# | Line 35 | Line 35 | |
---|---|---|
35 | * | |
36 | * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | |
37 | * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | |
38 | < | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
38 | > | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 | * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). | |
40 | * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | |
41 | */ | |
# | Line 310 | Line 310 | namespace OpenMD { | |
310 | ||
311 | RealType tol = 1e-6; | |
312 | largestRcut_ = 0.0; | |
313 | – | RealType rc; |
313 | int atid; | |
314 | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); | |
315 | ||
# | Line 395 | Line 394 | namespace OpenMD { | |
394 | } | |
395 | ||
396 | bool gTypeFound = false; | |
397 | < | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
397 | > | for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
398 | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { | |
399 | groupToGtype[cg1] = gt; | |
400 | gTypeFound = true; | |
# | Line 420 | Line 419 | namespace OpenMD { | |
419 | ||
420 | RealType tradRcut = groupMax; | |
421 | ||
422 | < | for (int i = 0; i < gTypeCutoffs.size(); i++) { |
423 | < | for (int j = 0; j < gTypeCutoffs.size(); j++) { |
422 | > | for (unsigned int i = 0; i < gTypeCutoffs.size(); i++) { |
423 | > | for (unsigned int j = 0; j < gTypeCutoffs.size(); j++) { |
424 | RealType thisRcut; | |
425 | switch(cutoffPolicy_) { | |
426 | case TRADITIONAL: | |
# | Line 477 | Line 476 | namespace OpenMD { | |
476 | } | |
477 | ||
478 | int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { | |
479 | < | for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
479 | > | for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) { |
480 | if (toposForAtom[atom1][j] == atom2) | |
481 | return topoDist[atom1][j]; | |
482 | < | } |
482 | > | } |
483 | return 0; | |
484 | } | |
485 | ||
# | Line 488 | Line 487 | namespace OpenMD { | |
487 | pairwisePot = 0.0; | |
488 | embeddingPot = 0.0; | |
489 | excludedPot = 0.0; | |
490 | + | excludedSelfPot = 0.0; |
491 | ||
492 | #ifdef IS_MPI | |
493 | if (storageLayout_ & DataStorage::dslForce) { | |
# | Line 559 | Line 559 | namespace OpenMD { | |
559 | atomColData.electricField.end(), V3Zero); | |
560 | } | |
561 | ||
562 | – | if (storageLayout_ & DataStorage::dslFlucQForce) { |
563 | – | fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), |
564 | – | 0.0); |
565 | – | fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), |
566 | – | 0.0); |
567 | – | } |
568 | – | |
562 | #endif | |
563 | // even in parallel, we need to zero out the local arrays: | |
564 | ||
# | Line 639 | Line 632 | namespace OpenMD { | |
632 | AtomPlanMatrixColumn->gather(snap_->atomData.aMat, | |
633 | atomColData.aMat); | |
634 | } | |
635 | < | |
636 | < | // if needed, gather the atomic eletrostatic frames |
637 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { |
638 | < | AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
639 | < | atomRowData.electroFrame); |
640 | < | AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
641 | < | atomColData.electroFrame); |
635 | > | |
636 | > | // if needed, gather the atomic eletrostatic information |
637 | > | if (storageLayout_ & DataStorage::dslDipole) { |
638 | > | AtomPlanVectorRow->gather(snap_->atomData.dipole, |
639 | > | atomRowData.dipole); |
640 | > | AtomPlanVectorColumn->gather(snap_->atomData.dipole, |
641 | > | atomColData.dipole); |
642 | } | |
643 | ||
644 | + | if (storageLayout_ & DataStorage::dslQuadrupole) { |
645 | + | AtomPlanMatrixRow->gather(snap_->atomData.quadrupole, |
646 | + | atomRowData.quadrupole); |
647 | + | AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole, |
648 | + | atomColData.quadrupole); |
649 | + | } |
650 | + | |
651 | // if needed, gather the atomic fluctuating charge values | |
652 | if (storageLayout_ & DataStorage::dslFlucQPosition) { | |
653 | AtomPlanRealRow->gather(snap_->atomData.flucQPos, | |
# | Line 679 | Line 679 | namespace OpenMD { | |
679 | snap_->atomData.density[i] += rho_tmp[i]; | |
680 | } | |
681 | ||
682 | + | // this isn't necessary if we don't have polarizable atoms, but |
683 | + | // we'll leave it here for now. |
684 | if (storageLayout_ & DataStorage::dslElectricField) { | |
685 | ||
686 | AtomPlanVectorRow->scatter(atomRowData.electricField, | |
# | Line 686 | Line 688 | namespace OpenMD { | |
688 | ||
689 | int n = snap_->atomData.electricField.size(); | |
690 | vector<Vector3d> field_tmp(n, V3Zero); | |
691 | < | AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); |
691 | > | AtomPlanVectorColumn->scatter(atomColData.electricField, |
692 | > | field_tmp); |
693 | for (int i = 0; i < n; i++) | |
694 | snap_->atomData.electricField[i] += field_tmp[i]; | |
695 | } | |
# | Line 784 | Line 787 | namespace OpenMD { | |
787 | for (int i = 0; i < nq; i++) | |
788 | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; | |
789 | ||
790 | + | } |
791 | + | |
792 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
793 | + | |
794 | + | int nef = snap_->atomData.electricField.size(); |
795 | + | vector<Vector3d> efield_tmp(nef, V3Zero); |
796 | + | |
797 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp); |
798 | + | for (int i = 0; i < nef; i++) { |
799 | + | snap_->atomData.electricField[i] += efield_tmp[i]; |
800 | + | efield_tmp[i] = 0.0; |
801 | + | } |
802 | + | |
803 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp); |
804 | + | for (int i = 0; i < nef; i++) |
805 | + | snap_->atomData.electricField[i] += efield_tmp[i]; |
806 | } | |
807 | ||
808 | + | |
809 | nLocal_ = snap_->getNumberOfAtoms(); | |
810 | ||
811 | vector<potVec> pot_temp(nLocal_, | |
# | Line 907 | Line 927 | namespace OpenMD { | |
927 | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | |
928 | embeddingPot[ii] = ploc2; | |
929 | } | |
930 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
931 | + | RealType ploc1 = excludedSelfPot[ii]; |
932 | + | RealType ploc2 = 0.0; |
933 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
934 | + | excludedSelfPot[ii] = ploc2; |
935 | + | } |
936 | #endif | |
937 | ||
938 | } | |
939 | ||
940 | ||
941 | ||
942 | < | int ForceMatrixDecomposition::getNAtomsInRow() { |
942 | > | int& ForceMatrixDecomposition::getNAtomsInRow() { |
943 | #ifdef IS_MPI | |
944 | return nAtomsInRow_; | |
945 | #else | |
# | Line 924 | Line 950 | namespace OpenMD { | |
950 | /** | |
951 | * returns the list of atoms belonging to this group. | |
952 | */ | |
953 | < | vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
953 | > | vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
954 | #ifdef IS_MPI | |
955 | return groupListRow_[cg1]; | |
956 | #else | |
# | Line 932 | Line 958 | namespace OpenMD { | |
958 | #endif | |
959 | } | |
960 | ||
961 | < | vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
961 | > | vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
962 | #ifdef IS_MPI | |
963 | return groupListCol_[cg2]; | |
964 | #else | |
# | Line 949 | Line 975 | namespace OpenMD { | |
975 | d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; | |
976 | #endif | |
977 | ||
978 | < | snap_->wrapVector(d); |
978 | > | if (usePeriodicBoundaryConditions_) { |
979 | > | snap_->wrapVector(d); |
980 | > | } |
981 | return d; | |
982 | } | |
983 | ||
984 | < | Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ |
984 | > | Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ |
985 | #ifdef IS_MPI | |
986 | return cgColData.velocity[cg2]; | |
987 | #else | |
# | Line 961 | Line 989 | namespace OpenMD { | |
989 | #endif | |
990 | } | |
991 | ||
992 | < | Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ |
992 | > | Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ |
993 | #ifdef IS_MPI | |
994 | return atomColData.velocity[atom2]; | |
995 | #else | |
# | Line 979 | Line 1007 | namespace OpenMD { | |
1007 | #else | |
1008 | d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; | |
1009 | #endif | |
1010 | < | |
1011 | < | snap_->wrapVector(d); |
1010 | > | if (usePeriodicBoundaryConditions_) { |
1011 | > | snap_->wrapVector(d); |
1012 | > | } |
1013 | return d; | |
1014 | } | |
1015 | ||
# | Line 992 | Line 1021 | namespace OpenMD { | |
1021 | #else | |
1022 | d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; | |
1023 | #endif | |
1024 | < | |
1025 | < | snap_->wrapVector(d); |
1024 | > | if (usePeriodicBoundaryConditions_) { |
1025 | > | snap_->wrapVector(d); |
1026 | > | } |
1027 | return d; | |
1028 | } | |
1029 | ||
1030 | < | RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
1030 | > | RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
1031 | #ifdef IS_MPI | |
1032 | return massFactorsRow[atom1]; | |
1033 | #else | |
# | Line 1005 | Line 1035 | namespace OpenMD { | |
1035 | #endif | |
1036 | } | |
1037 | ||
1038 | < | RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
1038 | > | RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
1039 | #ifdef IS_MPI | |
1040 | return massFactorsCol[atom2]; | |
1041 | #else | |
# | Line 1022 | Line 1052 | namespace OpenMD { | |
1052 | #else | |
1053 | d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; | |
1054 | #endif | |
1055 | < | |
1056 | < | snap_->wrapVector(d); |
1055 | > | if (usePeriodicBoundaryConditions_) { |
1056 | > | snap_->wrapVector(d); |
1057 | > | } |
1058 | return d; | |
1059 | } | |
1060 | ||
1061 | < | vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
1061 | > | vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
1062 | return excludesForAtom[atom1]; | |
1063 | } | |
1064 | ||
# | Line 1036 | Line 1067 | namespace OpenMD { | |
1067 | * the parallel decomposition. | |
1068 | */ | |
1069 | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { | |
1070 | < | int unique_id_1, unique_id_2, group1, group2; |
1070 | > | int unique_id_1, unique_id_2; |
1071 | ||
1072 | #ifdef IS_MPI | |
1073 | // in MPI, we have to look up the unique IDs for each atom | |
1074 | unique_id_1 = AtomRowToGlobal[atom1]; | |
1075 | unique_id_2 = AtomColToGlobal[atom2]; | |
1076 | < | group1 = cgRowToGlobal[cg1]; |
1077 | < | group2 = cgColToGlobal[cg2]; |
1076 | > | // group1 = cgRowToGlobal[cg1]; |
1077 | > | // group2 = cgColToGlobal[cg2]; |
1078 | #else | |
1079 | unique_id_1 = AtomLocalToGlobal[atom1]; | |
1080 | unique_id_2 = AtomLocalToGlobal[atom2]; | |
1081 | < | group1 = cgLocalToGlobal[cg1]; |
1082 | < | group2 = cgLocalToGlobal[cg2]; |
1081 | > | int group1 = cgLocalToGlobal[cg1]; |
1082 | > | int group2 = cgLocalToGlobal[cg2]; |
1083 | #endif | |
1084 | ||
1085 | if (unique_id_1 == unique_id_2) return true; | |
# | Line 1126 | Line 1157 | namespace OpenMD { | |
1157 | idat.A2 = &(atomColData.aMat[atom2]); | |
1158 | } | |
1159 | ||
1129 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { |
1130 | – | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
1131 | – | idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
1132 | – | } |
1133 | – | |
1160 | if (storageLayout_ & DataStorage::dslTorque) { | |
1161 | idat.t1 = &(atomRowData.torque[atom1]); | |
1162 | idat.t2 = &(atomColData.torque[atom2]); | |
1163 | } | |
1164 | ||
1165 | + | if (storageLayout_ & DataStorage::dslDipole) { |
1166 | + | idat.dipole1 = &(atomRowData.dipole[atom1]); |
1167 | + | idat.dipole2 = &(atomColData.dipole[atom2]); |
1168 | + | } |
1169 | + | |
1170 | + | if (storageLayout_ & DataStorage::dslQuadrupole) { |
1171 | + | idat.quadrupole1 = &(atomRowData.quadrupole[atom1]); |
1172 | + | idat.quadrupole2 = &(atomColData.quadrupole[atom2]); |
1173 | + | } |
1174 | + | |
1175 | if (storageLayout_ & DataStorage::dslDensity) { | |
1176 | idat.rho1 = &(atomRowData.density[atom1]); | |
1177 | idat.rho2 = &(atomColData.density[atom2]); | |
# | Line 1175 | Line 1211 | namespace OpenMD { | |
1211 | idat.A2 = &(snap_->atomData.aMat[atom2]); | |
1212 | } | |
1213 | ||
1178 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { |
1179 | – | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
1180 | – | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
1181 | – | } |
1182 | – | |
1214 | if (storageLayout_ & DataStorage::dslTorque) { | |
1215 | idat.t1 = &(snap_->atomData.torque[atom1]); | |
1216 | idat.t2 = &(snap_->atomData.torque[atom2]); | |
1217 | } | |
1218 | ||
1219 | + | if (storageLayout_ & DataStorage::dslDipole) { |
1220 | + | idat.dipole1 = &(snap_->atomData.dipole[atom1]); |
1221 | + | idat.dipole2 = &(snap_->atomData.dipole[atom2]); |
1222 | + | } |
1223 | + | |
1224 | + | if (storageLayout_ & DataStorage::dslQuadrupole) { |
1225 | + | idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]); |
1226 | + | idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]); |
1227 | + | } |
1228 | + | |
1229 | if (storageLayout_ & DataStorage::dslDensity) { | |
1230 | idat.rho1 = &(snap_->atomData.density[atom1]); | |
1231 | idat.rho2 = &(snap_->atomData.density[atom2]); | |
# | Line 1281 | Line 1322 | namespace OpenMD { | |
1322 | groupCutoffs cuts; | |
1323 | bool doAllPairs = false; | |
1324 | ||
1325 | + | RealType rList_ = (largestRcut_ + skinThickness_); |
1326 | + | Snapshot* snap_ = sman_->getCurrentSnapshot(); |
1327 | + | Mat3x3d box; |
1328 | + | Mat3x3d invBox; |
1329 | + | |
1330 | + | Vector3d rs, scaled, dr; |
1331 | + | Vector3i whichCell; |
1332 | + | int cellIndex; |
1333 | + | |
1334 | #ifdef IS_MPI | |
1335 | cellListRow_.clear(); | |
1336 | cellListCol_.clear(); | |
1337 | #else | |
1338 | cellList_.clear(); | |
1339 | #endif | |
1340 | < | |
1341 | < | RealType rList_ = (largestRcut_ + skinThickness_); |
1342 | < | RealType rl2 = rList_ * rList_; |
1343 | < | Snapshot* snap_ = sman_->getCurrentSnapshot(); |
1344 | < | Mat3x3d Hmat = snap_->getHmat(); |
1345 | < | Vector3d Hx = Hmat.getColumn(0); |
1346 | < | Vector3d Hy = Hmat.getColumn(1); |
1347 | < | Vector3d Hz = Hmat.getColumn(2); |
1348 | < | |
1349 | < | nCells_.x() = (int) ( Hx.length() )/ rList_; |
1350 | < | nCells_.y() = (int) ( Hy.length() )/ rList_; |
1351 | < | nCells_.z() = (int) ( Hz.length() )/ rList_; |
1352 | < | |
1340 | > | |
1341 | > | if (!usePeriodicBoundaryConditions_) { |
1342 | > | box = snap_->getBoundingBox(); |
1343 | > | invBox = snap_->getInvBoundingBox(); |
1344 | > | } else { |
1345 | > | box = snap_->getHmat(); |
1346 | > | invBox = snap_->getInvHmat(); |
1347 | > | } |
1348 | > | |
1349 | > | Vector3d boxX = box.getColumn(0); |
1350 | > | Vector3d boxY = box.getColumn(1); |
1351 | > | Vector3d boxZ = box.getColumn(2); |
1352 | > | |
1353 | > | nCells_.x() = (int) ( boxX.length() )/ rList_; |
1354 | > | nCells_.y() = (int) ( boxY.length() )/ rList_; |
1355 | > | nCells_.z() = (int) ( boxZ.length() )/ rList_; |
1356 | > | |
1357 | // handle small boxes where the cell offsets can end up repeating cells | |
1358 | ||
1359 | if (nCells_.x() < 3) doAllPairs = true; | |
1360 | if (nCells_.y() < 3) doAllPairs = true; | |
1361 | if (nCells_.z() < 3) doAllPairs = true; | |
1362 | < | |
1309 | < | Mat3x3d invHmat = snap_->getInvHmat(); |
1310 | < | Vector3d rs, scaled, dr; |
1311 | < | Vector3i whichCell; |
1312 | < | int cellIndex; |
1362 | > | |
1363 | int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); | |
1364 | < | |
1364 | > | |
1365 | #ifdef IS_MPI | |
1366 | cellListRow_.resize(nCtot); | |
1367 | cellListCol_.resize(nCtot); | |
1368 | #else | |
1369 | cellList_.resize(nCtot); | |
1370 | #endif | |
1371 | < | |
1371 | > | |
1372 | if (!doAllPairs) { | |
1373 | #ifdef IS_MPI | |
1374 | < | |
1374 | > | |
1375 | for (int i = 0; i < nGroupsInRow_; i++) { | |
1376 | rs = cgRowData.position[i]; | |
1377 | ||
1378 | // scaled positions relative to the box vectors | |
1379 | < | scaled = invHmat * rs; |
1379 | > | scaled = invBox * rs; |
1380 | ||
1381 | // wrap the vector back into the unit box by subtracting integer box | |
1382 | // numbers | |
1383 | for (int j = 0; j < 3; j++) { | |
1384 | scaled[j] -= roundMe(scaled[j]); | |
1385 | scaled[j] += 0.5; | |
1386 | + | // Handle the special case when an object is exactly on the |
1387 | + | // boundary (a scaled coordinate of 1.0 is the same as |
1388 | + | // scaled coordinate of 0.0) |
1389 | + | if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1390 | } | |
1391 | ||
1392 | // find xyz-indices of cell that cutoffGroup is in. | |
# | Line 1350 | Line 1404 | namespace OpenMD { | |
1404 | rs = cgColData.position[i]; | |
1405 | ||
1406 | // scaled positions relative to the box vectors | |
1407 | < | scaled = invHmat * rs; |
1407 | > | scaled = invBox * rs; |
1408 | ||
1409 | // wrap the vector back into the unit box by subtracting integer box | |
1410 | // numbers | |
1411 | for (int j = 0; j < 3; j++) { | |
1412 | scaled[j] -= roundMe(scaled[j]); | |
1413 | scaled[j] += 0.5; | |
1414 | + | // Handle the special case when an object is exactly on the |
1415 | + | // boundary (a scaled coordinate of 1.0 is the same as |
1416 | + | // scaled coordinate of 0.0) |
1417 | + | if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1418 | } | |
1419 | ||
1420 | // find xyz-indices of cell that cutoffGroup is in. | |
# | Line 1370 | Line 1428 | namespace OpenMD { | |
1428 | // add this cutoff group to the list of groups in this cell; | |
1429 | cellListCol_[cellIndex].push_back(i); | |
1430 | } | |
1431 | < | |
1431 | > | |
1432 | #else | |
1433 | for (int i = 0; i < nGroups_; i++) { | |
1434 | rs = snap_->cgData.position[i]; | |
1435 | ||
1436 | // scaled positions relative to the box vectors | |
1437 | < | scaled = invHmat * rs; |
1437 | > | scaled = invBox * rs; |
1438 | ||
1439 | // wrap the vector back into the unit box by subtracting integer box | |
1440 | // numbers | |
1441 | for (int j = 0; j < 3; j++) { | |
1442 | scaled[j] -= roundMe(scaled[j]); | |
1443 | scaled[j] += 0.5; | |
1444 | + | // Handle the special case when an object is exactly on the |
1445 | + | // boundary (a scaled coordinate of 1.0 is the same as |
1446 | + | // scaled coordinate of 0.0) |
1447 | + | if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1448 | } | |
1449 | ||
1450 | // find xyz-indices of cell that cutoffGroup is in. | |
# | Line 1441 | Line 1503 | namespace OpenMD { | |
1503 | // & column indicies and will divide labor in the | |
1504 | // force evaluation later. | |
1505 | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | |
1506 | < | snap_->wrapVector(dr); |
1506 | > | if (usePeriodicBoundaryConditions_) { |
1507 | > | snap_->wrapVector(dr); |
1508 | > | } |
1509 | cuts = getGroupCutoffs( (*j1), (*j2) ); | |
1510 | if (dr.lengthSquare() < cuts.third) { | |
1511 | neighborList.push_back(make_pair((*j1), (*j2))); | |
# | Line 1463 | Line 1527 | namespace OpenMD { | |
1527 | // allows atoms within a single cutoff group to | |
1528 | // interact with each other. | |
1529 | ||
1466 | – | |
1467 | – | |
1530 | if (m2 != m1 || (*j2) >= (*j1) ) { | |
1531 | ||
1532 | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | |
1533 | < | snap_->wrapVector(dr); |
1533 | > | if (usePeriodicBoundaryConditions_) { |
1534 | > | snap_->wrapVector(dr); |
1535 | > | } |
1536 | cuts = getGroupCutoffs( (*j1), (*j2) ); | |
1537 | if (dr.lengthSquare() < cuts.third) { | |
1538 | neighborList.push_back(make_pair((*j1), (*j2))); | |
# | Line 1487 | Line 1551 | namespace OpenMD { | |
1551 | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { | |
1552 | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { | |
1553 | dr = cgColData.position[j2] - cgRowData.position[j1]; | |
1554 | < | snap_->wrapVector(dr); |
1554 | > | if (usePeriodicBoundaryConditions_) { |
1555 | > | snap_->wrapVector(dr); |
1556 | > | } |
1557 | cuts = getGroupCutoffs( j1, j2 ); | |
1558 | if (dr.lengthSquare() < cuts.third) { | |
1559 | neighborList.push_back(make_pair(j1, j2)); | |
# | Line 1500 | Line 1566 | namespace OpenMD { | |
1566 | // include self group interactions j2 == j1 | |
1567 | for (int j2 = j1; j2 < nGroups_; j2++) { | |
1568 | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; | |
1569 | < | snap_->wrapVector(dr); |
1569 | > | if (usePeriodicBoundaryConditions_) { |
1570 | > | snap_->wrapVector(dr); |
1571 | > | } |
1572 | cuts = getGroupCutoffs( j1, j2 ); | |
1573 | if (dr.lengthSquare() < cuts.third) { | |
1574 | neighborList.push_back(make_pair(j1, j2)); |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |