
286 | > | // allocate memory for the parallel objects |
287 | > | atypesLocal.resize(nLocal_); |
288 | > | |
289 | > | for (int i = 0; i < nLocal_; i++) |
290 | > | atypesLocal[i] = ff_->getAtomType(idents[i]); |
291 | > | |
292 | > | groupList_.clear(); |
293 | > | groupList_.resize(nGroups_); |
294 | > | for (int i = 0; i < nGroups_; i++) { |
295 | > | int gid = cgLocalToGlobal[i]; |
296 | > | for (int j = 0; j < nLocal_; j++) { |
297 | > | int aid = AtomLocalToGlobal[j]; |
298 | > | if (globalGroupMembership[aid] == gid) { |
299 | > | groupList_[i].push_back(j); |
300 | > | } |
301 | > | } |
302 | > | } |
303 | > | |
304 | > | |
305 | createGtypeCutoffMap(); | |
306 | ||
307 | } | |
# | Line 408 | Line 464 | namespace OpenMD { | |
464 | } | |
465 | } | |
466 | ||
411 | – | |
467 | groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { | |
468 | int i, j; | |
469 | #ifdef IS_MPI | |
# | Line 432 | Line 487 | namespace OpenMD { | |
487 | void ForceMatrixDecomposition::zeroWorkArrays() { | |
488 | pairwisePot = 0.0; | |
489 | embeddingPot = 0.0; | |
490 | + | excludedPot = 0.0; |
491 | + | excludedSelfPot = 0.0; |
492 | ||
493 | #ifdef IS_MPI | |
494 | if (storageLayout_ & DataStorage::dslForce) { | |
# | Line 450 | Line 507 | namespace OpenMD { | |
507 | fill(pot_col.begin(), pot_col.end(), | |
508 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
509 | ||
510 | + | fill(expot_row.begin(), expot_row.end(), |
511 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
512 | + | |
513 | + | fill(expot_col.begin(), expot_col.end(), |
514 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
515 | + | |
516 | if (storageLayout_ & DataStorage::dslParticlePot) { | |
517 | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), | |
518 | 0.0); | |
# | Line 483 | Line 546 | namespace OpenMD { | |
546 | atomColData.skippedCharge.end(), 0.0); | |
547 | } | |
548 | ||
549 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
550 | + | fill(atomRowData.flucQFrc.begin(), |
551 | + | atomRowData.flucQFrc.end(), 0.0); |
552 | + | fill(atomColData.flucQFrc.begin(), |
553 | + | atomColData.flucQFrc.end(), 0.0); |
554 | + | } |
555 | + | |
556 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
557 | + | fill(atomRowData.electricField.begin(), |
558 | + | atomRowData.electricField.end(), V3Zero); |
559 | + | fill(atomColData.electricField.begin(), |
560 | + | atomColData.electricField.end(), V3Zero); |
561 | + | } |
562 | + | |
563 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
564 | + | fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), |
565 | + | 0.0); |
566 | + | fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), |
567 | + | 0.0); |
568 | + | } |
569 | + | |
570 | #endif | |
571 | // even in parallel, we need to zero out the local arrays: | |
572 | ||
# | Line 495 | Line 579 | namespace OpenMD { | |
579 | fill(snap_->atomData.density.begin(), | |
580 | snap_->atomData.density.end(), 0.0); | |
581 | } | |
582 | + | |
583 | if (storageLayout_ & DataStorage::dslFunctional) { | |
584 | fill(snap_->atomData.functional.begin(), | |
585 | snap_->atomData.functional.end(), 0.0); | |
586 | } | |
587 | + | |
588 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
589 | fill(snap_->atomData.functionalDerivative.begin(), | |
590 | snap_->atomData.functionalDerivative.end(), 0.0); | |
591 | } | |
592 | + | |
593 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | |
594 | fill(snap_->atomData.skippedCharge.begin(), | |
595 | snap_->atomData.skippedCharge.end(), 0.0); | |
596 | } | |
597 | < | |
597 | > | |
598 | > | if (storageLayout_ & DataStorage::dslElectricField) { |
599 | > | fill(snap_->atomData.electricField.begin(), |
600 | > | snap_->atomData.electricField.end(), V3Zero); |
601 | > | } |
602 | } | |
603 | ||
604 | ||
# | Line 517 | Line 608 | namespace OpenMD { | |
608 | #ifdef IS_MPI | |
609 | ||
610 | // gather up the atomic positions | |
611 | < | AtomCommVectorRow->gather(snap_->atomData.position, |
611 | > | AtomPlanVectorRow->gather(snap_->atomData.position, |
612 | atomRowData.position); | |
613 | < | AtomCommVectorColumn->gather(snap_->atomData.position, |
613 | > | AtomPlanVectorColumn->gather(snap_->atomData.position, |
614 | atomColData.position); | |
615 | ||
616 | // gather up the cutoff group positions | |
617 | < | cgCommVectorRow->gather(snap_->cgData.position, |
617 | > | |
618 | > | cgPlanVectorRow->gather(snap_->cgData.position, |
619 | cgRowData.position); | |
620 | < | cgCommVectorColumn->gather(snap_->cgData.position, |
620 | > | |
621 | > | cgPlanVectorColumn->gather(snap_->cgData.position, |
622 | cgColData.position); | |
623 | + | |
624 | + | |
625 | + | |
626 | + | if (needVelocities_) { |
627 | + | // gather up the atomic velocities |
628 | + | AtomPlanVectorColumn->gather(snap_->atomData.velocity, |
629 | + | atomColData.velocity); |
630 | + | |
631 | + | cgPlanVectorColumn->gather(snap_->cgData.velocity, |
632 | + | cgColData.velocity); |
633 | + | } |
634 | + | |
635 | ||
636 | // if needed, gather the atomic rotation matrices | |
637 | if (storageLayout_ & DataStorage::dslAmat) { | |
638 | < | AtomCommMatrixRow->gather(snap_->atomData.aMat, |
638 | > | AtomPlanMatrixRow->gather(snap_->atomData.aMat, |
639 | atomRowData.aMat); | |
640 | < | AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
640 | > | AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
641 | atomColData.aMat); | |
642 | } | |
643 | ||
644 | // if needed, gather the atomic eletrostatic frames | |
645 | if (storageLayout_ & DataStorage::dslElectroFrame) { | |
646 | < | AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
646 | > | AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
647 | atomRowData.electroFrame); | |
648 | < | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
648 | > | AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
649 | atomColData.electroFrame); | |
650 | } | |
651 | ||
652 | + | // if needed, gather the atomic fluctuating charge values |
653 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
654 | + | AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
655 | + | atomRowData.flucQPos); |
656 | + | AtomPlanRealColumn->gather(snap_->atomData.flucQPos, |
657 | + | atomColData.flucQPos); |
658 | + | } |
659 | + | |
660 | #endif | |
661 | } | |
662 | ||
# | Line 557 | Line 670 | namespace OpenMD { | |
670 | ||
671 | if (storageLayout_ & DataStorage::dslDensity) { | |
672 | ||
673 | < | AtomCommRealRow->scatter(atomRowData.density, |
673 | > | AtomPlanRealRow->scatter(atomRowData.density, |
674 | snap_->atomData.density); | |
675 | ||
676 | int n = snap_->atomData.density.size(); | |
677 | vector<RealType> rho_tmp(n, 0.0); | |
678 | < | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
678 | > | AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); |
679 | for (int i = 0; i < n; i++) | |
680 | snap_->atomData.density[i] += rho_tmp[i]; | |
681 | } | |
682 | + | |
683 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
684 | + | |
685 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, |
686 | + | snap_->atomData.electricField); |
687 | + | |
688 | + | int n = snap_->atomData.electricField.size(); |
689 | + | vector<Vector3d> field_tmp(n, V3Zero); |
690 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); |
691 | + | for (int i = 0; i < n; i++) |
692 | + | snap_->atomData.electricField[i] += field_tmp[i]; |
693 | + | } |
694 | #endif | |
695 | } | |
696 | ||
# | Line 578 | Line 703 | namespace OpenMD { | |
703 | storageLayout_ = sman_->getStorageLayout(); | |
704 | #ifdef IS_MPI | |
705 | if (storageLayout_ & DataStorage::dslFunctional) { | |
706 | < | AtomCommRealRow->gather(snap_->atomData.functional, |
706 | > | AtomPlanRealRow->gather(snap_->atomData.functional, |
707 | atomRowData.functional); | |
708 | < | AtomCommRealColumn->gather(snap_->atomData.functional, |
708 | > | AtomPlanRealColumn->gather(snap_->atomData.functional, |
709 | atomColData.functional); | |
710 | } | |
711 | ||
712 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
713 | < | AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
713 | > | AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, |
714 | atomRowData.functionalDerivative); | |
715 | < | AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
715 | > | AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, |
716 | atomColData.functionalDerivative); | |
717 | } | |
718 | #endif | |
# | Line 601 | Line 726 | namespace OpenMD { | |
726 | int n = snap_->atomData.force.size(); | |
727 | vector<Vector3d> frc_tmp(n, V3Zero); | |
728 | ||
729 | < | AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
729 | > | AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); |
730 | for (int i = 0; i < n; i++) { | |
731 | snap_->atomData.force[i] += frc_tmp[i]; | |
732 | frc_tmp[i] = 0.0; | |
733 | } | |
734 | ||
735 | < | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
736 | < | for (int i = 0; i < n; i++) |
735 | > | AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); |
736 | > | for (int i = 0; i < n; i++) { |
737 | snap_->atomData.force[i] += frc_tmp[i]; | |
738 | + | } |
739 | ||
740 | if (storageLayout_ & DataStorage::dslTorque) { | |
741 | ||
742 | int nt = snap_->atomData.torque.size(); | |
743 | vector<Vector3d> trq_tmp(nt, V3Zero); | |
744 | ||
745 | < | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
745 | > | AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); |
746 | for (int i = 0; i < nt; i++) { | |
747 | snap_->atomData.torque[i] += trq_tmp[i]; | |
748 | trq_tmp[i] = 0.0; | |
749 | } | |
750 | ||
751 | < | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
751 | > | AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); |
752 | for (int i = 0; i < nt; i++) | |
753 | snap_->atomData.torque[i] += trq_tmp[i]; | |
754 | } | |
# | Line 632 | Line 758 | namespace OpenMD { | |
758 | int ns = snap_->atomData.skippedCharge.size(); | |
759 | vector<RealType> skch_tmp(ns, 0.0); | |
760 | ||
761 | < | AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
761 | > | AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
762 | for (int i = 0; i < ns; i++) { | |
763 | snap_->atomData.skippedCharge[i] += skch_tmp[i]; | |
764 | skch_tmp[i] = 0.0; | |
765 | } | |
766 | ||
767 | < | AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
768 | < | for (int i = 0; i < ns; i++) |
767 | > | AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
768 | > | for (int i = 0; i < ns; i++) |
769 | snap_->atomData.skippedCharge[i] += skch_tmp[i]; | |
770 | + | |
771 | } | |
772 | ||
773 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
774 | + | |
775 | + | int nq = snap_->atomData.flucQFrc.size(); |
776 | + | vector<RealType> fqfrc_tmp(nq, 0.0); |
777 | + | |
778 | + | AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); |
779 | + | for (int i = 0; i < nq; i++) { |
780 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
781 | + | fqfrc_tmp[i] = 0.0; |
782 | + | } |
783 | + | |
784 | + | AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); |
785 | + | for (int i = 0; i < nq; i++) |
786 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
787 | + | |
788 | + | } |
789 | + | |
790 | nLocal_ = snap_->getNumberOfAtoms(); | |
791 | ||
792 | vector<potVec> pot_temp(nLocal_, | |
793 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
794 | + | vector<potVec> expot_temp(nLocal_, |
795 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
796 | ||
797 | // scatter/gather pot_row into the members of my column | |
798 | ||
799 | < | AtomCommPotRow->scatter(pot_row, pot_temp); |
799 | > | AtomPlanPotRow->scatter(pot_row, pot_temp); |
800 | > | AtomPlanPotRow->scatter(expot_row, expot_temp); |
801 | ||
802 | < | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
802 | > | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
803 | pairwisePot += pot_temp[ii]; | |
804 | < | |
804 | > | |
805 | > | for (int ii = 0; ii < expot_temp.size(); ii++ ) |
806 | > | excludedPot += expot_temp[ii]; |
807 | > | |
808 | > | if (storageLayout_ & DataStorage::dslParticlePot) { |
809 | > | // This is the pairwise contribution to the particle pot. The |
810 | > | // embedding contribution is added in each of the low level |
811 | > | // non-bonded routines. In single processor, this is done in |
812 | > | // unpackInteractionData, not in collectData. |
813 | > | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
814 | > | for (int i = 0; i < nLocal_; i++) { |
815 | > | // factor of two is because the total potential terms are divided |
816 | > | // by 2 in parallel due to row/ column scatter |
817 | > | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
818 | > | } |
819 | > | } |
820 | > | } |
821 | > | |
822 | fill(pot_temp.begin(), pot_temp.end(), | |
823 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
824 | + | fill(expot_temp.begin(), expot_temp.end(), |
825 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
826 | ||
827 | < | AtomCommPotColumn->scatter(pot_col, pot_temp); |
827 | > | AtomPlanPotColumn->scatter(pot_col, pot_temp); |
828 | > | AtomPlanPotColumn->scatter(expot_col, expot_temp); |
829 | ||
830 | for (int ii = 0; ii < pot_temp.size(); ii++ ) | |
831 | pairwisePot += pot_temp[ii]; | |
832 | + | |
833 | + | for (int ii = 0; ii < expot_temp.size(); ii++ ) |
834 | + | excludedPot += expot_temp[ii]; |
835 | + | |
836 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
837 | + | // This is the pairwise contribution to the particle pot. The |
838 | + | // embedding contribution is added in each of the low level |
839 | + | // non-bonded routines. In single processor, this is done in |
840 | + | // unpackInteractionData, not in collectData. |
841 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
842 | + | for (int i = 0; i < nLocal_; i++) { |
843 | + | // factor of two is because the total potential terms are divided |
844 | + | // by 2 in parallel due to row/ column scatter |
845 | + | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
846 | + | } |
847 | + | } |
848 | + | } |
849 | + | |
850 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
851 | + | int npp = snap_->atomData.particlePot.size(); |
852 | + | vector<RealType> ppot_temp(npp, 0.0); |
853 | + | |
854 | + | // This is the direct or embedding contribution to the particle |
855 | + | // pot. |
856 | + | |
857 | + | AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); |
858 | + | for (int i = 0; i < npp; i++) { |
859 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; |
860 | + | } |
861 | + | |
862 | + | fill(ppot_temp.begin(), ppot_temp.end(), 0.0); |
863 | + | |
864 | + | AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); |
865 | + | for (int i = 0; i < npp; i++) { |
866 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; |
867 | + | } |
868 | + | } |
869 | + | |
870 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
871 | + | RealType ploc1 = pairwisePot[ii]; |
872 | + | RealType ploc2 = 0.0; |
873 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
874 | + | pairwisePot[ii] = ploc2; |
875 | + | } |
876 | + | |
877 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
878 | + | RealType ploc1 = excludedPot[ii]; |
879 | + | RealType ploc2 = 0.0; |
880 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
881 | + | excludedPot[ii] = ploc2; |
882 | + | } |
883 | + | |
884 | + | // Here be dragons. |
885 | + | MPI::Intracomm col = colComm.getComm(); |
886 | + | |
887 | + | col.Allreduce(MPI::IN_PLACE, |
888 | + | &snap_->frameData.conductiveHeatFlux[0], 3, |
889 | + | MPI::REALTYPE, MPI::SUM); |
890 | + | |
891 | + | |
892 | #endif | |
893 | ||
894 | } | |
895 | ||
896 | + | /** |
897 | + | * Collects information obtained during the post-pair (and embedding |
898 | + | * functional) loops onto local data structures. |
899 | + | */ |
900 | + | void ForceMatrixDecomposition::collectSelfData() { |
901 | + | snap_ = sman_->getCurrentSnapshot(); |
902 | + | storageLayout_ = sman_->getStorageLayout(); |
903 | + | |
904 | + | #ifdef IS_MPI |
905 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
906 | + | RealType ploc1 = embeddingPot[ii]; |
907 | + | RealType ploc2 = 0.0; |
908 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
909 | + | embeddingPot[ii] = ploc2; |
910 | + | } |
911 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
912 | + | RealType ploc1 = excludedSelfPot[ii]; |
913 | + | RealType ploc2 = 0.0; |
914 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
915 | + | excludedSelfPot[ii] = ploc2; |
916 | + | } |
917 | + | #endif |
918 | + | |
919 | + | } |
920 | + | |
921 | + | |
922 | + | |
923 | int ForceMatrixDecomposition::getNAtomsInRow() { | |
924 | #ifdef IS_MPI | |
925 | return nAtomsInRow_; | |
# | Line 706 | Line 960 | namespace OpenMD { | |
960 | return d; | |
961 | } | |
962 | ||
963 | + | Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ |
964 | + | #ifdef IS_MPI |
965 | + | return cgColData.velocity[cg2]; |
966 | + | #else |
967 | + | return snap_->cgData.velocity[cg2]; |
968 | + | #endif |
969 | + | } |
970 | ||
971 | + | Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ |
972 | + | #ifdef IS_MPI |
973 | + | return atomColData.velocity[atom2]; |
974 | + | #else |
975 | + | return snap_->atomData.velocity[atom2]; |
976 | + | #endif |
977 | + | } |
978 | + | |
979 | + | |
980 | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ | |
981 | ||
982 | Vector3d d; | |
# | Line 772 | Line 1042 | namespace OpenMD { | |
1042 | * We need to exclude some overcounted interactions that result from | |
1043 | * the parallel decomposition. | |
1044 | */ | |
1045 | < | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
1046 | < | int unique_id_1, unique_id_2; |
1047 | < | |
1045 | > | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { |
1046 | > | int unique_id_1, unique_id_2, group1, group2; |
1047 | > | |
1048 | #ifdef IS_MPI | |
1049 | // in MPI, we have to look up the unique IDs for each atom | |
1050 | unique_id_1 = AtomRowToGlobal[atom1]; | |
1051 | unique_id_2 = AtomColToGlobal[atom2]; | |
1052 | + | group1 = cgRowToGlobal[cg1]; |
1053 | + | group2 = cgColToGlobal[cg2]; |
1054 | + | #else |
1055 | + | unique_id_1 = AtomLocalToGlobal[atom1]; |
1056 | + | unique_id_2 = AtomLocalToGlobal[atom2]; |
1057 | + | group1 = cgLocalToGlobal[cg1]; |
1058 | + | group2 = cgLocalToGlobal[cg2]; |
1059 | + | #endif |
1060 | ||
783 | – | // this situation should only arise in MPI simulations |
1061 | if (unique_id_1 == unique_id_2) return true; | |
1062 | < | |
1062 | > | |
1063 | > | #ifdef IS_MPI |
1064 | // this prevents us from doing the pair on multiple processors | |
1065 | if (unique_id_1 < unique_id_2) { | |
1066 | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; | |
1067 | } else { | |
1068 | < | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
1068 | > | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
1069 | } | |
1070 | + | #endif |
1071 | + | |
1072 | + | #ifndef IS_MPI |
1073 | + | if (group1 == group2) { |
1074 | + | if (unique_id_1 < unique_id_2) return true; |
1075 | + | } |
1076 | #endif | |
1077 | + | |
1078 | return false; | |
1079 | } | |
1080 | ||
# | Line 803 | Line 1088 | namespace OpenMD { | |
1088 | * field) must still be handled for these pairs. | |
1089 | */ | |
1090 | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { | |
1091 | < | int unique_id_2; |
1091 | > | |
1092 | > | // excludesForAtom was constructed to use row/column indices in the MPI |
1093 | > | // version, and to use local IDs in the non-MPI version: |
1094 | ||
808 | – | #ifdef IS_MPI |
809 | – | // in MPI, we have to look up the unique IDs for the row atom. |
810 | – | unique_id_2 = AtomColToGlobal[atom2]; |
811 | – | #else |
812 | – | // in the normal loop, the atom numbers are unique |
813 | – | unique_id_2 = atom2; |
814 | – | #endif |
815 | – | |
1095 | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); | |
1096 | i != excludesForAtom[atom1].end(); ++i) { | |
1097 | < | if ( (*i) == unique_id_2 ) return true; |
1097 | > | if ( (*i) == atom2 ) return true; |
1098 | } | |
1099 | ||
1100 | return false; | |
# | Line 889 | Line 1168 | namespace OpenMD { | |
1168 | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); | |
1169 | } | |
1170 | ||
1171 | < | #else |
1171 | > | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1172 | > | idat.flucQ1 = &(atomRowData.flucQPos[atom1]); |
1173 | > | idat.flucQ2 = &(atomColData.flucQPos[atom2]); |
1174 | > | } |
1175 | ||
1176 | + | #else |
1177 | + | |
1178 | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); | |
895 | – | //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
896 | – | // ff_->getAtomType(idents[atom2]) ); |
1179 | ||
1180 | if (storageLayout_ & DataStorage::dslAmat) { | |
1181 | idat.A1 = &(snap_->atomData.aMat[atom1]); | |
# | Line 934 | Line 1216 | namespace OpenMD { | |
1216 | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); | |
1217 | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); | |
1218 | } | |
1219 | + | |
1220 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1221 | + | idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); |
1222 | + | idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); |
1223 | + | } |
1224 | + | |
1225 | #endif | |
1226 | } | |
1227 | ||
1228 | ||
1229 | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { | |
1230 | #ifdef IS_MPI | |
1231 | < | pot_row[atom1] += 0.5 * *(idat.pot); |
1232 | < | pot_col[atom2] += 0.5 * *(idat.pot); |
1231 | > | pot_row[atom1] += RealType(0.5) * *(idat.pot); |
1232 | > | pot_col[atom2] += RealType(0.5) * *(idat.pot); |
1233 | > | expot_row[atom1] += RealType(0.5) * *(idat.excludedPot); |
1234 | > | expot_col[atom2] += RealType(0.5) * *(idat.excludedPot); |
1235 | ||
1236 | atomRowData.force[atom1] += *(idat.f1); | |
1237 | atomColData.force[atom2] -= *(idat.f1); | |
1238 | + | |
1239 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
1240 | + | atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1241 | + | atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1242 | + | } |
1243 | + | |
1244 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
1245 | + | atomRowData.electricField[atom1] += *(idat.eField1); |
1246 | + | atomColData.electricField[atom2] += *(idat.eField2); |
1247 | + | } |
1248 | + | |
1249 | #else | |
1250 | pairwisePot += *(idat.pot); | |
1251 | + | excludedPot += *(idat.excludedPot); |
1252 | ||
1253 | snap_->atomData.force[atom1] += *(idat.f1); | |
1254 | snap_->atomData.force[atom2] -= *(idat.f1); | |
1255 | + | |
1256 | + | if (idat.doParticlePot) { |
1257 | + | // This is the pairwise contribution to the particle pot. The |
1258 | + | // embedding contribution is added in each of the low level |
1259 | + | // non-bonded routines. In parallel, this calculation is done |
1260 | + | // in collectData, not in unpackInteractionData. |
1261 | + | snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); |
1262 | + | snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); |
1263 | + | } |
1264 | + | |
1265 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
1266 | + | snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1267 | + | snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1268 | + | } |
1269 | + | |
1270 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
1271 | + | snap_->atomData.electricField[atom1] += *(idat.eField1); |
1272 | + | snap_->atomData.electricField[atom2] += *(idat.eField2); |
1273 | + | } |
1274 | + | |
1275 | #endif | |
1276 | ||
1277 | } | |
# | Line 1031 | Line 1353 | namespace OpenMD { | |
1353 | // add this cutoff group to the list of groups in this cell; | |
1354 | cellListRow_[cellIndex].push_back(i); | |
1355 | } | |
1034 | – | |
1356 | for (int i = 0; i < nGroupsInCol_; i++) { | |
1357 | rs = cgColData.position[i]; | |
1358 | ||
# | Line 1056 | Line 1377 | namespace OpenMD { | |
1377 | // add this cutoff group to the list of groups in this cell; | |
1378 | cellListCol_[cellIndex].push_back(i); | |
1379 | } | |
1380 | + | |
1381 | #else | |
1382 | for (int i = 0; i < nGroups_; i++) { | |
1383 | rs = snap_->cgData.position[i]; | |
# | Line 1076 | Line 1398 | namespace OpenMD { | |
1398 | whichCell.z() = nCells_.z() * scaled.z(); | |
1399 | ||
1400 | // find single index of this cell: | |
1401 | < | cellIndex = Vlinear(whichCell, nCells_); |
1401 | > | cellIndex = Vlinear(whichCell, nCells_); |
1402 | ||
1403 | // add this cutoff group to the list of groups in this cell; | |
1404 | cellList_[cellIndex].push_back(i); | |
1405 | } | |
1406 | + | |
1407 | #endif | |
1408 | ||
1409 | for (int m1z = 0; m1z < nCells_.z(); m1z++) { | |
# | Line 1093 | Line 1416 | namespace OpenMD { | |
1416 | os != cellOffsets_.end(); ++os) { | |
1417 | ||
1418 | Vector3i m2v = m1v + (*os); | |
1419 | < | |
1419 | > | |
1420 | > | |
1421 | if (m2v.x() >= nCells_.x()) { | |
1422 | m2v.x() = 0; | |
1423 | } else if (m2v.x() < 0) { | |
# | Line 1111 | Line 1435 | namespace OpenMD { | |
1435 | } else if (m2v.z() < 0) { | |
1436 | m2v.z() = nCells_.z() - 1; | |
1437 | } | |
1438 | < | |
1438 | > | |
1439 | int m2 = Vlinear (m2v, nCells_); | |
1440 | ||
1441 | #ifdef IS_MPI | |
# | Line 1120 | Line 1444 | namespace OpenMD { | |
1444 | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); | |
1445 | j2 != cellListCol_[m2].end(); ++j2) { | |
1446 | ||
1447 | < | // Always do this if we're in different cells or if |
1448 | < | // we're in the same cell and the global index of the |
1449 | < | // j2 cutoff group is less than the j1 cutoff group |
1450 | < | |
1451 | < | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1452 | < | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1453 | < | snap_->wrapVector(dr); |
1454 | < | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1455 | < | if (dr.lengthSquare() < cuts.third) { |
1132 | < | neighborList.push_back(make_pair((*j1), (*j2))); |
1133 | < | } |
1134 | < | } |
1447 | > | // In parallel, we need to visit *all* pairs of row |
1448 | > | // & column indicies and will divide labor in the |
1449 | > | // force evaluation later. |
1450 | > | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1451 | > | snap_->wrapVector(dr); |
1452 | > | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1453 | > | if (dr.lengthSquare() < cuts.third) { |
1454 | > | neighborList.push_back(make_pair((*j1), (*j2))); |
1455 | > | } |
1456 | } | |
1457 | } | |
1458 | #else | |
1138 | – | |
1459 | for (vector<int>::iterator j1 = cellList_[m1].begin(); | |
1460 | j1 != cellList_[m1].end(); ++j1) { | |
1461 | for (vector<int>::iterator j2 = cellList_[m2].begin(); | |
1462 | j2 != cellList_[m2].end(); ++j2) { | |
1463 | < | |
1463 | > | |
1464 | // Always do this if we're in different cells or if | |
1465 | < | // we're in the same cell and the global index of the |
1466 | < | // j2 cutoff group is less than the j1 cutoff group |
1467 | < | |
1468 | < | if (m2 != m1 || (*j2) < (*j1)) { |
1465 | > | // we're in the same cell and the global index of |
1466 | > | // the j2 cutoff group is greater than or equal to |
1467 | > | // the j1 cutoff group. Note that Rappaport's code |
1468 | > | // has a "less than" conditional here, but that |
1469 | > | // deals with atom-by-atom computation. OpenMD |
1470 | > | // allows atoms within a single cutoff group to |
1471 | > | // interact with each other. |
1472 | > | |
1473 | > | |
1474 | > | |
1475 | > | if (m2 != m1 || (*j2) >= (*j1) ) { |
1476 | > | |
1477 | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | |
1478 | snap_->wrapVector(dr); | |
1479 | cuts = getGroupCutoffs( (*j1), (*j2) ); | |
# | Line 1164 | Line 1492 | namespace OpenMD { | |
1492 | // branch to do all cutoff group pairs | |
1493 | #ifdef IS_MPI | |
1494 | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { | |
1495 | < | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1495 | > | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1496 | dr = cgColData.position[j2] - cgRowData.position[j1]; | |
1497 | snap_->wrapVector(dr); | |
1498 | cuts = getGroupCutoffs( j1, j2 ); | |
# | Line 1172 | Line 1500 | namespace OpenMD { | |
1500 | neighborList.push_back(make_pair(j1, j2)); | |
1501 | } | |
1502 | } | |
1503 | < | } |
1503 | > | } |
1504 | #else | |
1505 | < | for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1506 | < | for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1505 | > | // include all groups here. |
1506 | > | for (int j1 = 0; j1 < nGroups_; j1++) { |
1507 | > | // include self group interactions j2 == j1 |
1508 | > | for (int j2 = j1; j2 < nGroups_; j2++) { |
1509 | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; | |
1510 | snap_->wrapVector(dr); | |
1511 | cuts = getGroupCutoffs( j1, j2 ); | |
1512 | if (dr.lengthSquare() < cuts.third) { | |
1513 | neighborList.push_back(make_pair(j1, j2)); | |
1514 | } | |
1515 | < | } |
1516 | < | } |
1515 | > | } |
1516 | > | } |
1517 | #endif | |
1518 | } | |
1519 |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |