# | Line 1 | Line 1 | |
---|---|---|
1 | < | /** |
2 | < | * @file ForceDecomposition.cpp |
3 | < | * @author Charles Vardeman <cvardema.at.nd.edu> |
4 | < | * @date 08/18/2010 |
5 | < | * @time 11:56am |
6 | < | * @version 1.0 |
1 | > | /* |
2 | > | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 | * | |
8 | – | * @section LICENSE |
9 | – | * Copyright (c) 2010 The University of Notre Dame. All Rights Reserved. |
10 | – | * |
4 | * The University of Notre Dame grants you ("Licensee") a | |
5 | * non-exclusive, royalty free, license to use, modify and | |
6 | * redistribute this software in source and binary code form, provided | |
# | Line 45 | Line 38 | |
38 | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | |
39 | * [4] Vardeman & Gezelter, in progress (2009). | |
40 | */ | |
41 | + | #include "parallel/ForceMatrixDecomposition.hpp" |
42 | + | #include "math/SquareMatrix3.hpp" |
43 | + | #include "nonbonded/NonBondedInteraction.hpp" |
44 | + | #include "brains/SnapshotManager.hpp" |
45 | + | #include "brains/PairList.hpp" |
46 | ||
47 | + | using namespace std; |
48 | + | namespace OpenMD { |
49 | ||
50 | + | /** |
51 | + | * distributeInitialData is essentially a copy of the older fortran |
52 | + | * SimulationSetup |
53 | + | */ |
54 | + | |
55 | + | void ForceMatrixDecomposition::distributeInitialData() { |
56 | + | snap_ = sman_->getCurrentSnapshot(); |
57 | + | storageLayout_ = sman_->getStorageLayout(); |
58 | + | ff_ = info_->getForceField(); |
59 | + | nLocal_ = snap_->getNumberOfAtoms(); |
60 | + | |
61 | + | nGroups_ = info_->getNLocalCutoffGroups(); |
62 | + | // gather the information for atomtype IDs (atids): |
63 | + | idents = info_->getIdentArray(); |
64 | + | AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
65 | + | cgLocalToGlobal = info_->getGlobalGroupIndices(); |
66 | + | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
67 | ||
68 | < | /* -*- c++ -*- */ |
69 | < | #include "config.h" |
70 | < | #include <stdlib.h> |
68 | > | massFactors = info_->getMassFactors(); |
69 | > | |
70 | > | PairList* excludes = info_->getExcludedInteractions(); |
71 | > | PairList* oneTwo = info_->getOneTwoInteractions(); |
72 | > | PairList* oneThree = info_->getOneThreeInteractions(); |
73 | > | PairList* oneFour = info_->getOneFourInteractions(); |
74 | > | |
75 | #ifdef IS_MPI | |
76 | < | #include <mpi.h> |
77 | < | #endif |
76 | > | |
77 | > | AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
78 | > | AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
79 | > | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
80 | > | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
81 | > | AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
82 | ||
83 | < | #include <iostream> |
84 | < | #include <vector> |
85 | < | #include <algorithm> |
86 | < | #include <cmath> |
87 | < | #include "parallel/ForceDecomposition.hpp" |
83 | > | AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
84 | > | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
85 | > | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
86 | > | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
87 | > | AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
88 | ||
89 | + | cgCommIntRow = new Communicator<Row,int>(nGroups_); |
90 | + | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
91 | + | cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
92 | + | cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
93 | ||
94 | < | using namespace std; |
95 | < | using namespace OpenMD; |
94 | > | nAtomsInRow_ = AtomCommIntRow->getSize(); |
95 | > | nAtomsInCol_ = AtomCommIntColumn->getSize(); |
96 | > | nGroupsInRow_ = cgCommIntRow->getSize(); |
97 | > | nGroupsInCol_ = cgCommIntColumn->getSize(); |
98 | ||
99 | < | //__static |
100 | < | #ifdef IS_MPI |
101 | < | static vector<MPI:Comm> communictors; |
102 | < | #endif |
99 | > | // Modify the data storage objects with the correct layouts and sizes: |
100 | > | atomRowData.resize(nAtomsInRow_); |
101 | > | atomRowData.setStorageLayout(storageLayout_); |
102 | > | atomColData.resize(nAtomsInCol_); |
103 | > | atomColData.setStorageLayout(storageLayout_); |
104 | > | cgRowData.resize(nGroupsInRow_); |
105 | > | cgRowData.setStorageLayout(DataStorage::dslPosition); |
106 | > | cgColData.resize(nGroupsInCol_); |
107 | > | cgColData.setStorageLayout(DataStorage::dslPosition); |
108 | > | |
109 | > | identsRow.resize(nAtomsInRow_); |
110 | > | identsCol.resize(nAtomsInCol_); |
111 | > | |
112 | > | AtomCommIntRow->gather(idents, identsRow); |
113 | > | AtomCommIntColumn->gather(idents, identsCol); |
114 | > | |
115 | > | vector<int>::iterator it; |
116 | > | for (it = AtomLocalToGlobal.begin(); it != AtomLocalToGlobal.end(); ++it) { |
117 | > | cerr << "my AtomLocalToGlobal = " << (*it) << "\n"; |
118 | > | } |
119 | > | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
120 | > | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
121 | > | |
122 | > | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
123 | > | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
124 | ||
125 | < | //____ MPITypeTraits |
126 | < | template<typename T> |
75 | < | struct MPITypeTraits; |
125 | > | AtomCommRealRow->gather(massFactors, massFactorsRow); |
126 | > | AtomCommRealColumn->gather(massFactors, massFactorsCol); |
127 | ||
128 | < | #ifdef IS_MPI |
129 | < | template<> |
130 | < | struct MPITypeTraits<RealType> { |
131 | < | static const MPI::Datatype datatype; |
132 | < | }; |
133 | < | const MPI_Datatype MPITypeTraits<RealType>::datatype = MY_MPI_REAL; |
128 | > | groupListRow_.clear(); |
129 | > | groupListRow_.resize(nGroupsInRow_); |
130 | > | for (int i = 0; i < nGroupsInRow_; i++) { |
131 | > | int gid = cgRowToGlobal[i]; |
132 | > | for (int j = 0; j < nAtomsInRow_; j++) { |
133 | > | int aid = AtomRowToGlobal[j]; |
134 | > | if (globalGroupMembership[aid] == gid) |
135 | > | groupListRow_[i].push_back(j); |
136 | > | } |
137 | > | } |
138 | ||
139 | < | template<> |
140 | < | struct MPITypeTraits<int> { |
141 | < | static const MPI::Datatype datatype; |
142 | < | }; |
143 | < | const MPI::Datatype MPITypeTraits<int>::datatype = MPI_INT; |
144 | < | #endif |
139 | > | groupListCol_.clear(); |
140 | > | groupListCol_.resize(nGroupsInCol_); |
141 | > | for (int i = 0; i < nGroupsInCol_; i++) { |
142 | > | int gid = cgColToGlobal[i]; |
143 | > | for (int j = 0; j < nAtomsInCol_; j++) { |
144 | > | int aid = AtomColToGlobal[j]; |
145 | > | if (globalGroupMembership[aid] == gid) |
146 | > | groupListCol_[i].push_back(j); |
147 | > | } |
148 | > | } |
149 | ||
150 | < | /** |
151 | < | * Constructor for ForceDecomposition Parallel Decomposition Method |
152 | < | * Will try to construct a symmetric grid of processors. Ideally, the |
153 | < | * number of processors will be a square ex: 4, 9, 16, 25. |
154 | < | * |
155 | < | */ |
150 | > | excludesForAtom.clear(); |
151 | > | excludesForAtom.resize(nAtomsInRow_); |
152 | > | toposForAtom.clear(); |
153 | > | toposForAtom.resize(nAtomsInRow_); |
154 | > | topoDist.clear(); |
155 | > | topoDist.resize(nAtomsInRow_); |
156 | > | for (int i = 0; i < nAtomsInRow_; i++) { |
157 | > | int iglob = AtomRowToGlobal[i]; |
158 | ||
159 | < | ForceDecomposition::ForceDecomposition() { |
159 | > | for (int j = 0; j < nAtomsInCol_; j++) { |
160 | > | int jglob = AtomColToGlobal[j]; |
161 | ||
162 | < | #ifdef IS_MPI |
163 | < | int nProcs = MPI::COMM_WORLD.Get_size(); |
164 | < | int worldRank = MPI::COMM_WORLD.Get_rank(); |
162 | > | if (excludes->hasPair(iglob, jglob)) |
163 | > | excludesForAtom[i].push_back(j); |
164 | > | |
165 | > | if (oneTwo->hasPair(iglob, jglob)) { |
166 | > | toposForAtom[i].push_back(j); |
167 | > | topoDist[i].push_back(1); |
168 | > | } else { |
169 | > | if (oneThree->hasPair(iglob, jglob)) { |
170 | > | toposForAtom[i].push_back(j); |
171 | > | topoDist[i].push_back(2); |
172 | > | } else { |
173 | > | if (oneFour->hasPair(iglob, jglob)) { |
174 | > | toposForAtom[i].push_back(j); |
175 | > | topoDist[i].push_back(3); |
176 | > | } |
177 | > | } |
178 | > | } |
179 | > | } |
180 | > | } |
181 | > | |
182 | #endif | |
183 | ||
184 | < | // First time through, construct column stride. |
185 | < | if (communicators.size() == 0) |
186 | < | { |
187 | < | int nColumnsMax = (int) round(sqrt((float) nProcs)); |
188 | < | for (int i = 0; i < nProcs; ++i) |
189 | < | { |
190 | < | if (nProcs%i==0) nColumns=i; |
184 | > | groupList_.clear(); |
185 | > | groupList_.resize(nGroups_); |
186 | > | for (int i = 0; i < nGroups_; i++) { |
187 | > | int gid = cgLocalToGlobal[i]; |
188 | > | for (int j = 0; j < nLocal_; j++) { |
189 | > | int aid = AtomLocalToGlobal[j]; |
190 | > | if (globalGroupMembership[aid] == gid) { |
191 | > | groupList_[i].push_back(j); |
192 | > | } |
193 | > | } |
194 | } | |
195 | ||
196 | < | int nRows = nProcs/nColumns; |
197 | < | myRank_ = (int) worldRank%nColumns; |
198 | < | } |
199 | < | else |
200 | < | { |
201 | < | myRank_ = myRank/nColumns; |
120 | < | } |
121 | < | MPI::Comm newComm = MPI:COMM_WORLD.Split(myRank_,0); |
122 | < | |
123 | < | isColumn_ = false; |
124 | < | |
125 | < | } |
196 | > | excludesForAtom.clear(); |
197 | > | excludesForAtom.resize(nLocal_); |
198 | > | toposForAtom.clear(); |
199 | > | toposForAtom.resize(nLocal_); |
200 | > | topoDist.clear(); |
201 | > | topoDist.resize(nLocal_); |
202 | ||
203 | < | ForceDecomposition::gather(sendbuf, receivebuf){ |
204 | < | communicators(myIndex_).Allgatherv(); |
129 | < | } |
203 | > | for (int i = 0; i < nLocal_; i++) { |
204 | > | int iglob = AtomLocalToGlobal[i]; |
205 | ||
206 | + | for (int j = 0; j < nLocal_; j++) { |
207 | + | int jglob = AtomLocalToGlobal[j]; |
208 | ||
209 | + | if (excludes->hasPair(iglob, jglob)) |
210 | + | excludesForAtom[i].push_back(j); |
211 | + | |
212 | + | if (oneTwo->hasPair(iglob, jglob)) { |
213 | + | toposForAtom[i].push_back(j); |
214 | + | topoDist[i].push_back(1); |
215 | + | } else { |
216 | + | if (oneThree->hasPair(iglob, jglob)) { |
217 | + | toposForAtom[i].push_back(j); |
218 | + | topoDist[i].push_back(2); |
219 | + | } else { |
220 | + | if (oneFour->hasPair(iglob, jglob)) { |
221 | + | toposForAtom[i].push_back(j); |
222 | + | topoDist[i].push_back(3); |
223 | + | } |
224 | + | } |
225 | + | } |
226 | + | } |
227 | + | } |
228 | + | |
229 | + | createGtypeCutoffMap(); |
230 | ||
231 | < | ForceDecomposition::scatter(sbuffer, rbuffer){ |
232 | < | communicators(myIndex_).Reduce_scatter(sbuffer, recevbuf. recvcounts, MPI::DOUBLE, MPI::SUM); |
233 | < | } |
231 | > | } |
232 | > | |
233 | > | void ForceMatrixDecomposition::createGtypeCutoffMap() { |
234 | > | |
235 | > | RealType tol = 1e-6; |
236 | > | RealType rc; |
237 | > | int atid; |
238 | > | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
239 | > | map<int, RealType> atypeCutoff; |
240 | > | |
241 | > | for (set<AtomType*>::iterator at = atypes.begin(); |
242 | > | at != atypes.end(); ++at){ |
243 | > | atid = (*at)->getIdent(); |
244 | > | if (userChoseCutoff_) |
245 | > | atypeCutoff[atid] = userCutoff_; |
246 | > | else |
247 | > | atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
248 | > | } |
249 | > | |
250 | > | vector<RealType> gTypeCutoffs; |
251 | > | // first we do a single loop over the cutoff groups to find the |
252 | > | // largest cutoff for any atypes present in this group. |
