# | Line 36 | Line 36 | |
---|---|---|
36 | * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | |
37 | * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | |
38 | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | |
39 | < | * [4] Vardeman & Gezelter, in progress (2009). |
39 | > | * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 | > | * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 | */ | |
42 | #include "parallel/ForceMatrixDecomposition.hpp" | |
43 | #include "math/SquareMatrix3.hpp" | |
# | Line 47 | Line 48 | namespace OpenMD { | |
48 | using namespace std; | |
49 | namespace OpenMD { | |
50 | ||
51 | + | ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { |
52 | + | |
53 | + | // In a parallel computation, row and colum scans must visit all |
54 | + | // surrounding cells (not just the 14 upper triangular blocks that |
55 | + | // are used when the processor can see all pairs) |
56 | + | #ifdef IS_MPI |
57 | + | cellOffsets_.clear(); |
58 | + | cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
59 | + | cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
60 | + | cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
61 | + | cellOffsets_.push_back( Vector3i(-1, 0,-1) ); |
62 | + | cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
63 | + | cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
64 | + | cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
65 | + | cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
66 | + | cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
67 | + | cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
68 | + | cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
69 | + | cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
70 | + | cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
71 | + | cellOffsets_.push_back( Vector3i( 0, 0, 0) ); |
72 | + | cellOffsets_.push_back( Vector3i( 1, 0, 0) ); |
73 | + | cellOffsets_.push_back( Vector3i(-1, 1, 0) ); |
74 | + | cellOffsets_.push_back( Vector3i( 0, 1, 0) ); |
75 | + | cellOffsets_.push_back( Vector3i( 1, 1, 0) ); |
76 | + | cellOffsets_.push_back( Vector3i(-1,-1, 1) ); |
77 | + | cellOffsets_.push_back( Vector3i( 0,-1, 1) ); |
78 | + | cellOffsets_.push_back( Vector3i( 1,-1, 1) ); |
79 | + | cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
80 | + | cellOffsets_.push_back( Vector3i( 0, 0, 1) ); |
81 | + | cellOffsets_.push_back( Vector3i( 1, 0, 1) ); |
82 | + | cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
83 | + | cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
84 | + | cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
85 | + | #endif |
86 | + | } |
87 | + | |
88 | + | |
89 | /** | |
90 | * distributeInitialData is essentially a copy of the older fortran | |
91 | * SimulationSetup | |
92 | */ | |
54 | – | |
93 | void ForceMatrixDecomposition::distributeInitialData() { | |
94 | snap_ = sman_->getCurrentSnapshot(); | |
95 | storageLayout_ = sman_->getStorageLayout(); | |
96 | ff_ = info_->getForceField(); | |
97 | nLocal_ = snap_->getNumberOfAtoms(); | |
98 | < | |
98 | > | |
99 | nGroups_ = info_->getNLocalCutoffGroups(); | |
100 | // gather the information for atomtype IDs (atids): | |
101 | idents = info_->getIdentArray(); | |
# | Line 67 | Line 105 | namespace OpenMD { | |
105 | ||
106 | massFactors = info_->getMassFactors(); | |
107 | ||
108 | < | PairList excludes = info_->getExcludedInteractions(); |
109 | < | PairList oneTwo = info_->getOneTwoInteractions(); |
110 | < | PairList oneThree = info_->getOneThreeInteractions(); |
111 | < | PairList oneFour = info_->getOneFourInteractions(); |
112 | < | |
108 | > | PairList* excludes = info_->getExcludedInteractions(); |
109 | > | PairList* oneTwo = info_->getOneTwoInteractions(); |
110 | > | PairList* oneThree = info_->getOneThreeInteractions(); |
111 | > | PairList* oneFour = info_->getOneFourInteractions(); |
112 | > | |
113 | > | if (needVelocities_) |
114 | > | snap_->cgData.setStorageLayout(DataStorage::dslPosition | |
115 | > | DataStorage::dslVelocity); |
116 | > | else |
117 | > | snap_->cgData.setStorageLayout(DataStorage::dslPosition); |
118 | > | |
119 | #ifdef IS_MPI | |
120 | ||
121 | < | AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
122 | < | AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
79 | < | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
80 | < | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
81 | < | AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
121 | > | MPI::Intracomm row = rowComm.getComm(); |
122 | > | MPI::Intracomm col = colComm.getComm(); |
123 | ||
124 | < | AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
125 | < | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
126 | < | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
127 | < | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
128 | < | AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
124 | > | AtomPlanIntRow = new Plan<int>(row, nLocal_); |
125 | > | AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
126 | > | AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); |
127 | > | AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); |
128 | > | AtomPlanPotRow = new Plan<potVec>(row, nLocal_); |
129 | ||
130 | < | cgCommIntRow = new Communicator<Row,int>(nGroups_); |
131 | < | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
132 | < | cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
133 | < | cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
130 | > | AtomPlanIntColumn = new Plan<int>(col, nLocal_); |
131 | > | AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); |
132 | > | AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); |
133 | > | AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); |
134 | > | AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); |
135 | ||
136 | < | nAtomsInRow_ = AtomCommIntRow->getSize(); |
137 | < | nAtomsInCol_ = AtomCommIntColumn->getSize(); |
138 | < | nGroupsInRow_ = cgCommIntRow->getSize(); |
139 | < | nGroupsInCol_ = cgCommIntColumn->getSize(); |
136 | > | cgPlanIntRow = new Plan<int>(row, nGroups_); |
137 | > | cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); |
138 | > | cgPlanIntColumn = new Plan<int>(col, nGroups_); |
139 | > | cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); |
140 | ||
141 | + | nAtomsInRow_ = AtomPlanIntRow->getSize(); |
142 | + | nAtomsInCol_ = AtomPlanIntColumn->getSize(); |
143 | + | nGroupsInRow_ = cgPlanIntRow->getSize(); |
144 | + | nGroupsInCol_ = cgPlanIntColumn->getSize(); |
145 | + | |
146 | // Modify the data storage objects with the correct layouts and sizes: | |
147 | atomRowData.resize(nAtomsInRow_); | |
148 | atomRowData.setStorageLayout(storageLayout_); | |
# | Line 104 | Line 151 | namespace OpenMD { | |
151 | cgRowData.resize(nGroupsInRow_); | |
152 | cgRowData.setStorageLayout(DataStorage::dslPosition); | |
153 | cgColData.resize(nGroupsInCol_); | |
154 | < | cgColData.setStorageLayout(DataStorage::dslPosition); |
155 | < | |
154 | > | if (needVelocities_) |
155 | > | // we only need column velocities if we need them. |
156 | > | cgColData.setStorageLayout(DataStorage::dslPosition | |
157 | > | DataStorage::dslVelocity); |
158 | > | else |
159 | > | cgColData.setStorageLayout(DataStorage::dslPosition); |
160 | > | |
161 | identsRow.resize(nAtomsInRow_); | |
162 | identsCol.resize(nAtomsInCol_); | |
163 | ||
164 | < | AtomCommIntRow->gather(idents, identsRow); |
165 | < | AtomCommIntColumn->gather(idents, identsCol); |
164 | > | AtomPlanIntRow->gather(idents, identsRow); |
165 | > | AtomPlanIntColumn->gather(idents, identsCol); |
166 | ||
167 | < | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
168 | < | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
169 | < | |
118 | < | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
119 | < | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
167 | > | // allocate memory for the parallel objects |
168 | > | atypesRow.resize(nAtomsInRow_); |
169 | > | atypesCol.resize(nAtomsInCol_); |
170 | ||
171 | < | AtomCommRealRow->gather(massFactors, massFactorsRow); |
172 | < | AtomCommRealColumn->gather(massFactors, massFactorsCol); |
171 | > | for (int i = 0; i < nAtomsInRow_; i++) |
172 | > | atypesRow[i] = ff_->getAtomType(identsRow[i]); |
173 | > | for (int i = 0; i < nAtomsInCol_; i++) |
174 | > | atypesCol[i] = ff_->getAtomType(identsCol[i]); |
175 | ||
176 | + | pot_row.resize(nAtomsInRow_); |
177 | + | pot_col.resize(nAtomsInCol_); |
178 | + | |
179 | + | expot_row.resize(nAtomsInRow_); |
180 | + | expot_col.resize(nAtomsInCol_); |
181 | + | |
182 | + | AtomRowToGlobal.resize(nAtomsInRow_); |
183 | + | AtomColToGlobal.resize(nAtomsInCol_); |
184 | + | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
185 | + | AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
186 | + | |
187 | + | cgRowToGlobal.resize(nGroupsInRow_); |
188 | + | cgColToGlobal.resize(nGroupsInCol_); |
189 | + | cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
190 | + | cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
191 | + | |
192 | + | massFactorsRow.resize(nAtomsInRow_); |
193 | + | massFactorsCol.resize(nAtomsInCol_); |
194 | + | AtomPlanRealRow->gather(massFactors, massFactorsRow); |
195 | + | AtomPlanRealColumn->gather(massFactors, massFactorsCol); |
196 | + | |
197 | groupListRow_.clear(); | |
198 | groupListRow_.resize(nGroupsInRow_); | |
199 | for (int i = 0; i < nGroupsInRow_; i++) { | |
# | Line 143 | Line 216 | namespace OpenMD { | |
216 | } | |
217 | } | |
218 | ||
219 | < | skipsForAtom.clear(); |
220 | < | skipsForAtom.resize(nAtomsInRow_); |
219 | > | excludesForAtom.clear(); |
220 | > | excludesForAtom.resize(nAtomsInRow_); |
221 | toposForAtom.clear(); | |
222 | toposForAtom.resize(nAtomsInRow_); | |
223 | topoDist.clear(); | |
# | Line 155 | Line 228 | namespace OpenMD { | |
228 | for (int j = 0; j < nAtomsInCol_; j++) { | |
229 | int jglob = AtomColToGlobal[j]; | |
230 | ||
231 | < | if (excludes.hasPair(iglob, jglob)) |
232 | < | skipsForAtom[i].push_back(j); |
231 | > | if (excludes->hasPair(iglob, jglob)) |
232 | > | excludesForAtom[i].push_back(j); |
233 | ||
234 | < | if (oneTwo.hasPair(iglob, jglob)) { |
234 | > | if (oneTwo->hasPair(iglob, jglob)) { |
235 | toposForAtom[i].push_back(j); | |
236 | topoDist[i].push_back(1); | |
237 | } else { | |
238 | < | if (oneThree.hasPair(iglob, jglob)) { |
238 | > | if (oneThree->hasPair(iglob, jglob)) { |
239 | toposForAtom[i].push_back(j); | |
240 | topoDist[i].push_back(2); | |
241 | } else { | |
242 | < | if (oneFour.hasPair(iglob, jglob)) { |
242 | > | if (oneFour->hasPair(iglob, jglob)) { |
243 | toposForAtom[i].push_back(j); | |
244 | topoDist[i].push_back(3); | |
245 | } | |
# | Line 175 | Line 248 | namespace OpenMD { | |
248 | } | |
249 | } | |
250 | ||
251 | < | #endif |
252 | < | |
253 | < | groupList_.clear(); |
181 | < | groupList_.resize(nGroups_); |
182 | < | for (int i = 0; i < nGroups_; i++) { |
183 | < | int gid = cgLocalToGlobal[i]; |
184 | < | for (int j = 0; j < nLocal_; j++) { |
185 | < | int aid = AtomLocalToGlobal[j]; |
186 | < | if (globalGroupMembership[aid] == gid) { |
187 | < | groupList_[i].push_back(j); |
188 | < | } |
189 | < | } |
190 | < | } |
191 | < | |
192 | < | skipsForAtom.clear(); |
193 | < | skipsForAtom.resize(nLocal_); |
251 | > | #else |
252 | > | excludesForAtom.clear(); |
253 | > | excludesForAtom.resize(nLocal_); |
254 | toposForAtom.clear(); | |
255 | toposForAtom.resize(nLocal_); | |
256 | topoDist.clear(); | |
# | Line 202 | Line 262 | namespace OpenMD { | |
262 | for (int j = 0; j < nLocal_; j++) { | |
263 | int jglob = AtomLocalToGlobal[j]; | |
264 | ||
265 | < | if (excludes.hasPair(iglob, jglob)) |
266 | < | skipsForAtom[i].push_back(j); |
265 | > | if (excludes->hasPair(iglob, jglob)) |
266 | > | excludesForAtom[i].push_back(j); |
267 | ||
268 | < | if (oneTwo.hasPair(iglob, jglob)) { |
268 | > | if (oneTwo->hasPair(iglob, jglob)) { |
269 | toposForAtom[i].push_back(j); | |
270 | topoDist[i].push_back(1); | |
271 | } else { | |
272 | < | if (oneThree.hasPair(iglob, jglob)) { |
272 | > | if (oneThree->hasPair(iglob, jglob)) { |
273 | toposForAtom[i].push_back(j); | |
274 | topoDist[i].push_back(2); | |
275 | } else { | |
276 | < | if (oneFour.hasPair(iglob, jglob)) { |
276 | > | if (oneFour->hasPair(iglob, jglob)) { |
277 | toposForAtom[i].push_back(j); | |
278 | topoDist[i].push_back(3); | |
279 | } | |
# | Line 221 | Line 281 | namespace OpenMD { | |
281 | } | |
282 | } | |
283 | } | |
284 | < | |
284 | > | #endif |
285 | > | |
286 | > | // allocate memory for the parallel objects |
287 | > | atypesLocal.resize(nLocal_); |
288 | > | |
289 | > | for (int i = 0; i < nLocal_; i++) |
290 | > | atypesLocal[i] = ff_->getAtomType(idents[i]); |
291 | > | |
292 | > | groupList_.clear(); |
293 | > | groupList_.resize(nGroups_); |
294 | > | for (int i = 0; i < nGroups_; i++) { |
295 | > | int gid = cgLocalToGlobal[i]; |
296 | > | for (int j = 0; j < nLocal_; j++) { |
297 | > | int aid = AtomLocalToGlobal[j]; |
298 | > | if (globalGroupMembership[aid] == gid) { |
299 | > | groupList_[i].push_back(j); |
300 | > | } |
301 | > | } |
302 | > | } |
303 | > | |
304 | > | |
305 | createGtypeCutoffMap(); | |
306 | + | |
307 | } | |
308 | ||
309 | void ForceMatrixDecomposition::createGtypeCutoffMap() { | |
310 | ||
311 | RealType tol = 1e-6; | |
312 | < | RealType rc; |
312 | > | largestRcut_ = 0.0; |
313 | int atid; | |
314 | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); | |
315 | < | vector<RealType> atypeCutoff; |
316 | < | atypeCutoff.resize( atypes.size() ); |
315 | > | |
316 | > | map<int, RealType> atypeCutoff; |
317 | ||
318 | for (set<AtomType*>::iterator at = atypes.begin(); | |
319 | at != atypes.end(); ++at){ | |
320 | atid = (*at)->getIdent(); | |
321 | < | |
241 | < | if (userChoseCutoff_) |
321 | > | if (userChoseCutoff_) |
322 | atypeCutoff[atid] = userCutoff_; | |
323 | else | |
324 | atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); | |
325 | } | |
326 | < | |
326 | > | |
327 | vector<RealType> gTypeCutoffs; | |
248 | – | |
328 | // first we do a single loop over the cutoff groups to find the | |
329 | // largest cutoff for any atypes present in this group. | |
330 | #ifdef IS_MPI | |
# | Line 303 | Line 382 | namespace OpenMD { | |
382 | ||
383 | vector<RealType> groupCutoff(nGroups_, 0.0); | |
384 | groupToGtype.resize(nGroups_); | |
306 | – | |
385 | for (int cg1 = 0; cg1 < nGroups_; cg1++) { | |
308 | – | |
386 | groupCutoff[cg1] = 0.0; | |
387 | vector<int> atomList = getAtomsInGroupRow(cg1); | |
311 | – | |
388 | for (vector<int>::iterator ia = atomList.begin(); | |
389 | ia != atomList.end(); ++ia) { | |
390 | int atom1 = (*ia); | |
391 | atid = idents[atom1]; | |
392 | < | if (atypeCutoff[atid] > groupCutoff[cg1]) { |
392 | > | if (atypeCutoff[atid] > groupCutoff[cg1]) |
393 | groupCutoff[cg1] = atypeCutoff[atid]; | |
318 | – | } |
394 | } | |
395 | < | |
395 | > | |
396 | bool gTypeFound = false; | |
397 | < | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
397 | > | for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
398 | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { | |
399 | groupToGtype[cg1] = gt; | |
400 | gTypeFound = true; | |
401 | } | |
402 | } | |
403 | < | if (!gTypeFound) { |
403 | > | if (!gTypeFound) { |
404 | gTypeCutoffs.push_back( groupCutoff[cg1] ); | |
405 | groupToGtype[cg1] = gTypeCutoffs.size() - 1; | |
406 | } | |
# | Line 334 | Line 409 | namespace OpenMD { | |
409 | ||
410 | // Now we find the maximum group cutoff value present in the simulation | |
411 | ||
412 | < | RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); |
412 | > | RealType groupMax = *max_element(gTypeCutoffs.begin(), |
413 | > | gTypeCutoffs.end()); |
414 | ||
415 | #ifdef IS_MPI | |
416 | < | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); |
416 | > | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, |
417 | > | MPI::MAX); |
418 | #endif | |
419 | ||
420 | RealType tradRcut = groupMax; | |
421 | ||
422 | < | for (int i = 0; i < gTypeCutoffs.size(); i++) { |
423 | < | for (int j = 0; j < gTypeCutoffs.size(); j++) { |
422 | > | for (unsigned int i = 0; i < gTypeCutoffs.size(); i++) { |
423 | > | for (unsigned int j = 0; j < gTypeCutoffs.size(); j++) { |
424 | RealType thisRcut; | |
425 | switch(cutoffPolicy_) { | |
426 | case TRADITIONAL: | |
# | Line 367 | Line 444 | namespace OpenMD { | |
444 | ||
445 | pair<int,int> key = make_pair(i,j); | |
446 | gTypeCutoffMap[key].first = thisRcut; | |
370 | – | |
447 | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; | |
372 | – | |
448 | gTypeCutoffMap[key].second = thisRcut*thisRcut; | |
374 | – | |
449 | gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); | |
376 | – | |
450 | // sanity check | |
451 | ||
452 | if (userChoseCutoff_) { | |
# | Line 390 | Line 463 | namespace OpenMD { | |
463 | } | |
464 | } | |
465 | ||
393 | – | |
466 | groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { | |
467 | int i, j; | |
468 | #ifdef IS_MPI | |
# | Line 404 | Line 476 | namespace OpenMD { | |
476 | } | |
477 | ||
478 | int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { | |
479 | < | for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
479 | > | for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) { |
480 | if (toposForAtom[atom1][j] == atom2) | |
481 | return topoDist[atom1][j]; | |
482 | } | |
# | Line 414 | Line 486 | namespace OpenMD { | |
486 | void ForceMatrixDecomposition::zeroWorkArrays() { | |
487 | pairwisePot = 0.0; | |
488 | embeddingPot = 0.0; | |
489 | + | excludedPot = 0.0; |
490 | + | excludedSelfPot = 0.0; |
491 | ||
492 | #ifdef IS_MPI | |
493 | if (storageLayout_ & DataStorage::dslForce) { | |
# | Line 432 | Line 506 | namespace OpenMD { | |
506 | fill(pot_col.begin(), pot_col.end(), | |
507 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
508 | ||
509 | + | fill(expot_row.begin(), expot_row.end(), |
510 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
511 | + | |
512 | + | fill(expot_col.begin(), expot_col.end(), |
513 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
514 | + | |
515 | if (storageLayout_ & DataStorage::dslParticlePot) { | |
516 | < | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); |
517 | < | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); |
516 | > | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
517 | > | 0.0); |
518 | > | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), |
519 | > | 0.0); |
520 | } | |
521 | ||
522 | if (storageLayout_ & DataStorage::dslDensity) { | |
# | Line 443 | Line 525 | namespace OpenMD { | |
525 | } | |
526 | ||
527 | if (storageLayout_ & DataStorage::dslFunctional) { | |
528 | < | fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); |
529 | < | fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); |
528 | > | fill(atomRowData.functional.begin(), atomRowData.functional.end(), |
529 | > | 0.0); |
530 | > | fill(atomColData.functional.begin(), atomColData.functional.end(), |
531 | > | 0.0); |
532 | } | |
533 | ||
534 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
# | Line 455 | Line 539 | namespace OpenMD { | |
539 | } | |
540 | ||
541 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | |
542 | < | fill(atomRowData.skippedCharge.begin(), atomRowData.skippedCharge.end(), 0.0); |
543 | < | fill(atomColData.skippedCharge.begin(), atomColData.skippedCharge.end(), 0.0); |
542 | > | fill(atomRowData.skippedCharge.begin(), |
543 | > | atomRowData.skippedCharge.end(), 0.0); |
544 | > | fill(atomColData.skippedCharge.begin(), |
545 | > | atomColData.skippedCharge.end(), 0.0); |
546 | } | |
547 | ||
548 | < | #else |
549 | < | |
548 | > | if (storageLayout_ & DataStorage::dslFlucQForce) { |
549 | > | fill(atomRowData.flucQFrc.begin(), |
550 | > | atomRowData.flucQFrc.end(), 0.0); |
551 | > | fill(atomColData.flucQFrc.begin(), |
552 | > | atomColData.flucQFrc.end(), 0.0); |
553 | > | } |
554 | > | |
555 | > | if (storageLayout_ & DataStorage::dslElectricField) { |
556 | > | fill(atomRowData.electricField.begin(), |
557 | > | atomRowData.electricField.end(), V3Zero); |
558 | > | fill(atomColData.electricField.begin(), |
559 | > | atomColData.electricField.end(), V3Zero); |
560 | > | } |
561 | > | |
562 | > | if (storageLayout_ & DataStorage::dslFlucQForce) { |
563 | > | fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), |
564 | > | 0.0); |
565 | > | fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), |
566 | > | 0.0); |
567 | > | } |
568 | > | |
569 | > | #endif |
570 | > | // even in parallel, we need to zero out the local arrays: |
571 | > | |
572 | if (storageLayout_ & DataStorage::dslParticlePot) { | |
573 | fill(snap_->atomData.particlePot.begin(), | |
574 | snap_->atomData.particlePot.end(), 0.0); | |
# | Line 470 | Line 578 | namespace OpenMD { | |
578 | fill(snap_->atomData.density.begin(), | |
579 | snap_->atomData.density.end(), 0.0); | |
580 | } | |
581 | + | |
582 | if (storageLayout_ & DataStorage::dslFunctional) { | |
583 | fill(snap_->atomData.functional.begin(), | |
584 | snap_->atomData.functional.end(), 0.0); | |
585 | } | |
586 | + | |
587 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
588 | fill(snap_->atomData.functionalDerivative.begin(), | |
589 | snap_->atomData.functionalDerivative.end(), 0.0); | |
590 | } | |
591 | + | |
592 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | |
593 | fill(snap_->atomData.skippedCharge.begin(), | |
594 | snap_->atomData.skippedCharge.end(), 0.0); | |
595 | } | |
596 | < | #endif |
597 | < | |
596 | > | |
597 | > | if (storageLayout_ & DataStorage::dslElectricField) { |
598 | > | fill(snap_->atomData.electricField.begin(), |
599 | > | snap_->atomData.electricField.end(), V3Zero); |
600 | > | } |
601 | } | |
602 | ||
603 | ||
# | Line 493 | Line 607 | namespace OpenMD { | |
607 | #ifdef IS_MPI | |
608 | ||
609 | // gather up the atomic positions | |
610 | < | AtomCommVectorRow->gather(snap_->atomData.position, |
610 | > | AtomPlanVectorRow->gather(snap_->atomData.position, |
611 | atomRowData.position); | |
612 | < | AtomCommVectorColumn->gather(snap_->atomData.position, |
612 | > | AtomPlanVectorColumn->gather(snap_->atomData.position, |
613 | atomColData.position); | |
614 | ||
615 | // gather up the cutoff group positions | |
616 | < | cgCommVectorRow->gather(snap_->cgData.position, |
616 | > | |
617 | > | cgPlanVectorRow->gather(snap_->cgData.position, |
618 | cgRowData.position); | |
619 | < | cgCommVectorColumn->gather(snap_->cgData.position, |
619 | > | |
620 | > | cgPlanVectorColumn->gather(snap_->cgData.position, |
621 | cgColData.position); | |
622 | + | |
623 | + | |
624 | + | |
625 | + | if (needVelocities_) { |
626 | + | // gather up the atomic velocities |
627 | + | AtomPlanVectorColumn->gather(snap_->atomData.velocity, |
628 | + | atomColData.velocity); |
629 | + | |
630 | + | cgPlanVectorColumn->gather(snap_->cgData.velocity, |
631 | + | cgColData.velocity); |
632 | + | } |
633 | + | |
634 | ||
635 | // if needed, gather the atomic rotation matrices | |
636 | if (storageLayout_ & DataStorage::dslAmat) { | |
637 | < | AtomCommMatrixRow->gather(snap_->atomData.aMat, |
637 | > | AtomPlanMatrixRow->gather(snap_->atomData.aMat, |
638 | atomRowData.aMat); | |
639 | < | AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
639 | > | AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
640 | atomColData.aMat); | |
641 | } | |
642 | ||
643 | // if needed, gather the atomic eletrostatic frames | |
644 | if (storageLayout_ & DataStorage::dslElectroFrame) { | |
645 | < | AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
645 | > | AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
646 | atomRowData.electroFrame); | |
647 | < | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
647 | > | AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
648 | atomColData.electroFrame); | |
649 | } | |
650 | + | |
651 | + | // if needed, gather the atomic fluctuating charge values |
652 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
653 | + | AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
654 | + | atomRowData.flucQPos); |
655 | + | AtomPlanRealColumn->gather(snap_->atomData.flucQPos, |
656 | + | atomColData.flucQPos); |
657 | + | } |
658 | + | |
659 | #endif | |
660 | } | |
661 | ||
# | Line 532 | Line 669 | namespace OpenMD { | |
669 | ||
670 | if (storageLayout_ & DataStorage::dslDensity) { | |
671 | ||
672 | < | AtomCommRealRow->scatter(atomRowData.density, |
672 | > | AtomPlanRealRow->scatter(atomRowData.density, |
673 | snap_->atomData.density); | |
674 | ||
675 | int n = snap_->atomData.density.size(); | |
676 | vector<RealType> rho_tmp(n, 0.0); | |
677 | < | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
677 | > | AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); |
678 | for (int i = 0; i < n; i++) | |
679 | snap_->atomData.density[i] += rho_tmp[i]; | |
680 | } | |
681 | + | |
682 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
683 | + | |
684 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, |
685 | + | snap_->atomData.electricField); |
686 | + | |
687 | + | int n = snap_->atomData.electricField.size(); |
688 | + | vector<Vector3d> field_tmp(n, V3Zero); |
689 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); |
690 | + | for (int i = 0; i < n; i++) |
691 | + | snap_->atomData.electricField[i] += field_tmp[i]; |
692 | + | } |
693 | #endif | |
694 | } | |
695 | ||
# | Line 553 | Line 702 | namespace OpenMD { | |
702 | storageLayout_ = sman_->getStorageLayout(); | |
703 | #ifdef IS_MPI | |
704 | if (storageLayout_ & DataStorage::dslFunctional) { | |
705 | < | AtomCommRealRow->gather(snap_->atomData.functional, |
705 | > | AtomPlanRealRow->gather(snap_->atomData.functional, |
706 | atomRowData.functional); | |
707 | < | AtomCommRealColumn->gather(snap_->atomData.functional, |
707 | > | AtomPlanRealColumn->gather(snap_->atomData.functional, |
708 | atomColData.functional); | |
709 | } | |
710 | ||
711 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
712 | < | AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
712 | > | AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, |
713 | atomRowData.functionalDerivative); | |
714 | < | AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
714 | > | AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, |
715 | atomColData.functionalDerivative); | |
716 | } | |
717 | #endif | |
# | Line 576 | Line 725 | namespace OpenMD { | |
725 | int n = snap_->atomData.force.size(); | |
726 | vector<Vector3d> frc_tmp(n, V3Zero); | |
727 | ||
728 | < | AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
728 | > | AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); |
729 | for (int i = 0; i < n; i++) { | |
730 | snap_->atomData.force[i] += frc_tmp[i]; | |
731 | frc_tmp[i] = 0.0; | |
732 | } | |
733 | ||
734 | < | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
735 | < | for (int i = 0; i < n; i++) |
734 | > | AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); |
735 | > | for (int i = 0; i < n; i++) { |
736 | snap_->atomData.force[i] += frc_tmp[i]; | |
737 | < | |
738 | < | |
737 | > | } |
738 | > | |
739 | if (storageLayout_ & DataStorage::dslTorque) { | |
740 | ||
741 | < | int nt = snap_->atomData.force.size(); |
741 | > | int nt = snap_->atomData.torque.size(); |
742 | vector<Vector3d> trq_tmp(nt, V3Zero); | |
743 | ||
744 | < | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
745 | < | for (int i = 0; i < n; i++) { |
744 | > | AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); |
745 | > | for (int i = 0; i < nt; i++) { |
746 | snap_->atomData.torque[i] += trq_tmp[i]; | |
747 | trq_tmp[i] = 0.0; | |
748 | } | |
749 | ||
750 | < | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
751 | < | for (int i = 0; i < n; i++) |
750 | > | AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); |
751 | > | for (int i = 0; i < nt; i++) |
752 | snap_->atomData.torque[i] += trq_tmp[i]; | |
753 | } | |
754 | + | |
755 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
756 | + | |
757 | + | int ns = snap_->atomData.skippedCharge.size(); |
758 | + | vector<RealType> skch_tmp(ns, 0.0); |
759 | + | |
760 | + | AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
761 | + | for (int i = 0; i < ns; i++) { |
762 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
763 | + | skch_tmp[i] = 0.0; |
764 | + | } |
765 | + | |
766 | + | AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
767 | + | for (int i = 0; i < ns; i++) |
768 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
769 | + | |
770 | + | } |
771 | ||
772 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
773 | + | |
774 | + | int nq = snap_->atomData.flucQFrc.size(); |
775 | + | vector<RealType> fqfrc_tmp(nq, 0.0); |
776 | + | |
777 | + | AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); |
778 | + | for (int i = 0; i < nq; i++) { |
779 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
780 | + | fqfrc_tmp[i] = 0.0; |
781 | + | } |
782 | + | |
783 | + | AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); |
784 | + | for (int i = 0; i < nq; i++) |
785 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
786 | + | |
787 | + | } |
788 | + | |
789 | nLocal_ = snap_->getNumberOfAtoms(); | |
790 | ||
791 | vector<potVec> pot_temp(nLocal_, | |
792 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
793 | + | vector<potVec> expot_temp(nLocal_, |
794 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
795 | ||
796 | // scatter/gather pot_row into the members of my column | |
797 | ||
798 | < | AtomCommPotRow->scatter(pot_row, pot_temp); |
798 | > | AtomPlanPotRow->scatter(pot_row, pot_temp); |
799 | > | AtomPlanPotRow->scatter(expot_row, expot_temp); |
800 | ||
801 | < | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
801 | > | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
802 | pairwisePot += pot_temp[ii]; | |
803 | < | |
803 | > | |
804 | > | for (int ii = 0; ii < expot_temp.size(); ii++ ) |
805 | > | excludedPot += expot_temp[ii]; |
806 | > | |
807 | > | if (storageLayout_ & DataStorage::dslParticlePot) { |
808 | > | // This is the pairwise contribution to the particle pot. The |
809 | > | // embedding contribution is added in each of the low level |
810 | > | // non-bonded routines. In single processor, this is done in |
811 | > | // unpackInteractionData, not in collectData. |
812 | > | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
813 | > | for (int i = 0; i < nLocal_; i++) { |
814 | > | // factor of two is because the total potential terms are divided |
815 | > | // by 2 in parallel due to row/ column scatter |
816 | > | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
817 | > | } |
818 | > | } |
819 | > | } |
820 | > | |
821 | fill(pot_temp.begin(), pot_temp.end(), | |
822 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
823 | + | fill(expot_temp.begin(), expot_temp.end(), |
824 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
825 | ||
826 | < | AtomCommPotColumn->scatter(pot_col, pot_temp); |
826 | > | AtomPlanPotColumn->scatter(pot_col, pot_temp); |
827 | > | AtomPlanPotColumn->scatter(expot_col, expot_temp); |
828 | ||
829 | for (int ii = 0; ii < pot_temp.size(); ii++ ) | |
830 | pairwisePot += pot_temp[ii]; | |
831 | + | |
832 | + | for (int ii = 0; ii < expot_temp.size(); ii++ ) |
833 | + | excludedPot += expot_temp[ii]; |
834 | + | |
835 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
836 | + | // This is the pairwise contribution to the particle pot. The |
837 | + | // embedding contribution is added in each of the low level |
838 | + | // non-bonded routines. In single processor, this is done in |
839 | + | // unpackInteractionData, not in collectData. |
840 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
841 | + | for (int i = 0; i < nLocal_; i++) { |
842 | + | // factor of two is because the total potential terms are divided |
843 | + | // by 2 in parallel due to row/ column scatter |
844 | + | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
845 | + | } |
846 | + | } |
847 | + | } |
848 | + | |
849 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
850 | + | int npp = snap_->atomData.particlePot.size(); |
851 | + | vector<RealType> ppot_temp(npp, 0.0); |
852 | + | |
853 | + | // This is the direct or embedding contribution to the particle |
854 | + | // pot. |
855 | + | |
856 | + | AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); |
857 | + | for (int i = 0; i < npp; i++) { |
858 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; |
859 | + | } |
860 | + | |
861 | + | fill(ppot_temp.begin(), ppot_temp.end(), 0.0); |
862 | + | |
863 | + | AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); |
864 | + | for (int i = 0; i < npp; i++) { |
865 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; |
866 | + | } |
867 | + | } |
868 | + | |
869 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
870 | + | RealType ploc1 = pairwisePot[ii]; |
871 | + | RealType ploc2 = 0.0; |
872 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
873 | + | pairwisePot[ii] = ploc2; |
874 | + | } |
875 | + | |
876 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
877 | + | RealType ploc1 = excludedPot[ii]; |
878 | + | RealType ploc2 = 0.0; |
879 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
880 | + | excludedPot[ii] = ploc2; |
881 | + | } |
882 | + | |
883 | + | // Here be dragons. |
884 | + | MPI::Intracomm col = colComm.getComm(); |
885 | + | |
886 | + | col.Allreduce(MPI::IN_PLACE, |
887 | + | &snap_->frameData.conductiveHeatFlux[0], 3, |
888 | + | MPI::REALTYPE, MPI::SUM); |
889 | + | |
890 | + | |
891 | #endif | |
892 | ||
893 | + | } |
894 | + | |
895 | + | /** |
896 | + | * Collects information obtained during the post-pair (and embedding |
897 | + | * functional) loops onto local data structures. |
898 | + | */ |
899 | + | void ForceMatrixDecomposition::collectSelfData() { |
900 | + | snap_ = sman_->getCurrentSnapshot(); |
901 | + | storageLayout_ = sman_->getStorageLayout(); |
902 | + | |
903 | + | #ifdef IS_MPI |
904 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
905 | + | RealType ploc1 = embeddingPot[ii]; |
906 | + | RealType ploc2 = 0.0; |
907 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
908 | + | embeddingPot[ii] = ploc2; |
909 | + | } |
910 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
911 | + | RealType ploc1 = excludedSelfPot[ii]; |
912 | + | RealType ploc2 = 0.0; |
913 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
914 | + | excludedSelfPot[ii] = ploc2; |
915 | + | } |
916 | + | #endif |
917 | + | |
918 | } | |
919 | ||
920 | + | |
921 | + | |
922 | int ForceMatrixDecomposition::getNAtomsInRow() { | |
923 | #ifdef IS_MPI | |
924 | return nAtomsInRow_; | |
# | Line 666 | Line 959 | namespace OpenMD { | |
959 | return d; | |
960 | } | |
961 | ||
962 | + | Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ |
963 | + | #ifdef IS_MPI |
964 | + | return cgColData.velocity[cg2]; |
965 | + | #else |
966 | + | return snap_->cgData.velocity[cg2]; |
967 | + | #endif |
968 | + | } |
969 | ||
970 | + | Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ |
971 | + | #ifdef IS_MPI |
972 | + | return atomColData.velocity[atom2]; |
973 | + | #else |
974 | + | return snap_->atomData.velocity[atom2]; |
975 | + | #endif |
976 | + | } |
977 | + | |
978 | + | |
979 | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ | |
980 | ||
981 | Vector3d d; | |
# | Line 724 | Line 1033 | namespace OpenMD { | |
1033 | return d; | |
1034 | } | |
1035 | ||
1036 | < | vector<int> ForceMatrixDecomposition::getSkipsForAtom(int atom1) { |
1037 | < | return skipsForAtom[atom1]; |
1036 | > | vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
1037 | > | return excludesForAtom[atom1]; |
1038 | } | |
1039 | ||
1040 | /** | |
1041 | < | * There are a number of reasons to skip a pair or a |
733 | < | * particle. Mostly we do this to exclude atoms who are involved in |
734 | < | * short range interactions (bonds, bends, torsions), but we also |
735 | < | * need to exclude some overcounted interactions that result from |
1041 | > | * We need to exclude some overcounted interactions that result from |
1042 | * the parallel decomposition. | |
1043 | */ | |
1044 | < | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
1044 | > | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { |
1045 | int unique_id_1, unique_id_2; | |
1046 | < | |
1046 | > | |
1047 | #ifdef IS_MPI | |
1048 | // in MPI, we have to look up the unique IDs for each atom | |
1049 | unique_id_1 = AtomRowToGlobal[atom1]; | |
1050 | unique_id_2 = AtomColToGlobal[atom2]; | |
1051 | + | // group1 = cgRowToGlobal[cg1]; |
1052 | + | // group2 = cgColToGlobal[cg2]; |
1053 | + | #else |
1054 | + | unique_id_1 = AtomLocalToGlobal[atom1]; |
1055 | + | unique_id_2 = AtomLocalToGlobal[atom2]; |
1056 | + | int group1 = cgLocalToGlobal[cg1]; |
1057 | + | int group2 = cgLocalToGlobal[cg2]; |
1058 | + | #endif |
1059 | ||
746 | – | // this situation should only arise in MPI simulations |
1060 | if (unique_id_1 == unique_id_2) return true; | |
1061 | < | |
1061 | > | |
1062 | > | #ifdef IS_MPI |
1063 | // this prevents us from doing the pair on multiple processors | |
1064 | if (unique_id_1 < unique_id_2) { | |
1065 | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; | |
1066 | } else { | |
1067 | < | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
1067 | > | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
1068 | } | |
1069 | < | #else |
1070 | < | // in the normal loop, the atom numbers are unique |
1071 | < | unique_id_1 = atom1; |
1072 | < | unique_id_2 = atom2; |
1069 | > | #endif |
1070 | > | |
1071 | > | #ifndef IS_MPI |
1072 | > | if (group1 == group2) { |
1073 | > | if (unique_id_1 < unique_id_2) return true; |
1074 | > | } |
1075 | #endif | |
1076 | ||
1077 | < | for (vector<int>::iterator i = skipsForAtom[atom1].begin(); |
1078 | < | i != skipsForAtom[atom1].end(); ++i) { |
1079 | < | if ( (*i) == unique_id_2 ) return true; |
1077 | > | return false; |
1078 | > | } |
1079 | > | |
1080 | > | /** |
1081 | > | * We need to handle the interactions for atoms who are involved in |
1082 | > | * the same rigid body as well as some short range interactions |
1083 | > | * (bonds, bends, torsions) differently from other interactions. |
1084 | > | * We'll still visit the pairwise routines, but with a flag that |
1085 | > | * tells those routines to exclude the pair from direct long range |
1086 | > | * interactions. Some indirect interactions (notably reaction |
1087 | > | * field) must still be handled for these pairs. |
1088 | > | */ |
1089 | > | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
1090 | > | |
1091 | > | // excludesForAtom was constructed to use row/column indices in the MPI |
1092 | > | // version, and to use local IDs in the non-MPI version: |
1093 | > | |
1094 | > | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
1095 | > | i != excludesForAtom[atom1].end(); ++i) { |
1096 | > | if ( (*i) == atom2 ) return true; |
1097 | } | |
1098 | ||
1099 | return false; | |
# | Line 785 | Line 1118 | namespace OpenMD { | |
1118 | ||
1119 | // filling interaction blocks with pointers | |
1120 | void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, | |
1121 | < | int atom1, int atom2) { |
1121 | > | int atom1, int atom2) { |
1122 | > | |
1123 | > | idat.excluded = excludeAtomPair(atom1, atom2); |
1124 | > | |
1125 | #ifdef IS_MPI | |
1126 | + | idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
1127 | + | //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
1128 | + | // ff_->getAtomType(identsCol[atom2]) ); |
1129 | ||
791 | – | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
792 | – | ff_->getAtomType(identsCol[atom2]) ); |
793 | – | |
1130 | if (storageLayout_ & DataStorage::dslAmat) { | |
1131 | idat.A1 = &(atomRowData.aMat[atom1]); | |
1132 | idat.A2 = &(atomColData.aMat[atom2]); | |
# | Line 826 | Line 1162 | namespace OpenMD { | |
1162 | idat.particlePot2 = &(atomColData.particlePot[atom2]); | |
1163 | } | |
1164 | ||
1165 | < | #else |
1165 | > | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
1166 | > | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
1167 | > | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
1168 | > | } |
1169 | ||
1170 | < | idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
1171 | < | ff_->getAtomType(idents[atom2]) ); |
1170 | > | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1171 | > | idat.flucQ1 = &(atomRowData.flucQPos[atom1]); |
1172 | > | idat.flucQ2 = &(atomColData.flucQPos[atom2]); |
1173 | > | } |
1174 | ||
1175 | + | #else |
1176 | + | |
1177 | + | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
1178 | + | |
1179 | if (storageLayout_ & DataStorage::dslAmat) { | |
1180 | idat.A1 = &(snap_->atomData.aMat[atom1]); | |
1181 | idat.A2 = &(snap_->atomData.aMat[atom2]); | |
# | Line 866 | Line 1211 | namespace OpenMD { | |
1211 | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); | |
1212 | } | |
1213 | ||
1214 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
1215 | + | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
1216 | + | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
1217 | + | } |
1218 | + | |
1219 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1220 | + | idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); |
1221 | + | idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); |
1222 | + | } |
1223 | + | |
1224 | #endif | |
1225 | } | |
1226 | ||
1227 | ||
1228 | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { | |
1229 | #ifdef IS_MPI | |
1230 | < | pot_row[atom1] += 0.5 * *(idat.pot); |
1231 | < | pot_col[atom2] += 0.5 * *(idat.pot); |
1230 | > | pot_row[atom1] += RealType(0.5) * *(idat.pot); |
1231 | > | pot_col[atom2] += RealType(0.5) * *(idat.pot); |
1232 | > | expot_row[atom1] += RealType(0.5) * *(idat.excludedPot); |
1233 | > | expot_col[atom2] += RealType(0.5) * *(idat.excludedPot); |
1234 | ||
1235 | atomRowData.force[atom1] += *(idat.f1); | |
1236 | atomColData.force[atom2] -= *(idat.f1); | |
1237 | + | |
1238 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
1239 | + | atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1240 | + | atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1241 | + | } |
1242 | + | |
1243 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
1244 | + | atomRowData.electricField[atom1] += *(idat.eField1); |
1245 | + | atomColData.electricField[atom2] += *(idat.eField2); |
1246 | + | } |
1247 | + | |
1248 | #else | |
1249 | pairwisePot += *(idat.pot); | |
1250 | + | excludedPot += *(idat.excludedPot); |
1251 | ||
1252 | snap_->atomData.force[atom1] += *(idat.f1); | |
1253 | snap_->atomData.force[atom2] -= *(idat.f1); | |
885 | – | #endif |
886 | – | |
887 | – | } |
1254 | ||
1255 | < | |
1256 | < | void ForceMatrixDecomposition::fillSkipData(InteractionData &idat, |
1257 | < | int atom1, int atom2) { |
1258 | < | #ifdef IS_MPI |
1259 | < | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
1260 | < | ff_->getAtomType(identsCol[atom2]) ); |
1261 | < | |
896 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { |
897 | < | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
898 | < | idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
1255 | > | if (idat.doParticlePot) { |
1256 | > | // This is the pairwise contribution to the particle pot. The |
1257 | > | // embedding contribution is added in each of the low level |
1258 | > | // non-bonded routines. In parallel, this calculation is done |
1259 | > | // in collectData, not in unpackInteractionData. |
1260 | > | snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); |
1261 | > | snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); |
1262 | } | |
1263 | < | |
1264 | < | if (storageLayout_ & DataStorage::dslTorque) { |
1265 | < | idat.t1 = &(atomRowData.torque[atom1]); |
1266 | < | idat.t2 = &(atomColData.torque[atom2]); |
1263 | > | |
1264 | > | if (storageLayout_ & DataStorage::dslFlucQForce) { |
1265 | > | snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1266 | > | snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1267 | } | |
1268 | ||
1269 | < | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
1270 | < | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
1271 | < | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
1269 | > | if (storageLayout_ & DataStorage::dslElectricField) { |
1270 | > | snap_->atomData.electricField[atom1] += *(idat.eField1); |
1271 | > | snap_->atomData.electricField[atom2] += *(idat.eField2); |
1272 | } | |
910 | – | #else |
911 | – | idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
912 | – | ff_->getAtomType(idents[atom2]) ); |
1273 | ||
914 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { |
915 | – | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
916 | – | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
917 | – | } |
918 | – | |
919 | – | if (storageLayout_ & DataStorage::dslTorque) { |
920 | – | idat.t1 = &(snap_->atomData.torque[atom1]); |
921 | – | idat.t2 = &(snap_->atomData.torque[atom2]); |
922 | – | } |
923 | – | |
924 | – | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
925 | – | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
926 | – | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
927 | – | } |
928 | – | #endif |
929 | – | } |
930 | – | |
931 | – | |
932 | – | void ForceMatrixDecomposition::unpackSkipData(InteractionData &idat, int atom1, int atom2) { |
933 | – | #ifdef IS_MPI |
934 | – | pot_row[atom1] += 0.5 * *(idat.pot); |
935 | – | pot_col[atom2] += 0.5 * *(idat.pot); |
936 | – | #else |
937 | – | pairwisePot += *(idat.pot); |
1274 | #endif | |
1275 | < | |
1275 | > | |
1276 | } | |
1277 | ||
942 | – | |
1278 | /* | |
1279 | * buildNeighborList | |
1280 | * | |
# | Line 950 | Line 1285 | namespace OpenMD { | |
1285 | ||
1286 | vector<pair<int, int> > neighborList; | |
1287 | groupCutoffs cuts; | |
1288 | + | bool doAllPairs = false; |
1289 | + | |
1290 | #ifdef IS_MPI | |
1291 | cellListRow_.clear(); | |
1292 | cellListCol_.clear(); | |
# | Line 958 | Line 1295 | namespace OpenMD { | |
1295 | #endif | |
1296 | ||
1297 | RealType rList_ = (largestRcut_ + skinThickness_); | |
961 | – | RealType rl2 = rList_ * rList_; |
1298 | Snapshot* snap_ = sman_->getCurrentSnapshot(); | |
1299 | Mat3x3d Hmat = snap_->getHmat(); | |
1300 | Vector3d Hx = Hmat.getColumn(0); | |
# | Line 969 | Line 1305 | namespace OpenMD { | |
1305 | nCells_.y() = (int) ( Hy.length() )/ rList_; | |
1306 | nCells_.z() = (int) ( Hz.length() )/ rList_; | |
1307 | ||
1308 | + | // handle small boxes where the cell offsets can end up repeating cells |
1309 | + | |
1310 | + | if (nCells_.x() < 3) doAllPairs = true; |
1311 | + | if (nCells_.y() < 3) doAllPairs = true; |
1312 | + | if (nCells_.z() < 3) doAllPairs = true; |
1313 | + | |
1314 | Mat3x3d invHmat = snap_->getInvHmat(); | |
1315 | Vector3d rs, scaled, dr; | |
1316 | Vector3i whichCell; | |
# | Line 982 | Line 1324 | namespace OpenMD { | |
1324 | cellList_.resize(nCtot); | |
1325 | #endif | |
1326 | ||
1327 | + | if (!doAllPairs) { |
1328 | #ifdef IS_MPI | |
986 | – | for (int i = 0; i < nGroupsInRow_; i++) { |
987 | – | rs = cgRowData.position[i]; |
1329 | ||
1330 | < | // scaled positions relative to the box vectors |
1331 | < | scaled = invHmat * rs; |
1332 | < | |
1333 | < | // wrap the vector back into the unit box by subtracting integer box |
1334 | < | // numbers |
1335 | < | for (int j = 0; j < 3; j++) { |
1336 | < | scaled[j] -= roundMe(scaled[j]); |
1337 | < | scaled[j] += 0.5; |
1330 | > | for (int i = 0; i < nGroupsInRow_; i++) { |
1331 | > | rs = cgRowData.position[i]; |
1332 | > | |
1333 | > | // scaled positions relative to the box vectors |
1334 | > | scaled = invHmat * rs; |
1335 | > | |
1336 | > | // wrap the vector back into the unit box by subtracting integer box |
1337 | > | // numbers |
1338 | > | for (int j = 0; j < 3; j++) { |
1339 | > | scaled[j] -= roundMe(scaled[j]); |
1340 | > | scaled[j] += 0.5; |
1341 | > | // Handle the special case when an object is exactly on the |
1342 | > | // boundary (a scaled coordinate of 1.0 is the same as |
1343 | > | // scaled coordinate of 0.0) |
1344 | > | if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1345 | > | } |
1346 | > | |
1347 | > | // find xyz-indices of cell that cutoffGroup is in. |
1348 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1349 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1350 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1351 | > | |
1352 | > | // find single index of this cell: |
1353 | > | cellIndex = Vlinear(whichCell, nCells_); |
1354 | > | |
1355 | > | // add this cutoff group to the list of groups in this cell; |
1356 | > | cellListRow_[cellIndex].push_back(i); |
1357 | > | } |
1358 | > | for (int i = 0; i < nGroupsInCol_; i++) { |
1359 | > | rs = cgColData.position[i]; |
1360 | > | |
1361 | > | // scaled positions relative to the box vectors |
1362 | > | scaled = invHmat * rs; |
1363 | > | |
1364 | > | // wrap the vector back into the unit box by subtracting integer box |
1365 | > | // numbers |
1366 | > | for (int j = 0; j < 3; j++) { |
1367 | > | scaled[j] -= roundMe(scaled[j]); |
1368 | > | scaled[j] += 0.5; |
1369 | > | // Handle the special case when an object is exactly on the |
1370 | > | // boundary (a scaled coordinate of 1.0 is the same as |
1371 | > | // scaled coordinate of 0.0) |
1372 | > | if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1373 | > | } |
1374 | > | |
1375 | > | // find xyz-indices of cell that cutoffGroup is in. |
1376 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1377 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1378 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1379 | > | |
1380 | > | // find single index of this cell: |
1381 | > | cellIndex = Vlinear(whichCell, nCells_); |
1382 | > | |
1383 | > | // add this cutoff group to the list of groups in this cell; |
1384 | > | cellListCol_[cellIndex].push_back(i); |
1385 | } | |
1386 | ||
999 | – | // find xyz-indices of cell that cutoffGroup is in. |
1000 | – | whichCell.x() = nCells_.x() * scaled.x(); |
1001 | – | whichCell.y() = nCells_.y() * scaled.y(); |
1002 | – | whichCell.z() = nCells_.z() * scaled.z(); |
1003 | – | |
1004 | – | // find single index of this cell: |
1005 | – | cellIndex = Vlinear(whichCell, nCells_); |
1006 | – | |
1007 | – | // add this cutoff group to the list of groups in this cell; |
1008 | – | cellListRow_[cellIndex].push_back(i); |
1009 | – | } |
1010 | – | |
1011 | – | for (int i = 0; i < nGroupsInCol_; i++) { |
1012 | – | rs = cgColData.position[i]; |
1013 | – | |
1014 | – | // scaled positions relative to the box vectors |
1015 | – | scaled = invHmat * rs; |
1016 | – | |
1017 | – | // wrap the vector back into the unit box by subtracting integer box |
1018 | – | // numbers |
1019 | – | for (int j = 0; j < 3; j++) { |
1020 | – | scaled[j] -= roundMe(scaled[j]); |
1021 | – | scaled[j] += 0.5; |
1022 | – | } |
1023 | – | |
1024 | – | // find xyz-indices of cell that cutoffGroup is in. |
1025 | – | whichCell.x() = nCells_.x() * scaled.x(); |
1026 | – | whichCell.y() = nCells_.y() * scaled.y(); |
1027 | – | whichCell.z() = nCells_.z() * scaled.z(); |
1028 | – | |
1029 | – | // find single index of this cell: |
1030 | – | cellIndex = Vlinear(whichCell, nCells_); |
1031 | – | |
1032 | – | // add this cutoff group to the list of groups in this cell; |
1033 | – | cellListCol_[cellIndex].push_back(i); |
1034 | – | } |
1387 | #else | |
1388 | < | for (int i = 0; i < nGroups_; i++) { |
1389 | < | rs = snap_->cgData.position[i]; |
1390 | < | |
1391 | < | // scaled positions relative to the box vectors |
1392 | < | scaled = invHmat * rs; |
1393 | < | |
1394 | < | // wrap the vector back into the unit box by subtracting integer box |
1395 | < | // numbers |
1396 | < | for (int j = 0; j < 3; j++) { |
1397 | < | scaled[j] -= roundMe(scaled[j]); |
1398 | < | scaled[j] += 0.5; |
1388 | > | for (int i = 0; i < nGroups_; i++) { |
1389 | > | rs = snap_->cgData.position[i]; |
1390 | > | |
1391 | > | // scaled positions relative to the box vectors |
1392 | > | scaled = invHmat * rs; |
1393 | > | |
1394 | > | // wrap the vector back into the unit box by subtracting integer box |
1395 | > | // numbers |
1396 | > | for (int j = 0; j < 3; j++) { |
1397 | > | scaled[j] -= roundMe(scaled[j]); |
1398 | > | scaled[j] += 0.5; |
1399 | > | // Handle the special case when an object is exactly on the |
1400 | > | // boundary (a scaled coordinate of 1.0 is the same as |
1401 | > | // scaled coordinate of 0.0) |
1402 | > | if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1403 | > | } |
1404 | > | |
1405 | > | // find xyz-indices of cell that cutoffGroup is in. |
1406 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1407 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1408 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1409 | > | |
1410 | > | // find single index of this cell: |
1411 | > | cellIndex = Vlinear(whichCell, nCells_); |
1412 | > | |
1413 | > | // add this cutoff group to the list of groups in this cell; |
1414 | > | cellList_[cellIndex].push_back(i); |
1415 | } | |
1416 | ||
1049 | – | // find xyz-indices of cell that cutoffGroup is in. |
1050 | – | whichCell.x() = nCells_.x() * scaled.x(); |
1051 | – | whichCell.y() = nCells_.y() * scaled.y(); |
1052 | – | whichCell.z() = nCells_.z() * scaled.z(); |
1053 | – | |
1054 | – | // find single index of this cell: |
1055 | – | cellIndex = Vlinear(whichCell, nCells_); |
1056 | – | |
1057 | – | // add this cutoff group to the list of groups in this cell; |
1058 | – | cellList_[cellIndex].push_back(i); |
1059 | – | } |
1417 | #endif | |
1418 | ||
1419 | < | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1420 | < | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1421 | < | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1422 | < | Vector3i m1v(m1x, m1y, m1z); |
1423 | < | int m1 = Vlinear(m1v, nCells_); |
1067 | < | |
1068 | < | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1069 | < | os != cellOffsets_.end(); ++os) { |
1419 | > | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1420 | > | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1421 | > | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1422 | > | Vector3i m1v(m1x, m1y, m1z); |
1423 | > | int m1 = Vlinear(m1v, nCells_); |
1424 | ||
1425 | < | Vector3i m2v = m1v + (*os); |
1426 | < | |
1427 | < | if (m2v.x() >= nCells_.x()) { |
1428 | < | m2v.x() = 0; |
1429 | < | } else if (m2v.x() < 0) { |
1076 | < | m2v.x() = nCells_.x() - 1; |
1077 | < | } |
1078 | < | |
1079 | < | if (m2v.y() >= nCells_.y()) { |
1080 | < | m2v.y() = 0; |
1081 | < | } else if (m2v.y() < 0) { |
1082 | < | m2v.y() = nCells_.y() - 1; |
1083 | < | } |
1084 | < | |
1085 | < | if (m2v.z() >= nCells_.z()) { |
1086 | < | m2v.z() = 0; |
1087 | < | } else if (m2v.z() < 0) { |
1088 | < | m2v.z() = nCells_.z() - 1; |
1089 | < | } |
1090 | < | |
1091 | < | int m2 = Vlinear (m2v, nCells_); |
1425 | > | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1426 | > | os != cellOffsets_.end(); ++os) { |
1427 | > | |
1428 | > | Vector3i m2v = m1v + (*os); |
1429 | > | |
1430 | ||
1431 | < | #ifdef IS_MPI |
1432 | < | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1433 | < | j1 != cellListRow_[m1].end(); ++j1) { |
1434 | < | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1435 | < | j2 != cellListCol_[m2].end(); ++j2) { |
1436 | < | |
1437 | < | // Always do this if we're in different cells or if |
1438 | < | // we're in the same cell and the global index of the |
1439 | < | // j2 cutoff group is less than the j1 cutoff group |
1431 | > | if (m2v.x() >= nCells_.x()) { |
1432 | > | m2v.x() = 0; |
1433 | > | } else if (m2v.x() < 0) { |
1434 | > | m2v.x() = nCells_.x() - 1; |
1435 | > | } |
1436 | > | |
1437 | > | if (m2v.y() >= nCells_.y()) { |
1438 | > | m2v.y() = 0; |
1439 | > | } else if (m2v.y() < 0) { |
1440 | > | m2v.y() = nCells_.y() - 1; |
1441 | > | } |
1442 | > | |
1443 | > | if (m2v.z() >= nCells_.z()) { |
1444 | > | m2v.z() = 0; |
1445 | > | } else if (m2v.z() < 0) { |
1446 | > | m2v.z() = nCells_.z() - 1; |
1447 | > | } |
1448 | ||
1449 | < | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1449 | > | int m2 = Vlinear (m2v, nCells_); |
1450 | > | |
1451 | > | #ifdef IS_MPI |
1452 | > | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1453 | > | j1 != cellListRow_[m1].end(); ++j1) { |
1454 | > | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1455 | > | j2 != cellListCol_[m2].end(); ++j2) { |
1456 | > | |
1457 | > | // In parallel, we need to visit *all* pairs of row |
1458 | > | // & column indicies and will divide labor in the |
1459 | > | // force evaluation later. |
1460 | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | |
1461 | snap_->wrapVector(dr); | |
1462 | cuts = getGroupCutoffs( (*j1), (*j2) ); | |
1463 | if (dr.lengthSquare() < cuts.third) { | |
1464 | neighborList.push_back(make_pair((*j1), (*j2))); | |
1465 | < | } |
1465 | > | } |
1466 | } | |
1467 | } | |
1112 | – | } |
1468 | #else | |
1469 | + | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1470 | + | j1 != cellList_[m1].end(); ++j1) { |
1471 | + | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1472 | + | j2 != cellList_[m2].end(); ++j2) { |
1473 | + | |
1474 | + | // Always do this if we're in different cells or if |
1475 | + | // we're in the same cell and the global index of |
1476 | + | // the j2 cutoff group is greater than or equal to |
1477 | + | // the j1 cutoff group. Note that Rappaport's code |
1478 | + | // has a "less than" conditional here, but that |
1479 | + | // deals with atom-by-atom computation. OpenMD |
1480 | + | // allows atoms within a single cutoff group to |
1481 | + | // interact with each other. |
1482 | ||
1115 | – | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1116 | – | j1 != cellList_[m1].end(); ++j1) { |
1117 | – | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1118 | – | j2 != cellList_[m2].end(); ++j2) { |
1483 | ||
1120 | – | // Always do this if we're in different cells or if |
1121 | – | // we're in the same cell and the global index of the |
1122 | – | // j2 cutoff group is less than the j1 cutoff group |
1484 | ||
1485 | < | if (m2 != m1 || (*j2) < (*j1)) { |
1486 | < | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1487 | < | snap_->wrapVector(dr); |
1488 | < | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1489 | < | if (dr.lengthSquare() < cuts.third) { |
1490 | < | neighborList.push_back(make_pair((*j1), (*j2))); |
1485 | > | if (m2 != m1 || (*j2) >= (*j1) ) { |
1486 | > | |
1487 | > | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1488 | > | snap_->wrapVector(dr); |
1489 | > | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1490 | > | if (dr.lengthSquare() < cuts.third) { |
1491 | > | neighborList.push_back(make_pair((*j1), (*j2))); |
1492 | > | } |
1493 | } | |
1494 | } | |
1495 | } | |
1133 | – | } |
1496 | #endif | |
1497 | + | } |
1498 | } | |
1499 | } | |
1500 | } | |
1501 | + | } else { |
1502 | + | // branch to do all cutoff group pairs |
1503 | + | #ifdef IS_MPI |
1504 | + | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1505 | + | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1506 | + | dr = cgColData.position[j2] - cgRowData.position[j1]; |
1507 | + | snap_->wrapVector(dr); |
1508 | + | cuts = getGroupCutoffs( j1, j2 ); |
1509 | + | if (dr.lengthSquare() < cuts.third) { |
1510 | + | neighborList.push_back(make_pair(j1, j2)); |
1511 | + | } |
1512 | + | } |
1513 | + | } |
1514 | + | #else |
1515 | + | // include all groups here. |
1516 | + | for (int j1 = 0; j1 < nGroups_; j1++) { |
1517 | + | // include self group interactions j2 == j1 |
1518 | + | for (int j2 = j1; j2 < nGroups_; j2++) { |
1519 | + | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1520 | + | snap_->wrapVector(dr); |
1521 | + | cuts = getGroupCutoffs( j1, j2 ); |
1522 | + | if (dr.lengthSquare() < cuts.third) { |
1523 | + | neighborList.push_back(make_pair(j1, j2)); |
1524 | + | } |
1525 | + | } |
1526 | + | } |
1527 | + | #endif |
1528 | } | |
1529 | < | |
1529 | > | |
1530 | // save the local cutoff group positions for the check that is | |
1531 | // done on each loop: | |
1532 | saved_CG_positions_.clear(); | |
1533 | for (int i = 0; i < nGroups_; i++) | |
1534 | saved_CG_positions_.push_back(snap_->cgData.position[i]); | |
1535 | < | |
1535 | > | |
1536 | return neighborList; | |
1537 | } | |
1538 | } //end namespace OpenMD |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |