# | Line 35 | Line 35 | |
---|---|---|
35 | * | |
36 | * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | |
37 | * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | |
38 | < | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 | < | * [4] Vardeman & Gezelter, in progress (2009). |
38 | > | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 | > | * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 | > | * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 | */ | |
42 | #include "parallel/ForceMatrixDecomposition.hpp" | |
43 | #include "math/SquareMatrix3.hpp" | |
# | Line 47 | Line 48 | namespace OpenMD { | |
48 | using namespace std; | |
49 | namespace OpenMD { | |
50 | ||
51 | + | ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { |
52 | + | |
53 | + | // In a parallel computation, row and colum scans must visit all |
54 | + | // surrounding cells (not just the 14 upper triangular blocks that |
55 | + | // are used when the processor can see all pairs) |
56 | + | #ifdef IS_MPI |
57 | + | cellOffsets_.clear(); |
58 | + | cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
59 | + | cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
60 | + | cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
61 | + | cellOffsets_.push_back( Vector3i(-1, 0,-1) ); |
62 | + | cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
63 | + | cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
64 | + | cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
65 | + | cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
66 | + | cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
67 | + | cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
68 | + | cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
69 | + | cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
70 | + | cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
71 | + | cellOffsets_.push_back( Vector3i( 0, 0, 0) ); |
72 | + | cellOffsets_.push_back( Vector3i( 1, 0, 0) ); |
73 | + | cellOffsets_.push_back( Vector3i(-1, 1, 0) ); |
74 | + | cellOffsets_.push_back( Vector3i( 0, 1, 0) ); |
75 | + | cellOffsets_.push_back( Vector3i( 1, 1, 0) ); |
76 | + | cellOffsets_.push_back( Vector3i(-1,-1, 1) ); |
77 | + | cellOffsets_.push_back( Vector3i( 0,-1, 1) ); |
78 | + | cellOffsets_.push_back( Vector3i( 1,-1, 1) ); |
79 | + | cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
80 | + | cellOffsets_.push_back( Vector3i( 0, 0, 1) ); |
81 | + | cellOffsets_.push_back( Vector3i( 1, 0, 1) ); |
82 | + | cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
83 | + | cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
84 | + | cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
85 | + | #endif |
86 | + | } |
87 | + | |
88 | + | |
89 | /** | |
90 | * distributeInitialData is essentially a copy of the older fortran | |
91 | * SimulationSetup | |
92 | */ | |
54 | – | |
93 | void ForceMatrixDecomposition::distributeInitialData() { | |
94 | snap_ = sman_->getCurrentSnapshot(); | |
95 | storageLayout_ = sman_->getStorageLayout(); | |
96 | ff_ = info_->getForceField(); | |
97 | nLocal_ = snap_->getNumberOfAtoms(); | |
98 | < | |
98 | > | |
99 | nGroups_ = info_->getNLocalCutoffGroups(); | |
100 | // gather the information for atomtype IDs (atids): | |
101 | idents = info_->getIdentArray(); | |
102 | + | regions = info_->getRegions(); |
103 | AtomLocalToGlobal = info_->getGlobalAtomIndices(); | |
104 | cgLocalToGlobal = info_->getGlobalGroupIndices(); | |
105 | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); | |
# | Line 71 | Line 110 | namespace OpenMD { | |
110 | PairList* oneTwo = info_->getOneTwoInteractions(); | |
111 | PairList* oneThree = info_->getOneThreeInteractions(); | |
112 | PairList* oneFour = info_->getOneFourInteractions(); | |
113 | < | |
113 | > | |
114 | > | if (needVelocities_) |
115 | > | snap_->cgData.setStorageLayout(DataStorage::dslPosition | |
116 | > | DataStorage::dslVelocity); |
117 | > | else |
118 | > | snap_->cgData.setStorageLayout(DataStorage::dslPosition); |
119 | > | |
120 | #ifdef IS_MPI | |
121 | ||
122 | < | AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
123 | < | AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
79 | < | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
80 | < | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
81 | < | AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
122 | > | MPI_Comm row = rowComm.getComm(); |
123 | > | MPI_Comm col = colComm.getComm(); |
124 | ||
125 | < | AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
126 | < | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
127 | < | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
128 | < | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
129 | < | AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
125 | > | AtomPlanIntRow = new Plan<int>(row, nLocal_); |
126 | > | AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
127 | > | AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); |
128 | > | AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); |
129 | > | AtomPlanPotRow = new Plan<potVec>(row, nLocal_); |
130 | ||
131 | < | cgCommIntRow = new Communicator<Row,int>(nGroups_); |
132 | < | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
133 | < | cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
134 | < | cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
131 | > | AtomPlanIntColumn = new Plan<int>(col, nLocal_); |
132 | > | AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); |
133 | > | AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); |
134 | > | AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); |
135 | > | AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); |
136 | ||
137 | < | nAtomsInRow_ = AtomCommIntRow->getSize(); |
138 | < | nAtomsInCol_ = AtomCommIntColumn->getSize(); |
139 | < | nGroupsInRow_ = cgCommIntRow->getSize(); |
140 | < | nGroupsInCol_ = cgCommIntColumn->getSize(); |
137 | > | cgPlanIntRow = new Plan<int>(row, nGroups_); |
138 | > | cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); |
139 | > | cgPlanIntColumn = new Plan<int>(col, nGroups_); |
140 | > | cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); |
141 | ||
142 | + | nAtomsInRow_ = AtomPlanIntRow->getSize(); |
143 | + | nAtomsInCol_ = AtomPlanIntColumn->getSize(); |
144 | + | nGroupsInRow_ = cgPlanIntRow->getSize(); |
145 | + | nGroupsInCol_ = cgPlanIntColumn->getSize(); |
146 | + | |
147 | // Modify the data storage objects with the correct layouts and sizes: | |
148 | atomRowData.resize(nAtomsInRow_); | |
149 | atomRowData.setStorageLayout(storageLayout_); | |
# | Line 104 | Line 152 | namespace OpenMD { | |
152 | cgRowData.resize(nGroupsInRow_); | |
153 | cgRowData.setStorageLayout(DataStorage::dslPosition); | |
154 | cgColData.resize(nGroupsInCol_); | |
155 | < | cgColData.setStorageLayout(DataStorage::dslPosition); |
156 | < | |
155 | > | if (needVelocities_) |
156 | > | // we only need column velocities if we need them. |
157 | > | cgColData.setStorageLayout(DataStorage::dslPosition | |
158 | > | DataStorage::dslVelocity); |
159 | > | else |
160 | > | cgColData.setStorageLayout(DataStorage::dslPosition); |
161 | > | |
162 | identsRow.resize(nAtomsInRow_); | |
163 | identsCol.resize(nAtomsInCol_); | |
164 | ||
165 | < | AtomCommIntRow->gather(idents, identsRow); |
166 | < | AtomCommIntColumn->gather(idents, identsCol); |
165 | > | AtomPlanIntRow->gather(idents, identsRow); |
166 | > | AtomPlanIntColumn->gather(idents, identsCol); |
167 | > | |
168 | > | regionsRow.resize(nAtomsInRow_); |
169 | > | regionsCol.resize(nAtomsInCol_); |
170 | ||
171 | + | AtomPlanIntRow->gather(regions, regionsRow); |
172 | + | AtomPlanIntColumn->gather(regions, regionsCol); |
173 | + | |
174 | // allocate memory for the parallel objects | |
175 | + | atypesRow.resize(nAtomsInRow_); |
176 | + | atypesCol.resize(nAtomsInCol_); |
177 | + | |
178 | + | for (int i = 0; i < nAtomsInRow_; i++) |
179 | + | atypesRow[i] = ff_->getAtomType(identsRow[i]); |
180 | + | for (int i = 0; i < nAtomsInCol_; i++) |
181 | + | atypesCol[i] = ff_->getAtomType(identsCol[i]); |
182 | + | |
183 | + | pot_row.resize(nAtomsInRow_); |
184 | + | pot_col.resize(nAtomsInCol_); |
185 | + | |
186 | + | expot_row.resize(nAtomsInRow_); |
187 | + | expot_col.resize(nAtomsInCol_); |
188 | + | |
189 | AtomRowToGlobal.resize(nAtomsInRow_); | |
190 | AtomColToGlobal.resize(nAtomsInCol_); | |
191 | + | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
192 | + | AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
193 | + | |
194 | cgRowToGlobal.resize(nGroupsInRow_); | |
195 | cgColToGlobal.resize(nGroupsInCol_); | |
196 | + | cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
197 | + | cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
198 | + | |
199 | massFactorsRow.resize(nAtomsInRow_); | |
200 | massFactorsCol.resize(nAtomsInCol_); | |
201 | < | pot_row.resize(nAtomsInRow_); |
202 | < | pot_col.resize(nAtomsInCol_); |
201 | > | AtomPlanRealRow->gather(massFactors, massFactorsRow); |
202 | > | AtomPlanRealColumn->gather(massFactors, massFactorsCol); |
203 | ||
125 | – | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
126 | – | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
127 | – | |
128 | – | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
129 | – | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
130 | – | |
131 | – | AtomCommRealRow->gather(massFactors, massFactorsRow); |
132 | – | AtomCommRealColumn->gather(massFactors, massFactorsCol); |
133 | – | |
204 | groupListRow_.clear(); | |
205 | groupListRow_.resize(nGroupsInRow_); | |
206 | for (int i = 0; i < nGroupsInRow_; i++) { | |
# | Line 185 | Line 255 | namespace OpenMD { | |
255 | } | |
256 | } | |
257 | ||
258 | < | #endif |
189 | < | |
190 | < | groupList_.clear(); |
191 | < | groupList_.resize(nGroups_); |
192 | < | for (int i = 0; i < nGroups_; i++) { |
193 | < | int gid = cgLocalToGlobal[i]; |
194 | < | for (int j = 0; j < nLocal_; j++) { |
195 | < | int aid = AtomLocalToGlobal[j]; |
196 | < | if (globalGroupMembership[aid] == gid) { |
197 | < | groupList_[i].push_back(j); |
198 | < | } |
199 | < | } |
200 | < | } |
201 | < | |
258 | > | #else |
259 | excludesForAtom.clear(); | |
260 | excludesForAtom.resize(nLocal_); | |
261 | toposForAtom.clear(); | |
# | Line 231 | Line 288 | namespace OpenMD { | |
288 | } | |
289 | } | |
290 | } | |
291 | < | |
291 | > | #endif |
292 | > | |
293 | > | // allocate memory for the parallel objects |
294 | > | atypesLocal.resize(nLocal_); |
295 | > | |
296 | > | for (int i = 0; i < nLocal_; i++) |
297 | > | atypesLocal[i] = ff_->getAtomType(idents[i]); |
298 | > | |
299 | > | groupList_.clear(); |
300 | > | groupList_.resize(nGroups_); |
301 | > | for (int i = 0; i < nGroups_; i++) { |
302 | > | int gid = cgLocalToGlobal[i]; |
303 | > | for (int j = 0; j < nLocal_; j++) { |
304 | > | int aid = AtomLocalToGlobal[j]; |
305 | > | if (globalGroupMembership[aid] == gid) { |
306 | > | groupList_[i].push_back(j); |
307 | > | } |
308 | > | } |
309 | > | } |
310 | > | |
311 | > | |
312 | createGtypeCutoffMap(); | |
313 | ||
314 | } | |
315 | ||
316 | void ForceMatrixDecomposition::createGtypeCutoffMap() { | |
317 | ||
318 | + | GrCut.clear(); |
319 | + | GrCutSq.clear(); |
320 | + | GrlistSq.clear(); |
321 | + | |
322 | RealType tol = 1e-6; | |
323 | < | RealType rc; |
323 | > | largestRcut_ = 0.0; |
324 | int atid; | |
325 | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); | |
326 | + | |
327 | map<int, RealType> atypeCutoff; | |
328 | ||
329 | for (set<AtomType*>::iterator at = atypes.begin(); | |
# | Line 249 | Line 331 | namespace OpenMD { | |
331 | atid = (*at)->getIdent(); | |
332 | if (userChoseCutoff_) | |
333 | atypeCutoff[atid] = userCutoff_; | |
334 | < | else |
334 | > | else |
335 | atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); | |
336 | } | |
337 | < | |
337 | > | |
338 | vector<RealType> gTypeCutoffs; | |
339 | // first we do a single loop over the cutoff groups to find the | |
340 | // largest cutoff for any atypes present in this group. | |
# | Line 312 | Line 394 | namespace OpenMD { | |
394 | vector<RealType> groupCutoff(nGroups_, 0.0); | |
395 | groupToGtype.resize(nGroups_); | |
396 | for (int cg1 = 0; cg1 < nGroups_; cg1++) { | |
315 | – | |
397 | groupCutoff[cg1] = 0.0; | |
398 | vector<int> atomList = getAtomsInGroupRow(cg1); | |
318 | – | |
399 | for (vector<int>::iterator ia = atomList.begin(); | |
400 | ia != atomList.end(); ++ia) { | |
401 | int atom1 = (*ia); | |
402 | atid = idents[atom1]; | |
403 | < | if (atypeCutoff[atid] > groupCutoff[cg1]) { |
403 | > | if (atypeCutoff[atid] > groupCutoff[cg1]) |
404 | groupCutoff[cg1] = atypeCutoff[atid]; | |
325 | – | } |
405 | } | |
406 | < | |
406 | > | |
407 | bool gTypeFound = false; | |
408 | < | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
408 | > | for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
409 | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { | |
410 | groupToGtype[cg1] = gt; | |
411 | gTypeFound = true; | |
412 | } | |
413 | } | |
414 | < | if (!gTypeFound) { |
414 | > | if (!gTypeFound) { |
415 | gTypeCutoffs.push_back( groupCutoff[cg1] ); | |
416 | groupToGtype[cg1] = gTypeCutoffs.size() - 1; | |
417 | } | |
# | Line 341 | Line 420 | namespace OpenMD { | |
420 | ||
421 | // Now we find the maximum group cutoff value present in the simulation | |
422 | ||
423 | < | RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); |
423 | > | RealType groupMax = *max_element(gTypeCutoffs.begin(), |
424 | > | gTypeCutoffs.end()); |
425 | ||
426 | #ifdef IS_MPI | |
427 | < | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); |
427 | > | MPI_Allreduce(MPI_IN_PLACE, &groupMax, 1, MPI_REALTYPE, |
428 | > | MPI_MAX, MPI_COMM_WORLD); |
429 | #endif | |
430 | ||
431 | RealType tradRcut = groupMax; | |
432 | ||
433 | < | for (int i = 0; i < gTypeCutoffs.size(); i++) { |
434 | < | for (int j = 0; j < gTypeCutoffs.size(); j++) { |
433 | > | GrCut.resize( gTypeCutoffs.size() ); |
434 | > | GrCutSq.resize( gTypeCutoffs.size() ); |
435 | > | GrlistSq.resize( gTypeCutoffs.size() ); |
436 | > | |
437 | > | |
438 | > | for (unsigned int i = 0; i < gTypeCutoffs.size(); i++) { |
439 | > | GrCut[i].resize( gTypeCutoffs.size() , 0.0); |
440 | > | GrCutSq[i].resize( gTypeCutoffs.size(), 0.0 ); |
441 | > | GrlistSq[i].resize( gTypeCutoffs.size(), 0.0 ); |
442 | > | |
443 | > | for (unsigned int j = 0; j < gTypeCutoffs.size(); j++) { |
444 | RealType thisRcut; | |
445 | switch(cutoffPolicy_) { | |
446 | case TRADITIONAL: | |
# | Line 372 | Line 462 | namespace OpenMD { | |
462 | break; | |
463 | } | |
464 | ||
465 | < | pair<int,int> key = make_pair(i,j); |
376 | < | gTypeCutoffMap[key].first = thisRcut; |
377 | < | |
465 | > | GrCut[i][j] = thisRcut; |
466 | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; | |
467 | + | GrCutSq[i][j] = thisRcut * thisRcut; |
468 | + | GrlistSq[i][j] = pow(thisRcut + skinThickness_, 2); |
469 | ||
470 | < | gTypeCutoffMap[key].second = thisRcut*thisRcut; |
471 | < | |
472 | < | gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
383 | < | |
470 | > | // pair<int,int> key = make_pair(i,j); |
471 | > | // gTypeCutoffMap[key].first = thisRcut; |
472 | > | // gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
473 | // sanity check | |
474 | ||
475 | if (userChoseCutoff_) { | |
476 | < | if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
476 | > | if (abs(GrCut[i][j] - userCutoff_) > 0.0001) { |
477 | sprintf(painCave.errMsg, | |
478 | "ForceMatrixDecomposition::createGtypeCutoffMap " | |
479 | "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); | |
# | Line 397 | Line 486 | namespace OpenMD { | |
486 | } | |
487 | } | |
488 | ||
489 | < | |
401 | < | groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
489 | > | void ForceMatrixDecomposition::getGroupCutoffs(int &cg1, int &cg2, RealType &rcut, RealType &rcutsq, RealType &rlistsq) { |
490 | int i, j; | |
491 | #ifdef IS_MPI | |
492 | i = groupRowToGtype[cg1]; | |
# | Line 407 | Line 495 | namespace OpenMD { | |
495 | i = groupToGtype[cg1]; | |
496 | j = groupToGtype[cg2]; | |
497 | #endif | |
498 | < | return gTypeCutoffMap[make_pair(i,j)]; |
498 | > | rcut = GrCut[i][j]; |
499 | > | rcutsq = GrCutSq[i][j]; |
500 | > | rlistsq = GrlistSq[i][j]; |
501 | > | return; |
502 | > | //return gTypeCutoffMap[make_pair(i,j)]; |
503 | } | |
504 | ||
505 | int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { | |
506 | < | for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
506 | > | for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) { |
507 | if (toposForAtom[atom1][j] == atom2) | |
508 | return topoDist[atom1][j]; | |
509 | < | } |
509 | > | } |
510 | return 0; | |
511 | } | |
512 | ||
513 | void ForceMatrixDecomposition::zeroWorkArrays() { | |
514 | pairwisePot = 0.0; | |
515 | embeddingPot = 0.0; | |
516 | + | excludedPot = 0.0; |
517 | + | excludedSelfPot = 0.0; |
518 | ||
519 | #ifdef IS_MPI | |
520 | if (storageLayout_ & DataStorage::dslForce) { | |
# | Line 437 | Line 531 | namespace OpenMD { | |
531 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
532 | ||
533 | fill(pot_col.begin(), pot_col.end(), | |
534 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
535 | + | |
536 | + | fill(expot_row.begin(), expot_row.end(), |
537 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
538 | + | |
539 | + | fill(expot_col.begin(), expot_col.end(), |
540 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
541 | ||
542 | if (storageLayout_ & DataStorage::dslParticlePot) { | |
543 | < | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); |
544 | < | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); |
543 | > | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
544 | > | 0.0); |
545 | > | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), |
546 | > | 0.0); |
547 | } | |
548 | ||
549 | if (storageLayout_ & DataStorage::dslDensity) { | |
# | Line 450 | Line 552 | namespace OpenMD { | |
552 | } | |
553 | ||
554 | if (storageLayout_ & DataStorage::dslFunctional) { | |
555 | < | fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); |
556 | < | fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); |
555 | > | fill(atomRowData.functional.begin(), atomRowData.functional.end(), |
556 | > | 0.0); |
557 | > | fill(atomColData.functional.begin(), atomColData.functional.end(), |
558 | > | 0.0); |
559 | } | |
560 | ||
561 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
# | Line 468 | Line 572 | namespace OpenMD { | |
572 | atomColData.skippedCharge.end(), 0.0); | |
573 | } | |
574 | ||
575 | < | #else |
576 | < | |
575 | > | if (storageLayout_ & DataStorage::dslFlucQForce) { |
576 | > | fill(atomRowData.flucQFrc.begin(), |
577 | > | atomRowData.flucQFrc.end(), 0.0); |
578 | > | fill(atomColData.flucQFrc.begin(), |
579 | > | atomColData.flucQFrc.end(), 0.0); |
580 | > | } |
581 | > | |
582 | > | if (storageLayout_ & DataStorage::dslElectricField) { |
583 | > | fill(atomRowData.electricField.begin(), |
584 | > | atomRowData.electricField.end(), V3Zero); |
585 | > | fill(atomColData.electricField.begin(), |
586 | > | atomColData.electricField.end(), V3Zero); |
587 | > | } |
588 | > | |
589 | > | if (storageLayout_ & DataStorage::dslSitePotential) { |
590 | > | fill(atomRowData.sitePotential.begin(), |
591 | > | atomRowData.sitePotential.end(), 0.0); |
592 | > | fill(atomColData.sitePotential.begin(), |
593 | > | atomColData.sitePotential.end(), 0.0); |
594 | > | } |
595 | > | |
596 | > | #endif |
597 | > | // even in parallel, we need to zero out the local arrays: |
598 | > | |
599 | if (storageLayout_ & DataStorage::dslParticlePot) { | |
600 | fill(snap_->atomData.particlePot.begin(), | |
601 | snap_->atomData.particlePot.end(), 0.0); | |
# | Line 479 | Line 605 | namespace OpenMD { | |
605 | fill(snap_->atomData.density.begin(), | |
606 | snap_->atomData.density.end(), 0.0); | |
607 | } | |
608 | + | |
609 | if (storageLayout_ & DataStorage::dslFunctional) { | |
610 | fill(snap_->atomData.functional.begin(), | |
611 | snap_->atomData.functional.end(), 0.0); | |
612 | } | |
613 | + | |
614 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
615 | fill(snap_->atomData.functionalDerivative.begin(), | |
616 | snap_->atomData.functionalDerivative.end(), 0.0); | |
617 | } | |
618 | + | |
619 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | |
620 | fill(snap_->atomData.skippedCharge.begin(), | |
621 | snap_->atomData.skippedCharge.end(), 0.0); | |
622 | } | |
623 | < | #endif |
624 | < | |
623 | > | |
624 | > | if (storageLayout_ & DataStorage::dslElectricField) { |
625 | > | fill(snap_->atomData.electricField.begin(), |
626 | > | snap_->atomData.electricField.end(), V3Zero); |
627 | > | } |
628 | > | if (storageLayout_ & DataStorage::dslSitePotential) { |
629 | > | fill(snap_->atomData.sitePotential.begin(), |
630 | > | snap_->atomData.sitePotential.end(), 0.0); |
631 | > | } |
632 | } | |
633 | ||
634 | ||
# | Line 502 | Line 638 | namespace OpenMD { | |
638 | #ifdef IS_MPI | |
639 | ||
640 | // gather up the atomic positions | |
641 | < | AtomCommVectorRow->gather(snap_->atomData.position, |
641 | > | AtomPlanVectorRow->gather(snap_->atomData.position, |
642 | atomRowData.position); | |
643 | < | AtomCommVectorColumn->gather(snap_->atomData.position, |
643 | > | AtomPlanVectorColumn->gather(snap_->atomData.position, |
644 | atomColData.position); | |
645 | ||
646 | // gather up the cutoff group positions | |
647 | < | cgCommVectorRow->gather(snap_->cgData.position, |
647 | > | |
648 | > | cgPlanVectorRow->gather(snap_->cgData.position, |
649 | cgRowData.position); | |
650 | < | cgCommVectorColumn->gather(snap_->cgData.position, |
650 | > | |
651 | > | cgPlanVectorColumn->gather(snap_->cgData.position, |
652 | cgColData.position); | |
653 | + | |
654 | + | |
655 | + | |
656 | + | if (needVelocities_) { |
657 | + | // gather up the atomic velocities |
658 | + | AtomPlanVectorColumn->gather(snap_->atomData.velocity, |
659 | + | atomColData.velocity); |
660 | + | |
661 | + | cgPlanVectorColumn->gather(snap_->cgData.velocity, |
662 | + | cgColData.velocity); |
663 | + | } |
664 | + | |
665 | ||
666 | // if needed, gather the atomic rotation matrices | |
667 | if (storageLayout_ & DataStorage::dslAmat) { | |
668 | < | AtomCommMatrixRow->gather(snap_->atomData.aMat, |
668 | > | AtomPlanMatrixRow->gather(snap_->atomData.aMat, |
669 | atomRowData.aMat); | |
670 | < | AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
670 | > | AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
671 | atomColData.aMat); | |
672 | } | |
673 | < | |
674 | < | // if needed, gather the atomic eletrostatic frames |
675 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { |
676 | < | AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
677 | < | atomRowData.electroFrame); |
678 | < | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
679 | < | atomColData.electroFrame); |
673 | > | |
674 | > | // if needed, gather the atomic eletrostatic information |
675 | > | if (storageLayout_ & DataStorage::dslDipole) { |
676 | > | AtomPlanVectorRow->gather(snap_->atomData.dipole, |
677 | > | atomRowData.dipole); |
678 | > | AtomPlanVectorColumn->gather(snap_->atomData.dipole, |
679 | > | atomColData.dipole); |
680 | } | |
681 | + | |
682 | + | if (storageLayout_ & DataStorage::dslQuadrupole) { |
683 | + | AtomPlanMatrixRow->gather(snap_->atomData.quadrupole, |
684 | + | atomRowData.quadrupole); |
685 | + | AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole, |
686 | + | atomColData.quadrupole); |
687 | + | } |
688 | + | |
689 | + | // if needed, gather the atomic fluctuating charge values |
690 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
691 | + | AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
692 | + | atomRowData.flucQPos); |
693 | + | AtomPlanRealColumn->gather(snap_->atomData.flucQPos, |
694 | + | atomColData.flucQPos); |
695 | + | } |
696 | + | |
697 | #endif | |
698 | } | |
699 | ||
# | Line 541 | Line 707 | namespace OpenMD { | |
707 | ||
708 | if (storageLayout_ & DataStorage::dslDensity) { | |
709 | ||
710 | < | AtomCommRealRow->scatter(atomRowData.density, |
710 | > | AtomPlanRealRow->scatter(atomRowData.density, |
711 | snap_->atomData.density); | |
712 | ||
713 | int n = snap_->atomData.density.size(); | |
714 | vector<RealType> rho_tmp(n, 0.0); | |
715 | < | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
715 | > | AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); |
716 | for (int i = 0; i < n; i++) | |
717 | snap_->atomData.density[i] += rho_tmp[i]; | |
718 | + | } |
719 | + | |
720 | + | // this isn't necessary if we don't have polarizable atoms, but |
721 | + | // we'll leave it here for now. |
722 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
723 | + | |
724 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, |
725 | + | snap_->atomData.electricField); |
726 | + | |
727 | + | int n = snap_->atomData.electricField.size(); |
728 | + | vector<Vector3d> field_tmp(n, V3Zero); |
729 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, |
730 | + | field_tmp); |
731 | + | for (int i = 0; i < n; i++) |
732 | + | snap_->atomData.electricField[i] += field_tmp[i]; |
733 | } | |
734 | #endif | |
735 | } | |
# | Line 562 | Line 743 | namespace OpenMD { | |
743 | storageLayout_ = sman_->getStorageLayout(); | |
744 | #ifdef IS_MPI | |
745 | if (storageLayout_ & DataStorage::dslFunctional) { | |
746 | < | AtomCommRealRow->gather(snap_->atomData.functional, |
746 | > | AtomPlanRealRow->gather(snap_->atomData.functional, |
747 | atomRowData.functional); | |
748 | < | AtomCommRealColumn->gather(snap_->atomData.functional, |
748 | > | AtomPlanRealColumn->gather(snap_->atomData.functional, |
749 | atomColData.functional); | |
750 | } | |
751 | ||
752 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
753 | < | AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
753 | > | AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, |
754 | atomRowData.functionalDerivative); | |
755 | < | AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
755 | > | AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, |
756 | atomColData.functionalDerivative); | |
757 | } | |
758 | #endif | |
# | Line 585 | Line 766 | namespace OpenMD { | |
766 | int n = snap_->atomData.force.size(); | |
767 | vector<Vector3d> frc_tmp(n, V3Zero); | |
768 | ||
769 | < | AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
769 | > | AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); |
770 | for (int i = 0; i < n; i++) { | |
771 | snap_->atomData.force[i] += frc_tmp[i]; | |
772 | frc_tmp[i] = 0.0; | |
773 | } | |
774 | ||
775 | < | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
776 | < | for (int i = 0; i < n; i++) |
775 | > | AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); |
776 | > | for (int i = 0; i < n; i++) { |
777 | snap_->atomData.force[i] += frc_tmp[i]; | |
778 | < | |
779 | < | |
778 | > | } |
779 | > | |
780 | if (storageLayout_ & DataStorage::dslTorque) { | |
781 | ||
782 | int nt = snap_->atomData.torque.size(); | |
783 | vector<Vector3d> trq_tmp(nt, V3Zero); | |
784 | ||
785 | < | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
785 | > | AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); |
786 | for (int i = 0; i < nt; i++) { | |
787 | snap_->atomData.torque[i] += trq_tmp[i]; | |
788 | trq_tmp[i] = 0.0; | |
789 | } | |
790 | ||
791 | < | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
791 | > | AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); |
792 | for (int i = 0; i < nt; i++) | |
793 | snap_->atomData.torque[i] += trq_tmp[i]; | |
794 | } | |
# | Line 617 | Line 798 | namespace OpenMD { | |
798 | int ns = snap_->atomData.skippedCharge.size(); | |
799 | vector<RealType> skch_tmp(ns, 0.0); | |
800 | ||
801 | < | AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
801 | > | AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
802 | for (int i = 0; i < ns; i++) { | |
803 | < | snap_->atomData.skippedCharge[i] = skch_tmp[i]; |
803 | > | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
804 | skch_tmp[i] = 0.0; | |
805 | } | |
806 | ||
807 | < | AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
808 | < | for (int i = 0; i < ns; i++) |
807 | > | AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
808 | > | for (int i = 0; i < ns; i++) |
809 | snap_->atomData.skippedCharge[i] += skch_tmp[i]; | |
810 | + | |
811 | } | |
812 | ||
813 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
814 | + | |
815 | + | int nq = snap_->atomData.flucQFrc.size(); |
816 | + | vector<RealType> fqfrc_tmp(nq, 0.0); |
817 | + | |
818 | + | AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); |
819 | + | for (int i = 0; i < nq; i++) { |
820 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
821 | + | fqfrc_tmp[i] = 0.0; |
822 | + | } |
823 | + | |
824 | + | AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); |
825 | + | for (int i = 0; i < nq; i++) |
826 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
827 | + | |
828 | + | } |
829 | + | |
830 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
831 | + | |
832 | + | int nef = snap_->atomData.electricField.size(); |
833 | + | vector<Vector3d> efield_tmp(nef, V3Zero); |
834 | + | |
835 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp); |
836 | + | for (int i = 0; i < nef; i++) { |
837 | + | snap_->atomData.electricField[i] += efield_tmp[i]; |
838 | + | efield_tmp[i] = 0.0; |
839 | + | } |
840 | + | |
841 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp); |
842 | + | for (int i = 0; i < nef; i++) |
843 | + | snap_->atomData.electricField[i] += efield_tmp[i]; |
844 | + | } |
845 | + | |
846 | + | if (storageLayout_ & DataStorage::dslSitePotential) { |
847 | + | |
848 | + | int nsp = snap_->atomData.sitePotential.size(); |
849 | + | vector<RealType> sp_tmp(nsp, 0.0); |
850 | + | |
851 | + | AtomPlanRealRow->scatter(atomRowData.sitePotential, sp_tmp); |
852 | + | for (int i = 0; i < nsp; i++) { |
853 | + | snap_->atomData.sitePotential[i] += sp_tmp[i]; |
854 | + | sp_tmp[i] = 0.0; |
855 | + | } |
856 | + | |
857 | + | AtomPlanRealColumn->scatter(atomColData.sitePotential, sp_tmp); |
858 | + | for (int i = 0; i < nsp; i++) |
859 | + | snap_->atomData.sitePotential[i] += sp_tmp[i]; |
860 | + | } |
861 | + | |
862 | nLocal_ = snap_->getNumberOfAtoms(); | |
863 | ||
864 | vector<potVec> pot_temp(nLocal_, | |
865 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
866 | + | vector<potVec> expot_temp(nLocal_, |
867 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
868 | ||
869 | // scatter/gather pot_row into the members of my column | |
870 | ||
871 | < | AtomCommPotRow->scatter(pot_row, pot_temp); |
871 | > | AtomPlanPotRow->scatter(pot_row, pot_temp); |
872 | > | AtomPlanPotRow->scatter(expot_row, expot_temp); |
873 | ||
874 | < | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
874 | > | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
875 | pairwisePot += pot_temp[ii]; | |
876 | < | |
876 | > | |
877 | > | for (int ii = 0; ii < expot_temp.size(); ii++ ) |
878 | > | excludedPot += expot_temp[ii]; |
879 | > | |
880 | > | if (storageLayout_ & DataStorage::dslParticlePot) { |
881 | > | // This is the pairwise contribution to the particle pot. The |
882 | > | // embedding contribution is added in each of the low level |
883 | > | // non-bonded routines. In single processor, this is done in |
884 | > | // unpackInteractionData, not in collectData. |
885 | > | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
886 | > | for (int i = 0; i < nLocal_; i++) { |
887 | > | // factor of two is because the total potential terms are divided |
888 | > | // by 2 in parallel due to row/ column scatter |
889 | > | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
890 | > | } |
891 | > | } |
892 | > | } |
893 | > | |
894 | fill(pot_temp.begin(), pot_temp.end(), | |
895 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
896 | + | fill(expot_temp.begin(), expot_temp.end(), |
897 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
898 | ||
899 | < | AtomCommPotColumn->scatter(pot_col, pot_temp); |
899 | > | AtomPlanPotColumn->scatter(pot_col, pot_temp); |
900 | > | AtomPlanPotColumn->scatter(expot_col, expot_temp); |
901 | ||
902 | for (int ii = 0; ii < pot_temp.size(); ii++ ) | |
903 | pairwisePot += pot_temp[ii]; | |
904 | + | |
905 | + | for (int ii = 0; ii < expot_temp.size(); ii++ ) |
906 | + | excludedPot += expot_temp[ii]; |
907 | + | |
908 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
909 | + | // This is the pairwise contribution to the particle pot. The |
910 | + | // embedding contribution is added in each of the low level |
911 | + | // non-bonded routines. In single processor, this is done in |
912 | + | // unpackInteractionData, not in collectData. |
913 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
914 | + | for (int i = 0; i < nLocal_; i++) { |
915 | + | // factor of two is because the total potential terms are divided |
916 | + | // by 2 in parallel due to row/ column scatter |
917 | + | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
918 | + | } |
919 | + | } |
920 | + | } |
921 | + | |
922 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
923 | + | int npp = snap_->atomData.particlePot.size(); |
924 | + | vector<RealType> ppot_temp(npp, 0.0); |
925 | + | |
926 | + | // This is the direct or embedding contribution to the particle |
927 | + | // pot. |
928 | + | |
929 | + | AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); |
930 | + | for (int i = 0; i < npp; i++) { |
931 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; |
932 | + | } |
933 | + | |
934 | + | fill(ppot_temp.begin(), ppot_temp.end(), 0.0); |
935 | + | |
936 | + | AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); |
937 | + | for (int i = 0; i < npp; i++) { |
938 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; |
939 | + | } |
940 | + | } |
941 | + | |
942 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
943 | + | RealType ploc1 = pairwisePot[ii]; |
944 | + | RealType ploc2 = 0.0; |
945 | + | MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
946 | + | pairwisePot[ii] = ploc2; |
947 | + | } |
948 | + | |
949 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
950 | + | RealType ploc1 = excludedPot[ii]; |
951 | + | RealType ploc2 = 0.0; |
952 | + | MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
953 | + | excludedPot[ii] = ploc2; |
954 | + | } |
955 | + | |
956 | + | // Here be dragons. |
957 | + | MPI_Comm col = colComm.getComm(); |
958 | + | |
959 | + | MPI_Allreduce(MPI_IN_PLACE, |
960 | + | &snap_->frameData.conductiveHeatFlux[0], 3, |
961 | + | MPI_REALTYPE, MPI_SUM, col); |
962 | + | |
963 | + | |
964 | #endif | |
965 | ||
966 | } | |
967 | ||
968 | < | int ForceMatrixDecomposition::getNAtomsInRow() { |
968 | > | /** |
969 | > | * Collects information obtained during the post-pair (and embedding |
970 | > | * functional) loops onto local data structures. |
971 | > | */ |
972 | > | void ForceMatrixDecomposition::collectSelfData() { |
973 | > | snap_ = sman_->getCurrentSnapshot(); |
974 | > | storageLayout_ = sman_->getStorageLayout(); |
975 | > | |
976 | #ifdef IS_MPI | |
977 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
978 | + | RealType ploc1 = embeddingPot[ii]; |
979 | + | RealType ploc2 = 0.0; |
980 | + | MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
981 | + | embeddingPot[ii] = ploc2; |
982 | + | } |
983 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
984 | + | RealType ploc1 = excludedSelfPot[ii]; |
985 | + | RealType ploc2 = 0.0; |
986 | + | MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
987 | + | excludedSelfPot[ii] = ploc2; |
988 | + | } |
989 | + | #endif |
990 | + | |
991 | + | } |
992 | + | |
993 | + | |
994 | + | |
995 | + | int& ForceMatrixDecomposition::getNAtomsInRow() { |
996 | + | #ifdef IS_MPI |
997 | return nAtomsInRow_; | |
998 | #else | |
999 | return nLocal_; | |
# | Line 662 | Line 1003 | namespace OpenMD { | |
1003 | /** | |
1004 | * returns the list of atoms belonging to this group. | |
1005 | */ | |
1006 | < | vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
1006 | > | vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
1007 | #ifdef IS_MPI | |
1008 | return groupListRow_[cg1]; | |
1009 | #else | |
# | Line 670 | Line 1011 | namespace OpenMD { | |
1011 | #endif | |
1012 | } | |
1013 | ||
1014 | < | vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
1014 | > | vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
1015 | #ifdef IS_MPI | |
1016 | return groupListCol_[cg2]; | |
1017 | #else | |
# | Line 687 | Line 1028 | namespace OpenMD { | |
1028 | d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; | |
1029 | #endif | |
1030 | ||
1031 | < | snap_->wrapVector(d); |
1031 | > | if (usePeriodicBoundaryConditions_) { |
1032 | > | snap_->wrapVector(d); |
1033 | > | } |
1034 | return d; | |
1035 | } | |
1036 | ||
1037 | + | Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ |
1038 | + | #ifdef IS_MPI |
1039 | + | return cgColData.velocity[cg2]; |
1040 | + | #else |
1041 | + | return snap_->cgData.velocity[cg2]; |
1042 | + | #endif |
1043 | + | } |
1044 | ||
1045 | + | Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ |
1046 | + | #ifdef IS_MPI |
1047 | + | return atomColData.velocity[atom2]; |
1048 | + | #else |
1049 | + | return snap_->atomData.velocity[atom2]; |
1050 | + | #endif |
1051 | + | } |
1052 | + | |
1053 | + | |
1054 | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ | |
1055 | ||
1056 | Vector3d d; | |
# | Line 701 | Line 1060 | namespace OpenMD { | |
1060 | #else | |
1061 | d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; | |
1062 | #endif | |
1063 | < | |
1064 | < | snap_->wrapVector(d); |
1063 | > | if (usePeriodicBoundaryConditions_) { |
1064 | > | snap_->wrapVector(d); |
1065 | > | } |
1066 | return d; | |
1067 | } | |
1068 | ||
# | Line 714 | Line 1074 | namespace OpenMD { | |
1074 | #else | |
1075 | d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; | |
1076 | #endif | |
1077 | < | |
1078 | < | snap_->wrapVector(d); |
1077 | > | if (usePeriodicBoundaryConditions_) { |
1078 | > | snap_->wrapVector(d); |
1079 | > | } |
1080 | return d; | |
1081 | } | |
1082 | ||
1083 | < | RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
1083 | > | RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
1084 | #ifdef IS_MPI | |
1085 | return massFactorsRow[atom1]; | |
1086 | #else | |
# | Line 727 | Line 1088 | namespace OpenMD { | |
1088 | #endif | |
1089 | } | |
1090 | ||
1091 | < | RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
1091 | > | RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
1092 | #ifdef IS_MPI | |
1093 | return massFactorsCol[atom2]; | |
1094 | #else | |
# | Line 744 | Line 1105 | namespace OpenMD { | |
1105 | #else | |
1106 | d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; | |
1107 | #endif | |
1108 | < | |
1109 | < | snap_->wrapVector(d); |
1108 | > | if (usePeriodicBoundaryConditions_) { |
1109 | > | snap_->wrapVector(d); |
1110 | > | } |
1111 | return d; | |
1112 | } | |
1113 | ||
1114 | < | vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
1114 | > | vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
1115 | return excludesForAtom[atom1]; | |
1116 | } | |
1117 | ||
# | Line 757 | Line 1119 | namespace OpenMD { | |
1119 | * We need to exclude some overcounted interactions that result from | |
1120 | * the parallel decomposition. | |
1121 | */ | |
1122 | < | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
1122 | > | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { |
1123 | int unique_id_1, unique_id_2; | |
1124 | < | |
1124 | > | |
1125 | #ifdef IS_MPI | |
1126 | // in MPI, we have to look up the unique IDs for each atom | |
1127 | unique_id_1 = AtomRowToGlobal[atom1]; | |
1128 | unique_id_2 = AtomColToGlobal[atom2]; | |
1129 | + | // group1 = cgRowToGlobal[cg1]; |
1130 | + | // group2 = cgColToGlobal[cg2]; |
1131 | + | #else |
1132 | + | unique_id_1 = AtomLocalToGlobal[atom1]; |
1133 | + | unique_id_2 = AtomLocalToGlobal[atom2]; |
1134 | + | int group1 = cgLocalToGlobal[cg1]; |
1135 | + | int group2 = cgLocalToGlobal[cg2]; |
1136 | + | #endif |
1137 | ||
768 | – | // this situation should only arise in MPI simulations |
1138 | if (unique_id_1 == unique_id_2) return true; | |
1139 | < | |
1139 | > | |
1140 | > | #ifdef IS_MPI |
1141 | // this prevents us from doing the pair on multiple processors | |
1142 | if (unique_id_1 < unique_id_2) { | |
1143 | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; | |
1144 | } else { | |
1145 | < | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
1145 | > | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
1146 | } | |
1147 | + | #endif |
1148 | + | |
1149 | + | #ifndef IS_MPI |
1150 | + | if (group1 == group2) { |
1151 | + | if (unique_id_1 < unique_id_2) return true; |
1152 | + | } |
1153 | #endif | |
1154 | + | |
1155 | return false; | |
1156 | } | |
1157 | ||
# | Line 788 | Line 1165 | namespace OpenMD { | |
1165 | * field) must still be handled for these pairs. | |
1166 | */ | |
1167 | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { | |
1168 | < | int unique_id_2; |
1168 | > | |
1169 | > | // excludesForAtom was constructed to use row/column indices in the MPI |
1170 | > | // version, and to use local IDs in the non-MPI version: |
1171 | ||
793 | – | #ifdef IS_MPI |
794 | – | // in MPI, we have to look up the unique IDs for the row atom. |
795 | – | unique_id_2 = AtomColToGlobal[atom2]; |
796 | – | #else |
797 | – | // in the normal loop, the atom numbers are unique |
798 | – | unique_id_2 = atom2; |
799 | – | #endif |
800 | – | |
1172 | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); | |
1173 | i != excludesForAtom[atom1].end(); ++i) { | |
1174 | < | if ( (*i) == unique_id_2 ) return true; |
1174 | > | if ( (*i) == atom2 ) return true; |
1175 | } | |
1176 | ||
1177 | return false; | |
# | Line 830 | Line 1201 | namespace OpenMD { | |
1201 | idat.excluded = excludeAtomPair(atom1, atom2); | |
1202 | ||
1203 | #ifdef IS_MPI | |
1204 | < | |
1205 | < | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
1206 | < | ff_->getAtomType(identsCol[atom2]) ); |
1207 | < | |
1204 | > | //idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
1205 | > | idat.atid1 = identsRow[atom1]; |
1206 | > | idat.atid2 = identsCol[atom2]; |
1207 | > | |
1208 | > | if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) { |
1209 | > | idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]); |
1210 | > | } else { |
1211 | > | idat.sameRegion = false; |
1212 | > | } |
1213 | > | |
1214 | if (storageLayout_ & DataStorage::dslAmat) { | |
1215 | idat.A1 = &(atomRowData.aMat[atom1]); | |
1216 | idat.A2 = &(atomColData.aMat[atom2]); | |
1217 | } | |
1218 | ||
842 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { |
843 | – | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
844 | – | idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
845 | – | } |
846 | – | |
1219 | if (storageLayout_ & DataStorage::dslTorque) { | |
1220 | idat.t1 = &(atomRowData.torque[atom1]); | |
1221 | idat.t2 = &(atomColData.torque[atom2]); | |
1222 | } | |
1223 | ||
1224 | + | if (storageLayout_ & DataStorage::dslDipole) { |
1225 | + | idat.dipole1 = &(atomRowData.dipole[atom1]); |
1226 | + | idat.dipole2 = &(atomColData.dipole[atom2]); |
1227 | + | } |
1228 | + | |
1229 | + | if (storageLayout_ & DataStorage::dslQuadrupole) { |
1230 | + | idat.quadrupole1 = &(atomRowData.quadrupole[atom1]); |
1231 | + | idat.quadrupole2 = &(atomColData.quadrupole[atom2]); |
1232 | + | } |
1233 | + | |
1234 | if (storageLayout_ & DataStorage::dslDensity) { | |
1235 | idat.rho1 = &(atomRowData.density[atom1]); | |
1236 | idat.rho2 = &(atomColData.density[atom2]); | |
# | Line 874 | Line 1256 | namespace OpenMD { | |
1256 | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); | |
1257 | } | |
1258 | ||
1259 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1260 | + | idat.flucQ1 = &(atomRowData.flucQPos[atom1]); |
1261 | + | idat.flucQ2 = &(atomColData.flucQPos[atom2]); |
1262 | + | } |
1263 | + | |
1264 | #else | |
1265 | + | |
1266 | + | //idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
1267 | + | idat.atid1 = idents[atom1]; |
1268 | + | idat.atid2 = idents[atom2]; |
1269 | ||
1270 | < | idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
1271 | < | ff_->getAtomType(idents[atom2]) ); |
1270 | > | if (regions[atom1] >= 0 && regions[atom2] >= 0) { |
1271 | > | idat.sameRegion = (regions[atom1] == regions[atom2]); |
1272 | > | } else { |
1273 | > | idat.sameRegion = false; |
1274 | > | } |
1275 | ||
1276 | if (storageLayout_ & DataStorage::dslAmat) { | |
1277 | idat.A1 = &(snap_->atomData.aMat[atom1]); | |
1278 | idat.A2 = &(snap_->atomData.aMat[atom2]); | |
1279 | } | |
1280 | ||
887 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { |
888 | – | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
889 | – | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
890 | – | } |
891 | – | |
1281 | if (storageLayout_ & DataStorage::dslTorque) { | |
1282 | idat.t1 = &(snap_->atomData.torque[atom1]); | |
1283 | idat.t2 = &(snap_->atomData.torque[atom2]); | |
1284 | + | } |
1285 | + | |
1286 | + | if (storageLayout_ & DataStorage::dslDipole) { |
1287 | + | idat.dipole1 = &(snap_->atomData.dipole[atom1]); |
1288 | + | idat.dipole2 = &(snap_->atomData.dipole[atom2]); |
1289 | + | } |
1290 | + | |
1291 | + | if (storageLayout_ & DataStorage::dslQuadrupole) { |
1292 | + | idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]); |
1293 | + | idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]); |
1294 | } | |
1295 | ||
1296 | if (storageLayout_ & DataStorage::dslDensity) { | |
# | Line 918 | Line 1317 | namespace OpenMD { | |
1317 | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); | |
1318 | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); | |
1319 | } | |
1320 | + | |
1321 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1322 | + | idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); |
1323 | + | idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); |
1324 | + | } |
1325 | + | |
1326 | #endif | |
1327 | } | |
1328 | ||
1329 | ||
1330 | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { | |
1331 | #ifdef IS_MPI | |
1332 | < | pot_row[atom1] += 0.5 * *(idat.pot); |
1333 | < | pot_col[atom2] += 0.5 * *(idat.pot); |
1332 | > | pot_row[atom1] += RealType(0.5) * *(idat.pot); |
1333 | > | pot_col[atom2] += RealType(0.5) * *(idat.pot); |
1334 | > | expot_row[atom1] += RealType(0.5) * *(idat.excludedPot); |
1335 | > | expot_col[atom2] += RealType(0.5) * *(idat.excludedPot); |
1336 | ||
1337 | atomRowData.force[atom1] += *(idat.f1); | |
1338 | atomColData.force[atom2] -= *(idat.f1); | |
1339 | + | |
1340 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
1341 | + | atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1342 | + | atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1343 | + | } |
1344 | + | |
1345 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
1346 | + | atomRowData.electricField[atom1] += *(idat.eField1); |
1347 | + | atomColData.electricField[atom2] += *(idat.eField2); |
1348 | + | } |
1349 | + | |
1350 | + | if (storageLayout_ & DataStorage::dslSitePotential) { |
1351 | + | atomRowData.sitePotential[atom1] += *(idat.sPot1); |
1352 | + | atomColData.sitePotential[atom2] += *(idat.sPot2); |
1353 | + | } |
1354 | + | |
1355 | #else | |
1356 | pairwisePot += *(idat.pot); | |
1357 | + | excludedPot += *(idat.excludedPot); |
1358 | ||
1359 | snap_->atomData.force[atom1] += *(idat.f1); | |
1360 | snap_->atomData.force[atom2] -= *(idat.f1); | |
1361 | + | |
1362 | + | if (idat.doParticlePot) { |
1363 | + | // This is the pairwise contribution to the particle pot. The |
1364 | + | // embedding contribution is added in each of the low level |
1365 | + | // non-bonded routines. In parallel, this calculation is done |
1366 | + | // in collectData, not in unpackInteractionData. |
1367 | + | snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); |
1368 | + | snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); |
1369 | + | } |
1370 | + | |
1371 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
1372 | + | snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1373 | + | snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1374 | + | } |
1375 | + | |
1376 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
1377 | + | snap_->atomData.electricField[atom1] += *(idat.eField1); |
1378 | + | snap_->atomData.electricField[atom2] += *(idat.eField2); |
1379 | + | } |
1380 | + | |
1381 | + | if (storageLayout_ & DataStorage::dslSitePotential) { |
1382 | + | snap_->atomData.sitePotential[atom1] += *(idat.sPot1); |
1383 | + | snap_->atomData.sitePotential[atom2] += *(idat.sPot2); |
1384 | + | } |
1385 | + | |
1386 | #endif | |
1387 | ||
1388 | } | |
# | Line 944 | Line 1393 | namespace OpenMD { | |
1393 | * first element of pair is row-indexed CutoffGroup | |
1394 | * second element of pair is column-indexed CutoffGroup | |
1395 | */ | |
1396 | < | vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { |
1397 | < | |
1398 | < | vector<pair<int, int> > neighborList; |
1396 | > | void ForceMatrixDecomposition::buildNeighborList(vector<pair<int,int> >& neighborList) { |
1397 | > | |
1398 | > | neighborList.clear(); |
1399 | groupCutoffs cuts; | |
1400 | bool doAllPairs = false; | |
1401 | ||
1402 | + | RealType rList_ = (largestRcut_ + skinThickness_); |
1403 | + | RealType rcut, rcutsq, rlistsq; |
1404 | + | Snapshot* snap_ = sman_->getCurrentSnapshot(); |
1405 | + | Mat3x3d box; |
1406 | + | Mat3x3d invBox; |
1407 | + | |
1408 | + | Vector3d rs, scaled, dr; |
1409 | + | Vector3i whichCell; |
1410 | + | int cellIndex; |
1411 | + | |
1412 | #ifdef IS_MPI | |
1413 | cellListRow_.clear(); | |
1414 | cellListCol_.clear(); | |
1415 | #else | |
1416 | cellList_.clear(); | |
1417 | #endif | |
1418 | < | |
1419 | < | RealType rList_ = (largestRcut_ + skinThickness_); |
1420 | < | RealType rl2 = rList_ * rList_; |
1421 | < | Snapshot* snap_ = sman_->getCurrentSnapshot(); |
1422 | < | Mat3x3d Hmat = snap_->getHmat(); |
1423 | < | Vector3d Hx = Hmat.getColumn(0); |
1424 | < | Vector3d Hy = Hmat.getColumn(1); |
1425 | < | Vector3d Hz = Hmat.getColumn(2); |
1426 | < | |
1427 | < | nCells_.x() = (int) ( Hx.length() )/ rList_; |
1428 | < | nCells_.y() = (int) ( Hy.length() )/ rList_; |
1429 | < | nCells_.z() = (int) ( Hz.length() )/ rList_; |
1430 | < | |
1418 | > | |
1419 | > | if (!usePeriodicBoundaryConditions_) { |
1420 | > | box = snap_->getBoundingBox(); |
1421 | > | invBox = snap_->getInvBoundingBox(); |
1422 | > | } else { |
1423 | > | box = snap_->getHmat(); |
1424 | > | invBox = snap_->getInvHmat(); |
1425 | > | } |
1426 | > | |
1427 | > | Vector3d boxX = box.getColumn(0); |
1428 | > | Vector3d boxY = box.getColumn(1); |
1429 | > | Vector3d boxZ = box.getColumn(2); |
1430 | > | |
1431 | > | nCells_.x() = int( boxX.length() / rList_ ); |
1432 | > | nCells_.y() = int( boxY.length() / rList_ ); |
1433 | > | nCells_.z() = int( boxZ.length() / rList_ ); |
1434 | > | |
1435 | // handle small boxes where the cell offsets can end up repeating cells | |
1436 | ||
1437 | if (nCells_.x() < 3) doAllPairs = true; | |
1438 | if (nCells_.y() < 3) doAllPairs = true; | |
1439 | if (nCells_.z() < 3) doAllPairs = true; | |
1440 | < | |
978 | < | Mat3x3d invHmat = snap_->getInvHmat(); |
979 | < | Vector3d rs, scaled, dr; |
980 | < | Vector3i whichCell; |
981 | < | int cellIndex; |
1440 | > | |
1441 | int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); | |
1442 | < | |
1442 | > | |
1443 | #ifdef IS_MPI | |
1444 | cellListRow_.resize(nCtot); | |
1445 | cellListCol_.resize(nCtot); | |
1446 | #else | |
1447 | cellList_.resize(nCtot); | |
1448 | #endif | |
1449 | < | |
1449 | > | |
1450 | if (!doAllPairs) { | |
1451 | #ifdef IS_MPI | |
1452 | < | |
1452 | > | |
1453 | for (int i = 0; i < nGroupsInRow_; i++) { | |
1454 | rs = cgRowData.position[i]; | |
1455 | ||
1456 | // scaled positions relative to the box vectors | |
1457 | < | scaled = invHmat * rs; |
1457 | > | scaled = invBox * rs; |
1458 | ||
1459 | // wrap the vector back into the unit box by subtracting integer box | |
1460 | // numbers | |
1461 | for (int j = 0; j < 3; j++) { | |
1462 | scaled[j] -= roundMe(scaled[j]); | |
1463 | scaled[j] += 0.5; | |
1464 | + | // Handle the special case when an object is exactly on the |
1465 | + | // boundary (a scaled coordinate of 1.0 is the same as |
1466 | + | // scaled coordinate of 0.0) |
1467 | + | if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1468 | } | |
1469 | ||
1470 | // find xyz-indices of cell that cutoffGroup is in. | |
# | Line 1015 | Line 1478 | namespace OpenMD { | |
1478 | // add this cutoff group to the list of groups in this cell; | |
1479 | cellListRow_[cellIndex].push_back(i); | |
1480 | } | |
1018 | – | |
1481 | for (int i = 0; i < nGroupsInCol_; i++) { | |
1482 | rs = cgColData.position[i]; | |
1483 | ||
1484 | // scaled positions relative to the box vectors | |
1485 | < | scaled = invHmat * rs; |
1485 | > | scaled = invBox * rs; |
1486 | ||
1487 | // wrap the vector back into the unit box by subtracting integer box | |
1488 | // numbers | |
1489 | for (int j = 0; j < 3; j++) { | |
1490 | scaled[j] -= roundMe(scaled[j]); | |
1491 | scaled[j] += 0.5; | |
1492 | + | // Handle the special case when an object is exactly on the |
1493 | + | // boundary (a scaled coordinate of 1.0 is the same as |
1494 | + | // scaled coordinate of 0.0) |
1495 | + | if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1496 | } | |
1497 | ||
1498 | // find xyz-indices of cell that cutoffGroup is in. | |
# | Line 1040 | Line 1506 | namespace OpenMD { | |
1506 | // add this cutoff group to the list of groups in this cell; | |
1507 | cellListCol_[cellIndex].push_back(i); | |
1508 | } | |
1509 | + | |
1510 | #else | |
1511 | for (int i = 0; i < nGroups_; i++) { | |
1512 | rs = snap_->cgData.position[i]; | |
1513 | ||
1514 | // scaled positions relative to the box vectors | |
1515 | < | scaled = invHmat * rs; |
1515 | > | scaled = invBox * rs; |
1516 | ||
1517 | // wrap the vector back into the unit box by subtracting integer box | |
1518 | // numbers | |
1519 | for (int j = 0; j < 3; j++) { | |
1520 | scaled[j] -= roundMe(scaled[j]); | |
1521 | scaled[j] += 0.5; | |
1522 | + | // Handle the special case when an object is exactly on the |
1523 | + | // boundary (a scaled coordinate of 1.0 is the same as |
1524 | + | // scaled coordinate of 0.0) |
1525 | + | if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1526 | } | |
1527 | ||
1528 | // find xyz-indices of cell that cutoffGroup is in. | |
1529 | < | whichCell.x() = nCells_.x() * scaled.x(); |
1530 | < | whichCell.y() = nCells_.y() * scaled.y(); |
1531 | < | whichCell.z() = nCells_.z() * scaled.z(); |
1529 | > | whichCell.x() = int(nCells_.x() * scaled.x()); |
1530 | > | whichCell.y() = int(nCells_.y() * scaled.y()); |
1531 | > | whichCell.z() = int(nCells_.z() * scaled.z()); |
1532 | ||
1533 | // find single index of this cell: | |
1534 | < | cellIndex = Vlinear(whichCell, nCells_); |
1534 | > | cellIndex = Vlinear(whichCell, nCells_); |
1535 | ||
1536 | // add this cutoff group to the list of groups in this cell; | |
1537 | cellList_[cellIndex].push_back(i); | |
1538 | } | |
1539 | + | |
1540 | #endif | |
1541 | ||
1542 | for (int m1z = 0; m1z < nCells_.z(); m1z++) { | |
# | Line 1077 | Line 1549 | namespace OpenMD { | |
1549 | os != cellOffsets_.end(); ++os) { | |
1550 | ||
1551 | Vector3i m2v = m1v + (*os); | |
1552 | < | |
1552 | > | |
1553 | > | |
1554 | if (m2v.x() >= nCells_.x()) { | |
1555 | m2v.x() = 0; | |
1556 | } else if (m2v.x() < 0) { | |
# | Line 1095 | Line 1568 | namespace OpenMD { | |
1568 | } else if (m2v.z() < 0) { | |
1569 | m2v.z() = nCells_.z() - 1; | |
1570 | } | |
1571 | < | |
1571 | > | |
1572 | int m2 = Vlinear (m2v, nCells_); | |
1573 | ||
1574 | #ifdef IS_MPI | |
# | Line 1104 | Line 1577 | namespace OpenMD { | |
1577 | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); | |
1578 | j2 != cellListCol_[m2].end(); ++j2) { | |
1579 | ||
1580 | < | // Always do this if we're in different cells or if |
1581 | < | // we're in the same cell and the global index of the |
1582 | < | // j2 cutoff group is less than the j1 cutoff group |
1583 | < | |
1584 | < | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1112 | < | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1580 | > | // In parallel, we need to visit *all* pairs of row |
1581 | > | // & column indicies and will divide labor in the |
1582 | > | // force evaluation later. |
1583 | > | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1584 | > | if (usePeriodicBoundaryConditions_) { |
1585 | snap_->wrapVector(dr); | |
1114 | – | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1115 | – | if (dr.lengthSquare() < cuts.third) { |
1116 | – | neighborList.push_back(make_pair((*j1), (*j2))); |
1117 | – | } |
1586 | } | |
1587 | + | getGroupCutoffs( (*j1), (*j2), rcut, rcutsq, rlistsq ); |
1588 | + | if (dr.lengthSquare() < rlistsq) { |
1589 | + | neighborList.push_back(make_pair((*j1), (*j2))); |
1590 | + | } |
1591 | } | |
1592 | } | |
1593 | #else | |
1122 | – | |
1594 | for (vector<int>::iterator j1 = cellList_[m1].begin(); | |
1595 | j1 != cellList_[m1].end(); ++j1) { | |
1596 | for (vector<int>::iterator j2 = cellList_[m2].begin(); | |
1597 | j2 != cellList_[m2].end(); ++j2) { | |
1598 | < | |
1598 | > | |
1599 | // Always do this if we're in different cells or if | |
1600 | < | // we're in the same cell and the global index of the |
1601 | < | // j2 cutoff group is less than the j1 cutoff group |
1602 | < | |
1603 | < | if (m2 != m1 || (*j2) < (*j1)) { |
1600 | > | // we're in the same cell and the global index of |
1601 | > | // the j2 cutoff group is greater than or equal to |
1602 | > | // the j1 cutoff group. Note that Rappaport's code |
1603 | > | // has a "less than" conditional here, but that |
1604 | > | // deals with atom-by-atom computation. OpenMD |
1605 | > | // allows atoms within a single cutoff group to |
1606 | > | // interact with each other. |
1607 | > | |
1608 | > | if (m2 != m1 || (*j2) >= (*j1) ) { |
1609 | > | |
1610 | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | |
1611 | < | snap_->wrapVector(dr); |
1612 | < | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1613 | < | if (dr.lengthSquare() < cuts.third) { |
1611 | > | if (usePeriodicBoundaryConditions_) { |
1612 | > | snap_->wrapVector(dr); |
1613 | > | } |
1614 | > | getGroupCutoffs( (*j1), (*j2), rcut, rcutsq, rlistsq ); |
1615 | > | if (dr.lengthSquare() < rlistsq) { |
1616 | neighborList.push_back(make_pair((*j1), (*j2))); | |
1617 | } | |
1618 | } | |
# | Line 1148 | Line 1627 | namespace OpenMD { | |
1627 | // branch to do all cutoff group pairs | |
1628 | #ifdef IS_MPI | |
1629 | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { | |
1630 | < | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1630 | > | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1631 | dr = cgColData.position[j2] - cgRowData.position[j1]; | |
1632 | < | snap_->wrapVector(dr); |
1633 | < | cuts = getGroupCutoffs( j1, j2 ); |
1634 | < | if (dr.lengthSquare() < cuts.third) { |
1632 | > | if (usePeriodicBoundaryConditions_) { |
1633 | > | snap_->wrapVector(dr); |
1634 | > | } |
1635 | > | getGroupCutoffs( j1, j2, rcut, rcutsq, rlistsq); |
1636 | > | if (dr.lengthSquare() < rlistsq) { |
1637 | neighborList.push_back(make_pair(j1, j2)); | |
1638 | } | |
1639 | } | |
1640 | < | } |
1640 | > | } |
1641 | #else | |
1642 | < | for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1643 | < | for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1642 | > | // include all groups here. |
1643 | > | for (int j1 = 0; j1 < nGroups_; j1++) { |
1644 | > | // include self group interactions j2 == j1 |
1645 | > | for (int j2 = j1; j2 < nGroups_; j2++) { |
1646 | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; | |
1647 | < | snap_->wrapVector(dr); |
1648 | < | cuts = getGroupCutoffs( j1, j2 ); |
1649 | < | if (dr.lengthSquare() < cuts.third) { |
1647 | > | if (usePeriodicBoundaryConditions_) { |
1648 | > | snap_->wrapVector(dr); |
1649 | > | } |
1650 | > | getGroupCutoffs( j1, j2, rcut, rcutsq, rlistsq ); |
1651 | > | if (dr.lengthSquare() < rlistsq) { |
1652 | neighborList.push_back(make_pair(j1, j2)); | |
1653 | } | |
1654 | < | } |
1655 | < | } |
1654 | > | } |
1655 | > | } |
1656 | #endif | |
1657 | } | |
1658 | ||
# | Line 1176 | Line 1661 | namespace OpenMD { | |
1661 | saved_CG_positions_.clear(); | |
1662 | for (int i = 0; i < nGroups_; i++) | |
1663 | saved_CG_positions_.push_back(snap_->cgData.position[i]); | |
1179 | – | |
1180 | – | return neighborList; |
1664 | } | |
1665 | } //end namespace OpenMD |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |