| 35 |
|
* |
| 36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
< |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
| 38 |
> |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
| 39 |
|
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
| 40 |
|
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
| 41 |
|
*/ |
| 310 |
|
|
| 311 |
|
RealType tol = 1e-6; |
| 312 |
|
largestRcut_ = 0.0; |
| 313 |
– |
RealType rc; |
| 313 |
|
int atid; |
| 314 |
|
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
| 315 |
|
|
| 394 |
|
} |
| 395 |
|
|
| 396 |
|
bool gTypeFound = false; |
| 397 |
< |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
| 397 |
> |
for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
| 398 |
|
if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
| 399 |
|
groupToGtype[cg1] = gt; |
| 400 |
|
gTypeFound = true; |
| 419 |
|
|
| 420 |
|
RealType tradRcut = groupMax; |
| 421 |
|
|
| 422 |
< |
for (int i = 0; i < gTypeCutoffs.size(); i++) { |
| 423 |
< |
for (int j = 0; j < gTypeCutoffs.size(); j++) { |
| 422 |
> |
for (unsigned int i = 0; i < gTypeCutoffs.size(); i++) { |
| 423 |
> |
for (unsigned int j = 0; j < gTypeCutoffs.size(); j++) { |
| 424 |
|
RealType thisRcut; |
| 425 |
|
switch(cutoffPolicy_) { |
| 426 |
|
case TRADITIONAL: |
| 476 |
|
} |
| 477 |
|
|
| 478 |
|
int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
| 479 |
< |
for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
| 479 |
> |
for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) { |
| 480 |
|
if (toposForAtom[atom1][j] == atom2) |
| 481 |
|
return topoDist[atom1][j]; |
| 482 |
< |
} |
| 482 |
> |
} |
| 483 |
|
return 0; |
| 484 |
|
} |
| 485 |
|
|
| 487 |
|
pairwisePot = 0.0; |
| 488 |
|
embeddingPot = 0.0; |
| 489 |
|
excludedPot = 0.0; |
| 490 |
+ |
excludedSelfPot = 0.0; |
| 491 |
|
|
| 492 |
|
#ifdef IS_MPI |
| 493 |
|
if (storageLayout_ & DataStorage::dslForce) { |
| 559 |
|
atomColData.electricField.end(), V3Zero); |
| 560 |
|
} |
| 561 |
|
|
| 562 |
– |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
| 563 |
– |
fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), |
| 564 |
– |
0.0); |
| 565 |
– |
fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), |
| 566 |
– |
0.0); |
| 567 |
– |
} |
| 568 |
– |
|
| 562 |
|
#endif |
| 563 |
|
// even in parallel, we need to zero out the local arrays: |
| 564 |
|
|
| 632 |
|
AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
| 633 |
|
atomColData.aMat); |
| 634 |
|
} |
| 635 |
< |
|
| 636 |
< |
// if needed, gather the atomic eletrostatic frames |
| 637 |
< |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
| 638 |
< |
AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
| 639 |
< |
atomRowData.electroFrame); |
| 640 |
< |
AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
| 641 |
< |
atomColData.electroFrame); |
| 635 |
> |
|
| 636 |
> |
// if needed, gather the atomic eletrostatic information |
| 637 |
> |
if (storageLayout_ & DataStorage::dslDipole) { |
| 638 |
> |
AtomPlanVectorRow->gather(snap_->atomData.dipole, |
| 639 |
> |
atomRowData.dipole); |
| 640 |
> |
AtomPlanVectorColumn->gather(snap_->atomData.dipole, |
| 641 |
> |
atomColData.dipole); |
| 642 |
|
} |
| 643 |
|
|
| 644 |
+ |
if (storageLayout_ & DataStorage::dslQuadrupole) { |
| 645 |
+ |
AtomPlanMatrixRow->gather(snap_->atomData.quadrupole, |
| 646 |
+ |
atomRowData.quadrupole); |
| 647 |
+ |
AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole, |
| 648 |
+ |
atomColData.quadrupole); |
| 649 |
+ |
} |
| 650 |
+ |
|
| 651 |
|
// if needed, gather the atomic fluctuating charge values |
| 652 |
|
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
| 653 |
|
AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
| 679 |
|
snap_->atomData.density[i] += rho_tmp[i]; |
| 680 |
|
} |
| 681 |
|
|
| 682 |
+ |
// this isn't necessary if we don't have polarizable atoms, but |
| 683 |
+ |
// we'll leave it here for now. |
| 684 |
|
if (storageLayout_ & DataStorage::dslElectricField) { |
| 685 |
|
|
| 686 |
|
AtomPlanVectorRow->scatter(atomRowData.electricField, |
| 688 |
|
|
| 689 |
|
int n = snap_->atomData.electricField.size(); |
| 690 |
|
vector<Vector3d> field_tmp(n, V3Zero); |
| 691 |
< |
AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); |
| 691 |
> |
AtomPlanVectorColumn->scatter(atomColData.electricField, |
| 692 |
> |
field_tmp); |
| 693 |
|
for (int i = 0; i < n; i++) |
| 694 |
|
snap_->atomData.electricField[i] += field_tmp[i]; |
| 695 |
|
} |
| 787 |
|
for (int i = 0; i < nq; i++) |
| 788 |
|
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
| 789 |
|
|
| 790 |
+ |
} |
| 791 |
+ |
|
| 792 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
| 793 |
+ |
|
| 794 |
+ |
int nef = snap_->atomData.electricField.size(); |
| 795 |
+ |
vector<Vector3d> efield_tmp(nef, V3Zero); |
| 796 |
+ |
|
| 797 |
+ |
AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp); |
| 798 |
+ |
for (int i = 0; i < nef; i++) { |
| 799 |
+ |
snap_->atomData.electricField[i] += efield_tmp[i]; |
| 800 |
+ |
efield_tmp[i] = 0.0; |
| 801 |
+ |
} |
| 802 |
+ |
|
| 803 |
+ |
AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp); |
| 804 |
+ |
for (int i = 0; i < nef; i++) |
| 805 |
+ |
snap_->atomData.electricField[i] += efield_tmp[i]; |
| 806 |
|
} |
| 807 |
|
|
| 808 |
+ |
|
| 809 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
| 810 |
|
|
| 811 |
|
vector<potVec> pot_temp(nLocal_, |
| 927 |
|
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
| 928 |
|
embeddingPot[ii] = ploc2; |
| 929 |
|
} |
| 930 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
| 931 |
+ |
RealType ploc1 = excludedSelfPot[ii]; |
| 932 |
+ |
RealType ploc2 = 0.0; |
| 933 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
| 934 |
+ |
excludedSelfPot[ii] = ploc2; |
| 935 |
+ |
} |
| 936 |
|
#endif |
| 937 |
|
|
| 938 |
|
} |
| 939 |
|
|
| 940 |
|
|
| 941 |
|
|
| 942 |
< |
int ForceMatrixDecomposition::getNAtomsInRow() { |
| 942 |
> |
int& ForceMatrixDecomposition::getNAtomsInRow() { |
| 943 |
|
#ifdef IS_MPI |
| 944 |
|
return nAtomsInRow_; |
| 945 |
|
#else |
| 950 |
|
/** |
| 951 |
|
* returns the list of atoms belonging to this group. |
| 952 |
|
*/ |
| 953 |
< |
vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
| 953 |
> |
vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
| 954 |
|
#ifdef IS_MPI |
| 955 |
|
return groupListRow_[cg1]; |
| 956 |
|
#else |
| 958 |
|
#endif |
| 959 |
|
} |
| 960 |
|
|
| 961 |
< |
vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
| 961 |
> |
vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
| 962 |
|
#ifdef IS_MPI |
| 963 |
|
return groupListCol_[cg2]; |
| 964 |
|
#else |
| 975 |
|
d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; |
| 976 |
|
#endif |
| 977 |
|
|
| 978 |
< |
snap_->wrapVector(d); |
| 978 |
> |
if (usePeriodicBoundaryConditions_) { |
| 979 |
> |
snap_->wrapVector(d); |
| 980 |
> |
} |
| 981 |
|
return d; |
| 982 |
|
} |
| 983 |
|
|
| 984 |
< |
Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ |
| 984 |
> |
Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ |
| 985 |
|
#ifdef IS_MPI |
| 986 |
|
return cgColData.velocity[cg2]; |
| 987 |
|
#else |
| 989 |
|
#endif |
| 990 |
|
} |
| 991 |
|
|
| 992 |
< |
Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ |
| 992 |
> |
Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ |
| 993 |
|
#ifdef IS_MPI |
| 994 |
|
return atomColData.velocity[atom2]; |
| 995 |
|
#else |
| 1007 |
|
#else |
| 1008 |
|
d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; |
| 1009 |
|
#endif |
| 1010 |
< |
|
| 1011 |
< |
snap_->wrapVector(d); |
| 1010 |
> |
if (usePeriodicBoundaryConditions_) { |
| 1011 |
> |
snap_->wrapVector(d); |
| 1012 |
> |
} |
| 1013 |
|
return d; |
| 1014 |
|
} |
| 1015 |
|
|
| 1021 |
|
#else |
| 1022 |
|
d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; |
| 1023 |
|
#endif |
| 1024 |
< |
|
| 1025 |
< |
snap_->wrapVector(d); |
| 1024 |
> |
if (usePeriodicBoundaryConditions_) { |
| 1025 |
> |
snap_->wrapVector(d); |
| 1026 |
> |
} |
| 1027 |
|
return d; |
| 1028 |
|
} |
| 1029 |
|
|
| 1030 |
< |
RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
| 1030 |
> |
RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
| 1031 |
|
#ifdef IS_MPI |
| 1032 |
|
return massFactorsRow[atom1]; |
| 1033 |
|
#else |
| 1035 |
|
#endif |
| 1036 |
|
} |
| 1037 |
|
|
| 1038 |
< |
RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
| 1038 |
> |
RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
| 1039 |
|
#ifdef IS_MPI |
| 1040 |
|
return massFactorsCol[atom2]; |
| 1041 |
|
#else |
| 1052 |
|
#else |
| 1053 |
|
d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; |
| 1054 |
|
#endif |
| 1055 |
< |
|
| 1056 |
< |
snap_->wrapVector(d); |
| 1055 |
> |
if (usePeriodicBoundaryConditions_) { |
| 1056 |
> |
snap_->wrapVector(d); |
| 1057 |
> |
} |
| 1058 |
|
return d; |
| 1059 |
|
} |
| 1060 |
|
|
| 1061 |
< |
vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
| 1061 |
> |
vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
| 1062 |
|
return excludesForAtom[atom1]; |
| 1063 |
|
} |
| 1064 |
|
|
| 1067 |
|
* the parallel decomposition. |
| 1068 |
|
*/ |
| 1069 |
|
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { |
| 1070 |
< |
int unique_id_1, unique_id_2, group1, group2; |
| 1070 |
> |
int unique_id_1, unique_id_2; |
| 1071 |
|
|
| 1072 |
|
#ifdef IS_MPI |
| 1073 |
|
// in MPI, we have to look up the unique IDs for each atom |
| 1074 |
|
unique_id_1 = AtomRowToGlobal[atom1]; |
| 1075 |
|
unique_id_2 = AtomColToGlobal[atom2]; |
| 1076 |
< |
group1 = cgRowToGlobal[cg1]; |
| 1077 |
< |
group2 = cgColToGlobal[cg2]; |
| 1076 |
> |
// group1 = cgRowToGlobal[cg1]; |
| 1077 |
> |
// group2 = cgColToGlobal[cg2]; |
| 1078 |
|
#else |
| 1079 |
|
unique_id_1 = AtomLocalToGlobal[atom1]; |
| 1080 |
|
unique_id_2 = AtomLocalToGlobal[atom2]; |
| 1081 |
< |
group1 = cgLocalToGlobal[cg1]; |
| 1082 |
< |
group2 = cgLocalToGlobal[cg2]; |
| 1081 |
> |
int group1 = cgLocalToGlobal[cg1]; |
| 1082 |
> |
int group2 = cgLocalToGlobal[cg2]; |
| 1083 |
|
#endif |
| 1084 |
|
|
| 1085 |
|
if (unique_id_1 == unique_id_2) return true; |
| 1157 |
|
idat.A2 = &(atomColData.aMat[atom2]); |
| 1158 |
|
} |
| 1159 |
|
|
| 1129 |
– |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
| 1130 |
– |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
| 1131 |
– |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
| 1132 |
– |
} |
| 1133 |
– |
|
| 1160 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
| 1161 |
|
idat.t1 = &(atomRowData.torque[atom1]); |
| 1162 |
|
idat.t2 = &(atomColData.torque[atom2]); |
| 1163 |
|
} |
| 1164 |
|
|
| 1165 |
+ |
if (storageLayout_ & DataStorage::dslDipole) { |
| 1166 |
+ |
idat.dipole1 = &(atomRowData.dipole[atom1]); |
| 1167 |
+ |
idat.dipole2 = &(atomColData.dipole[atom2]); |
| 1168 |
+ |
} |
| 1169 |
+ |
|
| 1170 |
+ |
if (storageLayout_ & DataStorage::dslQuadrupole) { |
| 1171 |
+ |
idat.quadrupole1 = &(atomRowData.quadrupole[atom1]); |
| 1172 |
+ |
idat.quadrupole2 = &(atomColData.quadrupole[atom2]); |
| 1173 |
+ |
} |
| 1174 |
+ |
|
| 1175 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
| 1176 |
|
idat.rho1 = &(atomRowData.density[atom1]); |
| 1177 |
|
idat.rho2 = &(atomColData.density[atom2]); |
| 1211 |
|
idat.A2 = &(snap_->atomData.aMat[atom2]); |
| 1212 |
|
} |
| 1213 |
|
|
| 1178 |
– |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
| 1179 |
– |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
| 1180 |
– |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
| 1181 |
– |
} |
| 1182 |
– |
|
| 1214 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
| 1215 |
|
idat.t1 = &(snap_->atomData.torque[atom1]); |
| 1216 |
|
idat.t2 = &(snap_->atomData.torque[atom2]); |
| 1217 |
|
} |
| 1218 |
|
|
| 1219 |
+ |
if (storageLayout_ & DataStorage::dslDipole) { |
| 1220 |
+ |
idat.dipole1 = &(snap_->atomData.dipole[atom1]); |
| 1221 |
+ |
idat.dipole2 = &(snap_->atomData.dipole[atom2]); |
| 1222 |
+ |
} |
| 1223 |
+ |
|
| 1224 |
+ |
if (storageLayout_ & DataStorage::dslQuadrupole) { |
| 1225 |
+ |
idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]); |
| 1226 |
+ |
idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]); |
| 1227 |
+ |
} |
| 1228 |
+ |
|
| 1229 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
| 1230 |
|
idat.rho1 = &(snap_->atomData.density[atom1]); |
| 1231 |
|
idat.rho2 = &(snap_->atomData.density[atom2]); |
| 1322 |
|
groupCutoffs cuts; |
| 1323 |
|
bool doAllPairs = false; |
| 1324 |
|
|
| 1325 |
+ |
RealType rList_ = (largestRcut_ + skinThickness_); |
| 1326 |
+ |
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
| 1327 |
+ |
Mat3x3d box; |
| 1328 |
+ |
Mat3x3d invBox; |
| 1329 |
+ |
|
| 1330 |
+ |
Vector3d rs, scaled, dr; |
| 1331 |
+ |
Vector3i whichCell; |
| 1332 |
+ |
int cellIndex; |
| 1333 |
+ |
|
| 1334 |
|
#ifdef IS_MPI |
| 1335 |
|
cellListRow_.clear(); |
| 1336 |
|
cellListCol_.clear(); |
| 1337 |
|
#else |
| 1338 |
|
cellList_.clear(); |
| 1339 |
|
#endif |
| 1340 |
< |
|
| 1341 |
< |
RealType rList_ = (largestRcut_ + skinThickness_); |
| 1342 |
< |
RealType rl2 = rList_ * rList_; |
| 1343 |
< |
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
| 1344 |
< |
Mat3x3d Hmat = snap_->getHmat(); |
| 1345 |
< |
Vector3d Hx = Hmat.getColumn(0); |
| 1346 |
< |
Vector3d Hy = Hmat.getColumn(1); |
| 1347 |
< |
Vector3d Hz = Hmat.getColumn(2); |
| 1348 |
< |
|
| 1349 |
< |
nCells_.x() = (int) ( Hx.length() )/ rList_; |
| 1350 |
< |
nCells_.y() = (int) ( Hy.length() )/ rList_; |
| 1351 |
< |
nCells_.z() = (int) ( Hz.length() )/ rList_; |
| 1352 |
< |
|
| 1340 |
> |
|
| 1341 |
> |
if (!usePeriodicBoundaryConditions_) { |
| 1342 |
> |
box = snap_->getBoundingBox(); |
| 1343 |
> |
invBox = snap_->getInvBoundingBox(); |
| 1344 |
> |
} else { |
| 1345 |
> |
box = snap_->getHmat(); |
| 1346 |
> |
invBox = snap_->getInvHmat(); |
| 1347 |
> |
} |
| 1348 |
> |
|
| 1349 |
> |
Vector3d boxX = box.getColumn(0); |
| 1350 |
> |
Vector3d boxY = box.getColumn(1); |
| 1351 |
> |
Vector3d boxZ = box.getColumn(2); |
| 1352 |
> |
|
| 1353 |
> |
nCells_.x() = (int) ( boxX.length() )/ rList_; |
| 1354 |
> |
nCells_.y() = (int) ( boxY.length() )/ rList_; |
| 1355 |
> |
nCells_.z() = (int) ( boxZ.length() )/ rList_; |
| 1356 |
> |
|
| 1357 |
|
// handle small boxes where the cell offsets can end up repeating cells |
| 1358 |
|
|
| 1359 |
|
if (nCells_.x() < 3) doAllPairs = true; |
| 1360 |
|
if (nCells_.y() < 3) doAllPairs = true; |
| 1361 |
|
if (nCells_.z() < 3) doAllPairs = true; |
| 1362 |
< |
|
| 1309 |
< |
Mat3x3d invHmat = snap_->getInvHmat(); |
| 1310 |
< |
Vector3d rs, scaled, dr; |
| 1311 |
< |
Vector3i whichCell; |
| 1312 |
< |
int cellIndex; |
| 1362 |
> |
|
| 1363 |
|
int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
| 1364 |
< |
|
| 1364 |
> |
|
| 1365 |
|
#ifdef IS_MPI |
| 1366 |
|
cellListRow_.resize(nCtot); |
| 1367 |
|
cellListCol_.resize(nCtot); |
| 1368 |
|
#else |
| 1369 |
|
cellList_.resize(nCtot); |
| 1370 |
|
#endif |
| 1371 |
< |
|
| 1371 |
> |
|
| 1372 |
|
if (!doAllPairs) { |
| 1373 |
|
#ifdef IS_MPI |
| 1374 |
< |
|
| 1374 |
> |
|
| 1375 |
|
for (int i = 0; i < nGroupsInRow_; i++) { |
| 1376 |
|
rs = cgRowData.position[i]; |
| 1377 |
|
|
| 1378 |
|
// scaled positions relative to the box vectors |
| 1379 |
< |
scaled = invHmat * rs; |
| 1379 |
> |
scaled = invBox * rs; |
| 1380 |
|
|
| 1381 |
|
// wrap the vector back into the unit box by subtracting integer box |
| 1382 |
|
// numbers |
| 1383 |
|
for (int j = 0; j < 3; j++) { |
| 1384 |
|
scaled[j] -= roundMe(scaled[j]); |
| 1385 |
|
scaled[j] += 0.5; |
| 1386 |
+ |
// Handle the special case when an object is exactly on the |
| 1387 |
+ |
// boundary (a scaled coordinate of 1.0 is the same as |
| 1388 |
+ |
// scaled coordinate of 0.0) |
| 1389 |
+ |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
| 1390 |
|
} |
| 1391 |
|
|
| 1392 |
|
// find xyz-indices of cell that cutoffGroup is in. |
| 1404 |
|
rs = cgColData.position[i]; |
| 1405 |
|
|
| 1406 |
|
// scaled positions relative to the box vectors |
| 1407 |
< |
scaled = invHmat * rs; |
| 1407 |
> |
scaled = invBox * rs; |
| 1408 |
|
|
| 1409 |
|
// wrap the vector back into the unit box by subtracting integer box |
| 1410 |
|
// numbers |
| 1411 |
|
for (int j = 0; j < 3; j++) { |
| 1412 |
|
scaled[j] -= roundMe(scaled[j]); |
| 1413 |
|
scaled[j] += 0.5; |
| 1414 |
+ |
// Handle the special case when an object is exactly on the |
| 1415 |
+ |
// boundary (a scaled coordinate of 1.0 is the same as |
| 1416 |
+ |
// scaled coordinate of 0.0) |
| 1417 |
+ |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
| 1418 |
|
} |
| 1419 |
|
|
| 1420 |
|
// find xyz-indices of cell that cutoffGroup is in. |
| 1428 |
|
// add this cutoff group to the list of groups in this cell; |
| 1429 |
|
cellListCol_[cellIndex].push_back(i); |
| 1430 |
|
} |
| 1431 |
< |
|
| 1431 |
> |
|
| 1432 |
|
#else |
| 1433 |
|
for (int i = 0; i < nGroups_; i++) { |
| 1434 |
|
rs = snap_->cgData.position[i]; |
| 1435 |
|
|
| 1436 |
|
// scaled positions relative to the box vectors |
| 1437 |
< |
scaled = invHmat * rs; |
| 1437 |
> |
scaled = invBox * rs; |
| 1438 |
|
|
| 1439 |
|
// wrap the vector back into the unit box by subtracting integer box |
| 1440 |
|
// numbers |
| 1441 |
|
for (int j = 0; j < 3; j++) { |
| 1442 |
|
scaled[j] -= roundMe(scaled[j]); |
| 1443 |
|
scaled[j] += 0.5; |
| 1444 |
+ |
// Handle the special case when an object is exactly on the |
| 1445 |
+ |
// boundary (a scaled coordinate of 1.0 is the same as |
| 1446 |
+ |
// scaled coordinate of 0.0) |
| 1447 |
+ |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
| 1448 |
|
} |
| 1449 |
|
|
| 1450 |
|
// find xyz-indices of cell that cutoffGroup is in. |
| 1503 |
|
// & column indicies and will divide labor in the |
| 1504 |
|
// force evaluation later. |
| 1505 |
|
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
| 1506 |
< |
snap_->wrapVector(dr); |
| 1506 |
> |
if (usePeriodicBoundaryConditions_) { |
| 1507 |
> |
snap_->wrapVector(dr); |
| 1508 |
> |
} |
| 1509 |
|
cuts = getGroupCutoffs( (*j1), (*j2) ); |
| 1510 |
|
if (dr.lengthSquare() < cuts.third) { |
| 1511 |
|
neighborList.push_back(make_pair((*j1), (*j2))); |
| 1527 |
|
// allows atoms within a single cutoff group to |
| 1528 |
|
// interact with each other. |
| 1529 |
|
|
| 1466 |
– |
|
| 1467 |
– |
|
| 1530 |
|
if (m2 != m1 || (*j2) >= (*j1) ) { |
| 1531 |
|
|
| 1532 |
|
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
| 1533 |
< |
snap_->wrapVector(dr); |
| 1533 |
> |
if (usePeriodicBoundaryConditions_) { |
| 1534 |
> |
snap_->wrapVector(dr); |
| 1535 |
> |
} |
| 1536 |
|
cuts = getGroupCutoffs( (*j1), (*j2) ); |
| 1537 |
|
if (dr.lengthSquare() < cuts.third) { |
| 1538 |
|
neighborList.push_back(make_pair((*j1), (*j2))); |
| 1551 |
|
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
| 1552 |
|
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
| 1553 |
|
dr = cgColData.position[j2] - cgRowData.position[j1]; |
| 1554 |
< |
snap_->wrapVector(dr); |
| 1554 |
> |
if (usePeriodicBoundaryConditions_) { |
| 1555 |
> |
snap_->wrapVector(dr); |
| 1556 |
> |
} |
| 1557 |
|
cuts = getGroupCutoffs( j1, j2 ); |
| 1558 |
|
if (dr.lengthSquare() < cuts.third) { |
| 1559 |
|
neighborList.push_back(make_pair(j1, j2)); |
| 1566 |
|
// include self group interactions j2 == j1 |
| 1567 |
|
for (int j2 = j1; j2 < nGroups_; j2++) { |
| 1568 |
|
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
| 1569 |
< |
snap_->wrapVector(dr); |
| 1569 |
> |
if (usePeriodicBoundaryConditions_) { |
| 1570 |
> |
snap_->wrapVector(dr); |
| 1571 |
> |
} |
| 1572 |
|
cuts = getGroupCutoffs( j1, j2 ); |
| 1573 |
|
if (dr.lengthSquare() < cuts.third) { |
| 1574 |
|
neighborList.push_back(make_pair(j1, j2)); |