253 | > | #ifdef IS_MPI |
254 | > | vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); |
255 | > | groupRowToGtype.resize(nGroupsInRow_); |
256 | > | for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { |
257 | > | vector<int> atomListRow = getAtomsInGroupRow(cg1); |
258 | > | for (vector<int>::iterator ia = atomListRow.begin(); |
259 | > | ia != atomListRow.end(); ++ia) { |
260 | > | int atom1 = (*ia); |
261 | > | atid = identsRow[atom1]; |
262 | > | if (atypeCutoff[atid] > groupCutoffRow[cg1]) { |
263 | > | groupCutoffRow[cg1] = atypeCutoff[atid]; |
264 | > | } |
265 | > | } |
266 | > | |
267 | > | bool gTypeFound = false; |
268 | > | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
269 | > | if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) { |
270 | > | groupRowToGtype[cg1] = gt; |
271 | > | gTypeFound = true; |
272 | > | } |
273 | > | } |
274 | > | if (!gTypeFound) { |
275 | > | gTypeCutoffs.push_back( groupCutoffRow[cg1] ); |
276 | > | groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; |
277 | > | } |
278 | > | |
279 | > | } |
280 | > | vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); |
281 | > | groupColToGtype.resize(nGroupsInCol_); |
282 | > | for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { |
283 | > | vector<int> atomListCol = getAtomsInGroupColumn(cg2); |
284 | > | for (vector<int>::iterator jb = atomListCol.begin(); |
285 | > | jb != atomListCol.end(); ++jb) { |
286 | > | int atom2 = (*jb); |
287 | > | atid = identsCol[atom2]; |
288 | > | if (atypeCutoff[atid] > groupCutoffCol[cg2]) { |
289 | > | groupCutoffCol[cg2] = atypeCutoff[atid]; |
290 | > | } |
291 | > | } |
292 | > | bool gTypeFound = false; |
293 | > | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
294 | > | if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) { |
295 | > | groupColToGtype[cg2] = gt; |
296 | > | gTypeFound = true; |
297 | > | } |
298 | > | } |
299 | > | if (!gTypeFound) { |
300 | > | gTypeCutoffs.push_back( groupCutoffCol[cg2] ); |
301 | > | groupColToGtype[cg2] = gTypeCutoffs.size() - 1; |
302 | > | } |
303 | > | } |
304 | > | #else |
305 | ||
306 | + | vector<RealType> groupCutoff(nGroups_, 0.0); |
307 | + | groupToGtype.resize(nGroups_); |
308 | + | for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
309 | ||
310 | + | groupCutoff[cg1] = 0.0; |
311 | + | vector<int> atomList = getAtomsInGroupRow(cg1); |
312 | + | |
313 | + | for (vector<int>::iterator ia = atomList.begin(); |
314 | + | ia != atomList.end(); ++ia) { |
315 | + | int atom1 = (*ia); |
316 | + | atid = idents[atom1]; |
317 | + | if (atypeCutoff[atid] > groupCutoff[cg1]) { |
318 | + | groupCutoff[cg1] = atypeCutoff[atid]; |
319 | + | } |
320 | + | } |
321 | + | |
322 | + | bool gTypeFound = false; |
323 | + | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
324 | + | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
325 | + | groupToGtype[cg1] = gt; |
326 | + | gTypeFound = true; |
327 | + | } |
328 | + | } |
329 | + | if (!gTypeFound) { |
330 | + | gTypeCutoffs.push_back( groupCutoff[cg1] ); |
331 | + | groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
332 | + | } |
333 | + | } |
334 | + | #endif |
335 | + | |
336 | + | // Now we find the maximum group cutoff value present in the simulation |
337 | + | |
338 | + | RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); |
339 | + | |
340 | + | #ifdef IS_MPI |
341 | + | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); |
342 | + | #endif |
343 | + | |
344 | + | RealType tradRcut = groupMax; |
345 | + | |
346 | + | for (int i = 0; i < gTypeCutoffs.size(); i++) { |
347 | + | for (int j = 0; j < gTypeCutoffs.size(); j++) { |
348 | + | RealType thisRcut; |
349 | + | switch(cutoffPolicy_) { |
350 | + | case TRADITIONAL: |
351 | + | thisRcut = tradRcut; |
352 | + | break; |
353 | + | case MIX: |
354 | + | thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); |
355 | + | break; |
356 | + | case MAX: |
357 | + | thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); |
358 | + | break; |
359 | + | default: |
360 | + | sprintf(painCave.errMsg, |
361 | + | "ForceMatrixDecomposition::createGtypeCutoffMap " |
362 | + | "hit an unknown cutoff policy!\n"); |
363 | + | painCave.severity = OPENMD_ERROR; |
364 | + | painCave.isFatal = 1; |
365 | + | simError(); |
366 | + | break; |
367 | + | } |
368 | + | |
369 | + | pair<int,int> key = make_pair(i,j); |
370 | + | gTypeCutoffMap[key].first = thisRcut; |
371 | + | |
372 | + | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
373 | + | |
374 | + | gTypeCutoffMap[key].second = thisRcut*thisRcut; |
375 | + | |
376 | + | gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
377 | + | |
378 | + | // sanity check |
379 | + | |
380 | + | if (userChoseCutoff_) { |
381 | + | if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
382 | + | sprintf(painCave.errMsg, |
383 | + | "ForceMatrixDecomposition::createGtypeCutoffMap " |
384 | + | "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
385 | + | painCave.severity = OPENMD_ERROR; |
386 | + | painCave.isFatal = 1; |
387 | + | simError(); |
388 | + | } |
389 | + | } |
390 | + | } |
391 | + | } |
392 | + | } |
393 | + | |
394 | + | |
395 | + | groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
396 | + | int i, j; |
397 | + | #ifdef IS_MPI |
398 | + | i = groupRowToGtype[cg1]; |
399 | + | j = groupColToGtype[cg2]; |
400 | + | #else |
401 | + | i = groupToGtype[cg1]; |
402 | + | j = groupToGtype[cg2]; |
403 | + | #endif |
404 | + | return gTypeCutoffMap[make_pair(i,j)]; |
405 | + | } |
406 | + | |
407 | + | int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
408 | + | for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
409 | + | if (toposForAtom[atom1][j] == atom2) |
410 | + | return topoDist[atom1][j]; |
411 | + | } |
412 | + | return 0; |
413 | + | } |
414 | + | |
415 | + | void ForceMatrixDecomposition::zeroWorkArrays() { |
416 | + | pairwisePot = 0.0; |
417 | + | embeddingPot = 0.0; |
418 | + | |
419 | + | #ifdef IS_MPI |
420 | + | if (storageLayout_ & DataStorage::dslForce) { |
421 | + | fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); |
422 | + | fill(atomColData.force.begin(), atomColData.force.end(), V3Zero); |
423 | + | } |
424 | + | |
425 | + | if (storageLayout_ & DataStorage::dslTorque) { |
426 | + | fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero); |
427 | + | fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero); |
428 | + | } |
429 | + | |
430 | + | fill(pot_row.begin(), pot_row.end(), |
431 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
432 | + | |
433 | + | fill(pot_col.begin(), pot_col.end(), |
434 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
435 | + | |
436 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
437 | + | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); |
438 | + | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); |
439 | + | } |
440 | + | |
441 | + | if (storageLayout_ & DataStorage::dslDensity) { |
442 | + | fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0); |
443 | + | fill(atomColData.density.begin(), atomColData.density.end(), 0.0); |
444 | + | } |
445 | + | |
446 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
447 | + | fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); |
448 | + | fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); |
449 | + | } |
450 | + | |
451 | + | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
452 | + | fill(atomRowData.functionalDerivative.begin(), |
453 | + | atomRowData.functionalDerivative.end(), 0.0); |
454 | + | fill(atomColData.functionalDerivative.begin(), |
455 | + | atomColData.functionalDerivative.end(), 0.0); |
456 | + | } |
457 | + | |
458 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
459 | + | fill(atomRowData.skippedCharge.begin(), |
460 | + | atomRowData.skippedCharge.end(), 0.0); |
461 | + | fill(atomColData.skippedCharge.begin(), |
462 | + | atomColData.skippedCharge.end(), 0.0); |
463 | + | } |
464 | + | |
465 | + | #else |
466 | + | |
467 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
468 | + | fill(snap_->atomData.particlePot.begin(), |
469 | + | snap_->atomData.particlePot.end(), 0.0); |
470 | + | } |
471 | + | |
472 | + | if (storageLayout_ & DataStorage::dslDensity) { |
473 | + | fill(snap_->atomData.density.begin(), |
474 | + | snap_->atomData.density.end(), 0.0); |
475 | + | } |
476 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
477 | + | fill(snap_->atomData.functional.begin(), |
478 | + | snap_->atomData.functional.end(), 0.0); |
479 | + | } |
480 | + | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
481 | + | fill(snap_->atomData.functionalDerivative.begin(), |
482 | + | snap_->atomData.functionalDerivative.end(), 0.0); |
483 | + | } |
484 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
485 | + | fill(snap_->atomData.skippedCharge.begin(), |
486 | + | snap_->atomData.skippedCharge.end(), 0.0); |
487 | + | } |
488 | + | #endif |
489 | + | |
490 | + | } |
491 | + | |
492 | + | |
493 | + | void ForceMatrixDecomposition::distributeData() { |
494 | + | snap_ = sman_->getCurrentSnapshot(); |
495 | + | storageLayout_ = sman_->getStorageLayout(); |
496 | + | #ifdef IS_MPI |
497 | + | |
498 | + | // gather up the atomic positions |
499 | + | AtomCommVectorRow->gather(snap_->atomData.position, |
500 | + | atomRowData.position); |
501 | + | AtomCommVectorColumn->gather(snap_->atomData.position, |
502 | + | atomColData.position); |
503 | + | |
504 | + | // gather up the cutoff group positions |
505 | + | cgCommVectorRow->gather(snap_->cgData.position, |
506 | + | cgRowData.position); |
507 | + | cgCommVectorColumn->gather(snap_->cgData.position, |
508 | + | cgColData.position); |
509 | + | |
510 | + | // if needed, gather the atomic rotation matrices |
511 | + | if (storageLayout_ & DataStorage::dslAmat) { |
512 | + | AtomCommMatrixRow->gather(snap_->atomData.aMat, |
513 | + | atomRowData.aMat); |
514 | + | AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
515 | + | atomColData.aMat); |
516 | + | } |
517 | + | |
518 | + | // if needed, gather the atomic eletrostatic frames |
519 | + | if (storageLayout_ & DataStorage::dslElectroFrame) { |
520 | + | AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
521 | + | atomRowData.electroFrame); |
522 | + | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
523 | + | atomColData.electroFrame); |
524 | + | } |
525 | + | #endif |
526 | + | } |
527 | + | |
528 | + | /* collects information obtained during the pre-pair loop onto local |
529 | + | * data structures. |
530 | + | */ |
531 | + | void ForceMatrixDecomposition::collectIntermediateData() { |
532 | + | snap_ = sman_->getCurrentSnapshot(); |
533 | + | storageLayout_ = sman_->getStorageLayout(); |
534 | + | #ifdef IS_MPI |
535 | + | |
536 | + | if (storageLayout_ & DataStorage::dslDensity) { |
537 | + | |
538 | + | AtomCommRealRow->scatter(atomRowData.density, |
539 | + | snap_->atomData.density); |
540 | + | |
541 | + | int n = snap_->atomData.density.size(); |
542 | + | vector<RealType> rho_tmp(n, 0.0); |
543 | + | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
544 | + | for (int i = 0; i < n; i++) |
545 | + | snap_->atomData.density[i] += rho_tmp[i]; |
546 | + | } |
547 | + | #endif |
548 | + | } |
549 | + | |
550 | + | /* |
551 | + | * redistributes information obtained during the pre-pair loop out to |
552 | + | * row and column-indexed data structures |
553 | + | */ |
554 | + | void ForceMatrixDecomposition::distributeIntermediateData() { |
555 | + | snap_ = sman_->getCurrentSnapshot(); |
556 | + | storageLayout_ = sman_->getStorageLayout(); |
557 | + | #ifdef IS_MPI |
558 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
559 | + | AtomCommRealRow->gather(snap_->atomData.functional, |
560 | + | atomRowData.functional); |
561 | + | AtomCommRealColumn->gather(snap_->atomData.functional, |
562 | + | atomColData.functional); |
563 | + | } |
564 | + | |
565 | + | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
566 | + | AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
567 | + | atomRowData.functionalDerivative); |
568 | + | AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
569 | + | atomColData.functionalDerivative); |
570 | + | } |
571 | + | #endif |
572 | + | } |
573 | + | |
574 | + | |
575 | + | void ForceMatrixDecomposition::collectData() { |
576 | + | snap_ = sman_->getCurrentSnapshot(); |
577 | + | storageLayout_ = sman_->getStorageLayout(); |
578 | + | #ifdef IS_MPI |
579 | + | int n = snap_->atomData.force.size(); |
580 | + | vector<Vector3d> frc_tmp(n, V3Zero); |
581 | + | |
582 | + | AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
583 | + | for (int i = 0; i < n; i++) { |
584 | + | snap_->atomData.force[i] += frc_tmp[i]; |
585 | + | frc_tmp[i] = 0.0; |
586 | + | } |
587 | + | |
588 | + | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
589 | + | for (int i = 0; i < n; i++) |
590 | + | snap_->atomData.force[i] += frc_tmp[i]; |
591 | + | |
592 | + | |
593 | + | if (storageLayout_ & DataStorage::dslTorque) { |
594 | + | |
595 | + | int nt = snap_->atomData.torque.size(); |
596 | + | vector<Vector3d> trq_tmp(nt, V3Zero); |
597 | + | |
598 | + | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
599 | + | for (int i = 0; i < nt; i++) { |
600 | + | snap_->atomData.torque[i] += trq_tmp[i]; |
601 | + | trq_tmp[i] = 0.0; |
602 | + | } |
603 | + | |
604 | + | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
605 | + | for (int i = 0; i < nt; i++) |
606 | + | snap_->atomData.torque[i] += trq_tmp[i]; |
607 | + | } |
608 | + | |
609 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
610 | + | |
611 | + | int ns = snap_->atomData.skippedCharge.size(); |
612 | + | vector<RealType> skch_tmp(ns, 0.0); |
613 | + | |
614 | + | AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
615 | + | for (int i = 0; i < ns; i++) { |
616 | + | snap_->atomData.skippedCharge[i] = skch_tmp[i]; |
617 | + | skch_tmp[i] = 0.0; |
618 | + | } |
619 | + | |
620 | + | AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
621 | + | for (int i = 0; i < ns; i++) |
622 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
623 | + | } |
624 | + | |
625 | + | nLocal_ = snap_->getNumberOfAtoms(); |
626 | + | |
627 | + | vector<potVec> pot_temp(nLocal_, |
628 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
629 | + | |
630 | + | // scatter/gather pot_row into the members of my column |
631 | + | |
632 | + | AtomCommPotRow->scatter(pot_row, pot_temp); |
633 | + | |
634 | + | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
635 | + | pairwisePot += pot_temp[ii]; |
636 | + | |
637 | + | fill(pot_temp.begin(), pot_temp.end(), |
638 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
639 | + | |
640 | + | AtomCommPotColumn->scatter(pot_col, pot_temp); |
641 | + | |
642 | + | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
643 | + | pairwisePot += pot_temp[ii]; |
644 | + | #endif |
645 | + | |
646 | + | } |
647 | + | |
648 | + | int ForceMatrixDecomposition::getNAtomsInRow() { |
649 | + | #ifdef IS_MPI |
650 | + | return nAtomsInRow_; |
651 | + | #else |
652 | + | return nLocal_; |
653 | + | #endif |
654 | + | } |
655 | + | |
656 | + | /** |
657 | + | * returns the list of atoms belonging to this group. |
658 | + | */ |
659 | + | vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
660 | + | #ifdef IS_MPI |
661 | + | return groupListRow_[cg1]; |
662 | + | #else |
663 | + | return groupList_[cg1]; |
664 | + | #endif |
665 | + | } |
666 | + | |
667 | + | vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
668 | + | #ifdef IS_MPI |
669 | + | return groupListCol_[cg2]; |
670 | + | #else |
671 | + | return groupList_[cg2]; |
672 | + | #endif |
673 | + | } |
674 | + | |
675 | + | Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ |
676 | + | Vector3d d; |
677 | + | |
678 | + | #ifdef IS_MPI |
679 | + | d = cgColData.position[cg2] - cgRowData.position[cg1]; |
680 | + | #else |
681 | + | d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; |
682 | + | #endif |
683 | + | |
684 | + | snap_->wrapVector(d); |
685 | + | return d; |
686 | + | } |
687 | + | |
688 | + | |
689 | + | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ |
690 | + | |
691 | + | Vector3d d; |
692 | + | |
693 | + | #ifdef IS_MPI |
694 | + | d = cgRowData.position[cg1] - atomRowData.position[atom1]; |
695 | + | #else |
696 | + | d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; |
697 | + | #endif |
698 | + | |
699 | + | snap_->wrapVector(d); |
700 | + | return d; |
701 | + | } |
702 | + | |
703 | + | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){ |
704 | + | Vector3d d; |
705 | + | |
706 | + | #ifdef IS_MPI |
707 | + | d = cgColData.position[cg2] - atomColData.position[atom2]; |
708 | + | #else |
709 | + | d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; |
710 | + | #endif |
711 | + | |
712 | + | snap_->wrapVector(d); |
713 | + | return d; |
714 | + | } |
715 | + | |
716 | + | RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
717 | + | #ifdef IS_MPI |
718 | + | return massFactorsRow[atom1]; |
719 | + | #else |
720 | + | return massFactors[atom1]; |
721 | + | #endif |
722 | + | } |
723 | + | |
724 | + | RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
725 | + | #ifdef IS_MPI |
726 | + | return massFactorsCol[atom2]; |
727 | + | #else |
728 | + | return massFactors[atom2]; |
729 | + | #endif |
730 | + | |
731 | + | } |
732 | + | |
733 | + | Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ |
734 | + | Vector3d d; |
735 | + | |
736 | + | #ifdef IS_MPI |
737 | + | d = atomColData.position[atom2] - atomRowData.position[atom1]; |
738 | + | #else |
739 | + | d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; |
740 | + | #endif |
741 | + | |
742 | + | snap_->wrapVector(d); |
743 | + | return d; |
744 | + | } |
745 | + | |
746 | + | vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
747 | + | return excludesForAtom[atom1]; |
748 | + | } |
749 | + | |
750 | + | /** |
751 | + | * We need to exclude some overcounted interactions that result from |
752 | + | * the parallel decomposition. |
753 | + | */ |
754 | + | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
755 | + | int unique_id_1, unique_id_2; |
756 | + | |
757 | + | #ifdef IS_MPI |
758 | + | // in MPI, we have to look up the unique IDs for each atom |
759 | + | unique_id_1 = AtomRowToGlobal[atom1]; |
760 | + | unique_id_2 = AtomColToGlobal[atom2]; |
761 | + | |
762 | + | // this situation should only arise in MPI simulations |
763 | + | if (unique_id_1 == unique_id_2) return true; |
764 | + | |
765 | + | // this prevents us from doing the pair on multiple processors |
766 | + | if (unique_id_1 < unique_id_2) { |
767 | + | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
768 | + | } else { |
769 | + | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
770 | + | } |
771 | + | #endif |
772 | + | return false; |
773 | + | } |
774 | + | |
775 | + | /** |
776 | + | * We need to handle the interactions for atoms who are involved in |
777 | + | * the same rigid body as well as some short range interactions |
778 | + | * (bonds, bends, torsions) differently from other interactions. |
779 | + | * We'll still visit the pairwise routines, but with a flag that |
780 | + | * tells those routines to exclude the pair from direct long range |
781 | + | * interactions. Some indirect interactions (notably reaction |
782 | + | * field) must still be handled for these pairs. |
783 | + | */ |
784 | + | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
785 | + | int unique_id_2; |
786 | + | |
787 | + | #ifdef IS_MPI |
788 | + | // in MPI, we have to look up the unique IDs for the row atom. |
789 | + | unique_id_2 = AtomColToGlobal[atom2]; |
790 | + | #else |
791 | + | // in the normal loop, the atom numbers are unique |
792 | + | unique_id_2 = atom2; |
793 | + | #endif |
794 | + | |
795 | + | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
796 | + | i != excludesForAtom[atom1].end(); ++i) { |
797 | + | if ( (*i) == unique_id_2 ) return true; |
798 | + | } |
799 | + | |
800 | + | return false; |
801 | + | } |
802 | + | |
803 | + | |
804 | + | void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ |
805 | + | #ifdef IS_MPI |
806 | + | atomRowData.force[atom1] += fg; |
807 | + | #else |
808 | + | snap_->atomData.force[atom1] += fg; |
809 | + | #endif |
810 | + | } |
811 | + | |
812 | + | void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){ |
813 | + | #ifdef IS_MPI |
814 | + | atomColData.force[atom2] += fg; |
815 | + | #else |
816 | + | snap_->atomData.force[atom2] += fg; |
817 | + | #endif |
818 | + | } |
819 | + | |
820 | + | // filling interaction blocks with pointers |
821 | + | void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
822 | + | int atom1, int atom2) { |
823 | + | |
824 | + | idat.excluded = excludeAtomPair(atom1, atom2); |
825 | + | |
826 | + | #ifdef IS_MPI |
827 | + | |
828 | + | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
829 | + | ff_->getAtomType(identsCol[atom2]) ); |
830 | + | |
831 | + | if (storageLayout_ & DataStorage::dslAmat) { |
832 | + | idat.A1 = &(atomRowData.aMat[atom1]); |
833 | + | idat.A2 = &(atomColData.aMat[atom2]); |
834 | + | } |
835 | + | |
836 | + | if (storageLayout_ & DataStorage::dslElectroFrame) { |
837 | + | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
838 | + | idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
839 | + | } |
840 | + | |
841 | + | if (storageLayout_ & DataStorage::dslTorque) { |
842 | + | idat.t1 = &(atomRowData.torque[atom1]); |
843 | + | idat.t2 = &(atomColData.torque[atom2]); |
844 | + | } |
845 | + | |
846 | + | if (storageLayout_ & DataStorage::dslDensity) { |
847 | + | idat.rho1 = &(atomRowData.density[atom1]); |
848 | + | idat.rho2 = &(atomColData.density[atom2]); |
849 | + | } |
850 | + | |
851 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
852 | + | idat.frho1 = &(atomRowData.functional[atom1]); |
853 | + | idat.frho2 = &(atomColData.functional[atom2]); |
854 | + | } |
855 | + | |
856 | + | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
857 | + | idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); |
858 | + | idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); |
859 | + | } |
860 | + | |
861 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
862 | + | idat.particlePot1 = &(atomRowData.particlePot[atom1]); |
863 | + | idat.particlePot2 = &(atomColData.particlePot[atom2]); |
864 | + | } |
865 | + | |
866 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
867 | + | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
868 | + | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
869 | + | } |
870 | + | |
871 | + | #else |
872 | + | |
873 | + | idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
874 | + | ff_->getAtomType(idents[atom2]) ); |
875 | + | |
876 | + | if (storageLayout_ & DataStorage::dslAmat) { |
877 | + | idat.A1 = &(snap_->atomData.aMat[atom1]); |
878 | + | idat.A2 = &(snap_->atomData.aMat[atom2]); |
879 | + | } |
880 | + | |
881 | + | if (storageLayout_ & DataStorage::dslElectroFrame) { |
882 | + | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
883 | + | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
884 | + | } |
885 | + | |
886 | + | if (storageLayout_ & DataStorage::dslTorque) { |
887 | + | idat.t1 = &(snap_->atomData.torque[atom1]); |
888 | + | idat.t2 = &(snap_->atomData.torque[atom2]); |
889 | + | } |
890 | + | |
891 | + | if (storageLayout_ & DataStorage::dslDensity) { |
892 | + | idat.rho1 = &(snap_->atomData.density[atom1]); |
893 | + | idat.rho2 = &(snap_->atomData.density[atom2]); |
894 | + | } |
895 | + | |
896 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
897 | + | idat.frho1 = &(snap_->atomData.functional[atom1]); |
898 | + | idat.frho2 = &(snap_->atomData.functional[atom2]); |
899 | + | } |
900 | + | |
901 | + | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
902 | + | idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); |
903 | + | idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); |
904 | + | } |
905 | + | |
906 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
907 | + | idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); |
908 | + | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
909 | + | } |
910 | + | |
911 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
912 | + | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
913 | + | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
914 | + | } |
915 | + | #endif |
916 | + | } |
917 | + | |
918 | + | |
919 | + | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
920 | + | #ifdef IS_MPI |
921 | + | pot_row[atom1] += 0.5 * *(idat.pot); |
922 | + | pot_col[atom2] += 0.5 * *(idat.pot); |
923 | + | |
924 | + | atomRowData.force[atom1] += *(idat.f1); |
925 | + | atomColData.force[atom2] -= *(idat.f1); |
926 | + | #else |
927 | + | pairwisePot += *(idat.pot); |
928 | + | |
929 | + | snap_->atomData.force[atom1] += *(idat.f1); |
930 | + | snap_->atomData.force[atom2] -= *(idat.f1); |
931 | + | #endif |
932 | + | |
933 | + | } |
934 | + | |
935 | + | /* |
936 | + | * buildNeighborList |
937 | + | * |
938 | + | * first element of pair is row-indexed CutoffGroup |
939 | + | * second element of pair is column-indexed CutoffGroup |
940 | + | */ |
941 | + | vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { |
942 | + | |
943 | + | vector<pair<int, int> > neighborList; |
944 | + | groupCutoffs cuts; |
945 | + | bool doAllPairs = false; |
946 | + | |
947 | + | #ifdef IS_MPI |
948 | + | cellListRow_.clear(); |
949 | + | cellListCol_.clear(); |
950 | + | #else |
951 | + | cellList_.clear(); |
952 | + | #endif |
953 | + | |
954 | + | RealType rList_ = (largestRcut_ + skinThickness_); |
955 | + | RealType rl2 = rList_ * rList_; |
956 | + | Snapshot* snap_ = sman_->getCurrentSnapshot(); |
957 | + | Mat3x3d Hmat = snap_->getHmat(); |
958 | + | Vector3d Hx = Hmat.getColumn(0); |
959 | + | Vector3d Hy = Hmat.getColumn(1); |
960 | + | Vector3d Hz = Hmat.getColumn(2); |
961 | + | |
962 | + | nCells_.x() = (int) ( Hx.length() )/ rList_; |
963 | + | nCells_.y() = (int) ( Hy.length() )/ rList_; |
964 | + | nCells_.z() = (int) ( Hz.length() )/ rList_; |
965 | + | |
966 | + | // handle small boxes where the cell offsets can end up repeating cells |
967 | + | |
968 | + | if (nCells_.x() < 3) doAllPairs = true; |
969 | + | if (nCells_.y() < 3) doAllPairs = true; |
970 | + | if (nCells_.z() < 3) doAllPairs = true; |
971 | + | |
972 | + | Mat3x3d invHmat = snap_->getInvHmat(); |
973 | + | Vector3d rs, scaled, dr; |
974 | + | Vector3i whichCell; |
975 | + | int cellIndex; |
976 | + | int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
977 | + | |
978 | + | #ifdef IS_MPI |
979 | + | cellListRow_.resize(nCtot); |
980 | + | cellListCol_.resize(nCtot); |
981 | + | #else |
982 | + | cellList_.resize(nCtot); |
983 | + | #endif |
984 | + | |
985 | + | if (!doAllPairs) { |
986 | + | #ifdef IS_MPI |
987 | + | |
988 | + | for (int i = 0; i < nGroupsInRow_; i++) { |
989 | + | rs = cgRowData.position[i]; |
990 | + | |
991 | + | // scaled positions relative to the box vectors |
992 | + | scaled = invHmat * rs; |
993 | + | |
994 | + | // wrap the vector back into the unit box by subtracting integer box |
995 | + | // numbers |
996 | + | for (int j = 0; j < 3; j++) { |
997 | + | scaled[j] -= roundMe(scaled[j]); |
998 | + | scaled[j] += 0.5; |
999 | + | } |
1000 | + | |
1001 | + | // find xyz-indices of cell that cutoffGroup is in. |
1002 | + | whichCell.x() = nCells_.x() * scaled.x(); |
1003 | + | whichCell.y() = nCells_.y() * scaled.y(); |
1004 | + | whichCell.z() = nCells_.z() * scaled.z(); |
1005 | + | |
1006 | + | // find single index of this cell: |
1007 | + | cellIndex = Vlinear(whichCell, nCells_); |
1008 | + | |
1009 | + | // add this cutoff group to the list of groups in this cell; |
1010 | + | cellListRow_[cellIndex].push_back(i); |
1011 | + | } |
1012 | + | |
1013 | + | for (int i = 0; i < nGroupsInCol_; i++) { |
1014 | + | rs = cgColData.position[i]; |
1015 | + | |
1016 | + | // scaled positions relative to the box vectors |
1017 | + | scaled = invHmat * rs; |
1018 | + | |
1019 | + | // wrap the vector back into the unit box by subtracting integer box |
1020 | + | // numbers |
1021 | + | for (int j = 0; j < 3; j++) { |
1022 | + | scaled[j] -= roundMe(scaled[j]); |
1023 | + | scaled[j] += 0.5; |
1024 | + | } |
1025 | + | |
1026 | + | // find xyz-indices of cell that cutoffGroup is in. |
1027 | + | whichCell.x() = nCells_.x() * scaled.x(); |
1028 | + | whichCell.y() = nCells_.y() * scaled.y(); |
1029 | + | whichCell.z() = nCells_.z() * scaled.z(); |
1030 | + | |
1031 | + | // find single index of this cell: |
1032 | + | cellIndex = Vlinear(whichCell, nCells_); |
1033 | + | |
1034 | + | // add this cutoff group to the list of groups in this cell; |
1035 | + | cellListCol_[cellIndex].push_back(i); |
1036 | + | } |
1037 | + | #else |
1038 | + | for (int i = 0; i < nGroups_; i++) { |
1039 | + | rs = snap_->cgData.position[i]; |
1040 | + | |
1041 | + | // scaled positions relative to the box vectors |
1042 | + | scaled = invHmat * rs; |
1043 | + | |
1044 | + | // wrap the vector back into the unit box by subtracting integer box |
1045 | + | // numbers |
1046 | + | for (int j = 0; j < 3; j++) { |
1047 | + | scaled[j] -= roundMe(scaled[j]); |
1048 | + | scaled[j] += 0.5; |
1049 | + | } |
1050 | + | |
1051 | + | // find xyz-indices of cell that cutoffGroup is in. |
1052 | + | whichCell.x() = nCells_.x() * scaled.x(); |
1053 | + | whichCell.y() = nCells_.y() * scaled.y(); |
1054 | + | whichCell.z() = nCells_.z() * scaled.z(); |
1055 | + | |
1056 | + | // find single index of this cell: |
1057 | + | cellIndex = Vlinear(whichCell, nCells_); |
1058 | + | |
1059 | + | // add this cutoff group to the list of groups in this cell; |
1060 | + | cellList_[cellIndex].push_back(i); |
1061 | + | } |
1062 | + | #endif |
1063 | + | |
1064 | + | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1065 | + | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1066 | + | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1067 | + | Vector3i m1v(m1x, m1y, m1z); |
1068 | + | int m1 = Vlinear(m1v, nCells_); |
1069 | + | |
1070 | + | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1071 | + | os != cellOffsets_.end(); ++os) { |
1072 | + | |
1073 | + | Vector3i m2v = m1v + (*os); |
1074 | + | |
1075 | + | if (m2v.x() >= nCells_.x()) { |
1076 | + | m2v.x() = 0; |
1077 | + | } else if (m2v.x() < 0) { |
1078 | + | m2v.x() = nCells_.x() - 1; |
1079 | + | } |
1080 | + | |
1081 | + | if (m2v.y() >= nCells_.y()) { |
1082 | + | m2v.y() = 0; |
1083 | + | } else if (m2v.y() < 0) { |
1084 | + | m2v.y() = nCells_.y() - 1; |
1085 | + | } |
1086 | + | |
1087 | + | if (m2v.z() >= nCells_.z()) { |
1088 | + | m2v.z() = 0; |
1089 | + | } else if (m2v.z() < 0) { |
1090 | + | m2v.z() = nCells_.z() - 1; |
1091 | + | } |
1092 | + | |
1093 | + | int m2 = Vlinear (m2v, nCells_); |
1094 | + | |
1095 | + | #ifdef IS_MPI |
1096 | + | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1097 | + | j1 != cellListRow_[m1].end(); ++j1) { |
1098 | + | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1099 | + | j2 != cellListCol_[m2].end(); ++j2) { |
1100 | + | |
1101 | + | // Always do this if we're in different cells or if |
1102 | + | // we're in the same cell and the global index of the |
1103 | + | // j2 cutoff group is less than the j1 cutoff group |
1104 | + | |
1105 | + | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1106 | + | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1107 | + | snap_->wrapVector(dr); |
1108 | + | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1109 | + | if (dr.lengthSquare() < cuts.third) { |
1110 | + | neighborList.push_back(make_pair((*j1), (*j2))); |
1111 | + | } |
1112 | + | } |
1113 | + | } |
1114 | + | } |
1115 | + | #else |
1116 | + | |
1117 | + | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1118 | + | j1 != cellList_[m1].end(); ++j1) { |
1119 | + | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1120 | + | j2 != cellList_[m2].end(); ++j2) { |
1121 | + | |
1122 | + | // Always do this if we're in different cells or if |
1123 | + | // we're in the same cell and the global index of the |
1124 | + | // j2 cutoff group is less than the j1 cutoff group |
1125 | + | |
1126 | + | if (m2 != m1 || (*j2) < (*j1)) { |
1127 | + | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1128 | + | snap_->wrapVector(dr); |
1129 | + | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1130 | + | if (dr.lengthSquare() < cuts.third) { |
1131 | + | neighborList.push_back(make_pair((*j1), (*j2))); |
1132 | + | } |
1133 | + | } |
1134 | + | } |
1135 | + | } |
1136 | + | #endif |
1137 | + | } |
1138 | + | } |
1139 | + | } |
1140 | + | } |
1141 | + | } else { |
1142 | + | // branch to do all cutoff group pairs |
1143 | + | #ifdef IS_MPI |
1144 | + | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1145 | + | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1146 | + | dr = cgColData.position[j2] - cgRowData.position[j1]; |
1147 | + | snap_->wrapVector(dr); |
1148 | + | cuts = getGroupCutoffs( j1, j2 ); |
1149 | + | if (dr.lengthSquare() < cuts.third) { |
1150 | + | neighborList.push_back(make_pair(j1, j2)); |
1151 | + | } |
1152 | + | } |
1153 | + | } |
1154 | + | #else |
1155 | + | for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1156 | + | for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1157 | + | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1158 | + | snap_->wrapVector(dr); |
1159 | + | cuts = getGroupCutoffs( j1, j2 ); |
1160 | + | if (dr.lengthSquare() < cuts.third) { |
1161 | + | neighborList.push_back(make_pair(j1, j2)); |
1162 | + | } |
1163 | + | } |
1164 | + | } |
1165 | + | #endif |
1166 | + | } |
1167 | + | |
1168 | + | // save the local cutoff group positions for the check that is |
1169 | + | // done on each loop: |
1170 | + | saved_CG_positions_.clear(); |
1171 | + | for (int i = 0; i < nGroups_; i++) |
1172 | + | saved_CG_positions_.push_back(snap_->cgData.position[i]); |
1173 | + | |
1174 | + | return neighborList; |
1175 | + | } |
1176 | + | } //end namespace OpenMD |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |