# | Line 38 | Line 38 | |
---|---|---|
38 | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | |
39 | * [4] Vardeman & Gezelter, in progress (2009). | |
40 | */ | |
41 | < | #include "parallel/ForceDecomposition.hpp" |
42 | < | #include "parallel/Communicator.hpp" |
41 | > | #include "parallel/ForceMatrixDecomposition.hpp" |
42 | #include "math/SquareMatrix3.hpp" | |
43 | + | #include "nonbonded/NonBondedInteraction.hpp" |
44 | + | #include "brains/SnapshotManager.hpp" |
45 | + | #include "brains/PairList.hpp" |
46 | ||
47 | using namespace std; | |
48 | namespace OpenMD { | |
49 | ||
50 | < | void ForceDecomposition::distributeInitialData() { |
50 | > | /** |
51 | > | * distributeInitialData is essentially a copy of the older fortran |
52 | > | * SimulationSetup |
53 | > | */ |
54 | > | |
55 | > | void ForceMatrixDecomposition::distributeInitialData() { |
56 | > | snap_ = sman_->getCurrentSnapshot(); |
57 | > | storageLayout_ = sman_->getStorageLayout(); |
58 | > | ff_ = info_->getForceField(); |
59 | > | nLocal_ = snap_->getNumberOfAtoms(); |
60 | > | |
61 | > | nGroups_ = info_->getNLocalCutoffGroups(); |
62 | > | cerr << "in dId, nGroups = " << nGroups_ << "\n"; |
63 | > | // gather the information for atomtype IDs (atids): |
64 | > | identsLocal = info_->getIdentArray(); |
65 | > | AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
66 | > | cgLocalToGlobal = info_->getGlobalGroupIndices(); |
67 | > | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
68 | > | vector<RealType> massFactorsLocal = info_->getMassFactors(); |
69 | > | PairList excludes = info_->getExcludedInteractions(); |
70 | > | PairList oneTwo = info_->getOneTwoInteractions(); |
71 | > | PairList oneThree = info_->getOneThreeInteractions(); |
72 | > | PairList oneFour = info_->getOneFourInteractions(); |
73 | > | |
74 | #ifdef IS_MPI | |
75 | < | Snapshot* snap = sman_->getCurrentSnapshot(); |
76 | < | int nAtoms = snap->getNumberOfAtoms(); |
77 | < | int nGroups = snap->getNumberOfCutoffGroups(); |
75 | > | |
76 | > | AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
77 | > | AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
78 | > | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
79 | > | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
80 | > | AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
81 | ||
82 | < | AtomCommRealI = new Communicator<Row,RealType>(nAtoms); |
83 | < | AtomCommVectorI = new Communicator<Row,Vector3d>(nAtoms); |
84 | < | AtomCommMatrixI = new Communicator<Row,Mat3x3d>(nAtoms); |
82 | > | AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
83 | > | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
84 | > | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
85 | > | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
86 | > | AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
87 | ||
88 | < | AtomCommRealJ = new Communicator<Column,RealType>(nAtoms); |
89 | < | AtomCommVectorJ = new Communicator<Column,Vector3d>(nAtoms); |
90 | < | AtomCommMatrixJ = new Communicator<Column,Mat3x3d>(nAtoms); |
88 | > | cgCommIntRow = new Communicator<Row,int>(nGroups_); |
89 | > | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
90 | > | cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
91 | > | cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
92 | ||
93 | < | cgCommVectorI = new Communicator<Row,Vector3d>(nGroups); |
94 | < | cgCommVectorJ = new Communicator<Column,Vector3d>(nGroups); |
93 | > | nAtomsInRow_ = AtomCommIntRow->getSize(); |
94 | > | nAtomsInCol_ = AtomCommIntColumn->getSize(); |
95 | > | nGroupsInRow_ = cgCommIntRow->getSize(); |
96 | > | nGroupsInCol_ = cgCommIntColumn->getSize(); |
97 | ||
98 | < | int nInRow = AtomCommRealI.getSize(); |
99 | < | int nInCol = AtomCommRealJ.getSize(); |
98 | > | // Modify the data storage objects with the correct layouts and sizes: |
99 | > | atomRowData.resize(nAtomsInRow_); |
100 | > | atomRowData.setStorageLayout(storageLayout_); |
101 | > | atomColData.resize(nAtomsInCol_); |
102 | > | atomColData.setStorageLayout(storageLayout_); |
103 | > | cgRowData.resize(nGroupsInRow_); |
104 | > | cgRowData.setStorageLayout(DataStorage::dslPosition); |
105 | > | cgColData.resize(nGroupsInCol_); |
106 | > | cgColData.setStorageLayout(DataStorage::dslPosition); |
107 | > | |
108 | > | identsRow.resize(nAtomsInRow_); |
109 | > | identsCol.resize(nAtomsInCol_); |
110 | > | |
111 | > | AtomCommIntRow->gather(identsLocal, identsRow); |
112 | > | AtomCommIntColumn->gather(identsLocal, identsCol); |
113 | > | |
114 | > | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
115 | > | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
116 | > | |
117 | > | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
118 | > | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
119 | ||
120 | < | vector<vector<RealType> > pot_row(LR_POT_TYPES, |
121 | < | vector<RealType> (nInRow, 0.0)); |
70 | < | vector<vector<RealType> > pot_col(LR_POT_TYPES, |
71 | < | vector<RealType> (nInCol, 0.0)); |
120 | > | AtomCommRealRow->gather(massFactorsLocal, massFactorsRow); |
121 | > | AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol); |
122 | ||
123 | < | vector<vector<RealType> > pot_local(LR_POT_TYPES, |
124 | < | vector<RealType> (nAtoms, 0.0)); |
123 | > | groupListRow_.clear(); |
124 | > | groupListRow_.resize(nGroupsInRow_); |
125 | > | for (int i = 0; i < nGroupsInRow_; i++) { |
126 | > | int gid = cgRowToGlobal[i]; |
127 | > | for (int j = 0; j < nAtomsInRow_; j++) { |
128 | > | int aid = AtomRowToGlobal[j]; |
129 | > | if (globalGroupMembership[aid] == gid) |
130 | > | groupListRow_[i].push_back(j); |
131 | > | } |
132 | > | } |
133 | > | |
134 | > | groupListCol_.clear(); |
135 | > | groupListCol_.resize(nGroupsInCol_); |
136 | > | for (int i = 0; i < nGroupsInCol_; i++) { |
137 | > | int gid = cgColToGlobal[i]; |
138 | > | for (int j = 0; j < nAtomsInCol_; j++) { |
139 | > | int aid = AtomColToGlobal[j]; |
140 | > | if (globalGroupMembership[aid] == gid) |
141 | > | groupListCol_[i].push_back(j); |
142 | > | } |
143 | > | } |
144 | > | |
145 | > | skipsForAtom.clear(); |
146 | > | skipsForAtom.resize(nAtomsInRow_); |
147 | > | toposForAtom.clear(); |
148 | > | toposForAtom.resize(nAtomsInRow_); |
149 | > | topoDist.clear(); |
150 | > | topoDist.resize(nAtomsInRow_); |
151 | > | for (int i = 0; i < nAtomsInRow_; i++) { |
152 | > | int iglob = AtomRowToGlobal[i]; |
153 | > | |
154 | > | for (int j = 0; j < nAtomsInCol_; j++) { |
155 | > | int jglob = AtomColToGlobal[j]; |
156 | > | |
157 | > | if (excludes.hasPair(iglob, jglob)) |
158 | > | skipsForAtom[i].push_back(j); |
159 | > | |
160 | > | if (oneTwo.hasPair(iglob, jglob)) { |
161 | > | toposForAtom[i].push_back(j); |
162 | > | topoDist[i].push_back(1); |
163 | > | } else { |
164 | > | if (oneThree.hasPair(iglob, jglob)) { |
165 | > | toposForAtom[i].push_back(j); |
166 | > | topoDist[i].push_back(2); |
167 | > | } else { |
168 | > | if (oneFour.hasPair(iglob, jglob)) { |
169 | > | toposForAtom[i].push_back(j); |
170 | > | topoDist[i].push_back(3); |
171 | > | } |
172 | > | } |
173 | > | } |
174 | > | } |
175 | > | } |
176 | > | |
177 | > | #endif |
178 | > | |
179 | > | groupList_.clear(); |
180 | > | groupList_.resize(nGroups_); |
181 | > | for (int i = 0; i < nGroups_; i++) { |
182 | > | int gid = cgLocalToGlobal[i]; |
183 | > | for (int j = 0; j < nLocal_; j++) { |
184 | > | int aid = AtomLocalToGlobal[j]; |
185 | > | if (globalGroupMembership[aid] == gid) { |
186 | > | groupList_[i].push_back(j); |
187 | > | } |
188 | > | } |
189 | > | } |
190 | > | |
191 | > | skipsForAtom.clear(); |
192 | > | skipsForAtom.resize(nLocal_); |
193 | > | toposForAtom.clear(); |
194 | > | toposForAtom.resize(nLocal_); |
195 | > | topoDist.clear(); |
196 | > | topoDist.resize(nLocal_); |
197 | > | |
198 | > | for (int i = 0; i < nLocal_; i++) { |
199 | > | int iglob = AtomLocalToGlobal[i]; |
200 | > | |
201 | > | for (int j = 0; j < nLocal_; j++) { |
202 | > | int jglob = AtomLocalToGlobal[j]; |
203 | > | |
204 | > | if (excludes.hasPair(iglob, jglob)) |
205 | > | skipsForAtom[i].push_back(j); |
206 | > | |
207 | > | if (oneTwo.hasPair(iglob, jglob)) { |
208 | > | toposForAtom[i].push_back(j); |
209 | > | topoDist[i].push_back(1); |
210 | > | } else { |
211 | > | if (oneThree.hasPair(iglob, jglob)) { |
212 | > | toposForAtom[i].push_back(j); |
213 | > | topoDist[i].push_back(2); |
214 | > | } else { |
215 | > | if (oneFour.hasPair(iglob, jglob)) { |
216 | > | toposForAtom[i].push_back(j); |
217 | > | topoDist[i].push_back(3); |
218 | > | } |
219 | > | } |
220 | > | } |
221 | > | } |
222 | > | } |
223 | > | |
224 | > | createGtypeCutoffMap(); |
225 | > | } |
226 | > | |
227 | > | void ForceMatrixDecomposition::createGtypeCutoffMap() { |
228 | > | |
229 | > | RealType tol = 1e-6; |
230 | > | RealType rc; |
231 | > | int atid; |
232 | > | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
233 | > | vector<RealType> atypeCutoff; |
234 | > | atypeCutoff.resize( atypes.size() ); |
235 | > | |
236 | > | for (set<AtomType*>::iterator at = atypes.begin(); |
237 | > | at != atypes.end(); ++at){ |
238 | > | rc = interactionMan_->getSuggestedCutoffRadius(*at); |
239 | > | atid = (*at)->getIdent(); |
240 | > | atypeCutoff[atid] = rc; |
241 | > | } |
242 | > | |
243 | > | vector<RealType> gTypeCutoffs; |
244 | > | |
245 | > | // first we do a single loop over the cutoff groups to find the |
246 | > | // largest cutoff for any atypes present in this group. |
247 | > | #ifdef IS_MPI |
248 | > | vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); |
249 | > | groupRowToGtype.resize(nGroupsInRow_); |
250 | > | for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { |
251 | > | vector<int> atomListRow = getAtomsInGroupRow(cg1); |
252 | > | for (vector<int>::iterator ia = atomListRow.begin(); |
253 | > | ia != atomListRow.end(); ++ia) { |
254 | > | int atom1 = (*ia); |
255 | > | atid = identsRow[atom1]; |
256 | > | if (atypeCutoff[atid] > groupCutoffRow[cg1]) { |
257 | > | groupCutoffRow[cg1] = atypeCutoff[atid]; |
258 | > | } |
259 | > | } |
260 | > | |
261 | > | bool gTypeFound = false; |
262 | > | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
263 | > | if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) { |
264 | > | groupRowToGtype[cg1] = gt; |
265 | > | gTypeFound = true; |
266 | > | } |
267 | > | } |
268 | > | if (!gTypeFound) { |
269 | > | gTypeCutoffs.push_back( groupCutoffRow[cg1] ); |
270 | > | groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; |
271 | > | } |
272 | > | |
273 | > | } |
274 | > | vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); |
275 | > | groupColToGtype.resize(nGroupsInCol_); |
276 | > | for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { |
277 | > | vector<int> atomListCol = getAtomsInGroupColumn(cg2); |
278 | > | for (vector<int>::iterator jb = atomListCol.begin(); |
279 | > | jb != atomListCol.end(); ++jb) { |
280 | > | int atom2 = (*jb); |
281 | > | atid = identsCol[atom2]; |
282 | > | if (atypeCutoff[atid] > groupCutoffCol[cg2]) { |
283 | > | groupCutoffCol[cg2] = atypeCutoff[atid]; |
284 | > | } |
285 | > | } |
286 | > | bool gTypeFound = false; |
287 | > | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
288 | > | if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) { |
289 | > | groupColToGtype[cg2] = gt; |
290 | > | gTypeFound = true; |
291 | > | } |
292 | > | } |
293 | > | if (!gTypeFound) { |
294 | > | gTypeCutoffs.push_back( groupCutoffCol[cg2] ); |
295 | > | groupColToGtype[cg2] = gTypeCutoffs.size() - 1; |
296 | > | } |
297 | > | } |
298 | > | #else |
299 | > | |
300 | > | vector<RealType> groupCutoff(nGroups_, 0.0); |
301 | > | groupToGtype.resize(nGroups_); |
302 | > | |
303 | > | cerr << "nGroups = " << nGroups_ << "\n"; |
304 | > | for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
305 | > | |
306 | > | groupCutoff[cg1] = 0.0; |
307 | > | vector<int> atomList = getAtomsInGroupRow(cg1); |
308 | > | |
309 | > | for (vector<int>::iterator ia = atomList.begin(); |
310 | > | ia != atomList.end(); ++ia) { |
311 | > | int atom1 = (*ia); |
312 | > | atid = identsLocal[atom1]; |
313 | > | if (atypeCutoff[atid] > groupCutoff[cg1]) { |
314 | > | groupCutoff[cg1] = atypeCutoff[atid]; |
315 | > | } |
316 | > | } |
317 | ||
318 | + | bool gTypeFound = false; |
319 | + | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
320 | + | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
321 | + | groupToGtype[cg1] = gt; |
322 | + | gTypeFound = true; |
323 | + | } |
324 | + | } |
325 | + | if (!gTypeFound) { |
326 | + | gTypeCutoffs.push_back( groupCutoff[cg1] ); |
327 | + | groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
328 | + | } |
329 | + | } |
330 | #endif | |
331 | + | |
332 | + | cerr << "gTypeCutoffs.size() = " << gTypeCutoffs.size() << "\n"; |
333 | + | // Now we find the maximum group cutoff value present in the simulation |
334 | + | |
335 | + | RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); |
336 | + | |
337 | + | #ifdef IS_MPI |
338 | + | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); |
339 | + | #endif |
340 | + | |
341 | + | RealType tradRcut = groupMax; |
342 | + | |
343 | + | for (int i = 0; i < gTypeCutoffs.size(); i++) { |
344 | + | for (int j = 0; j < gTypeCutoffs.size(); j++) { |
345 | + | RealType thisRcut; |
346 | + | switch(cutoffPolicy_) { |
347 | + | case TRADITIONAL: |
348 | + | thisRcut = tradRcut; |
349 | + | break; |
350 | + | case MIX: |
351 | + | thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); |
352 | + | break; |
353 | + | case MAX: |
354 | + | thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); |
355 | + | break; |
356 | + | default: |
357 | + | sprintf(painCave.errMsg, |
358 | + | "ForceMatrixDecomposition::createGtypeCutoffMap " |
359 | + | "hit an unknown cutoff policy!\n"); |
360 | + | painCave.severity = OPENMD_ERROR; |
361 | + | painCave.isFatal = 1; |
362 | + | simError(); |
363 | + | break; |
364 | + | } |
365 | + | |
366 | + | pair<int,int> key = make_pair(i,j); |
367 | + | gTypeCutoffMap[key].first = thisRcut; |
368 | + | |
369 | + | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
370 | + | |
371 | + | gTypeCutoffMap[key].second = thisRcut*thisRcut; |
372 | + | |
373 | + | gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
374 | + | |
375 | + | // sanity check |
376 | + | |
377 | + | if (userChoseCutoff_) { |
378 | + | if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
379 | + | sprintf(painCave.errMsg, |
380 | + | "ForceMatrixDecomposition::createGtypeCutoffMap " |
381 | + | "user-specified rCut does not match computed group Cutoff\n"); |
382 | + | painCave.severity = OPENMD_ERROR; |
383 | + | painCave.isFatal = 1; |
384 | + | simError(); |
385 | + | } |
386 | + | } |
387 | + | } |
388 | + | } |
389 | } | |
390 | + | |
391 | + | |
392 | + | groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
393 | + | int i, j; |
394 | + | #ifdef IS_MPI |
395 | + | i = groupRowToGtype[cg1]; |
396 | + | j = groupColToGtype[cg2]; |
397 | + | #else |
398 | + | i = groupToGtype[cg1]; |
399 | + | j = groupToGtype[cg2]; |
400 | + | #endif |
401 | + | return gTypeCutoffMap[make_pair(i,j)]; |
402 | + | } |
403 | + | |
404 | + | int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
405 | + | for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
406 | + | if (toposForAtom[atom1][j] == atom2) |
407 | + | return topoDist[atom1][j]; |
408 | + | } |
409 | + | return 0; |
410 | + | } |
411 | + | |
412 | + | void ForceMatrixDecomposition::zeroWorkArrays() { |
413 | + | |
414 | + | for (int j = 0; j < N_INTERACTION_FAMILIES; j++) { |
415 | + | longRangePot_[j] = 0.0; |
416 | + | } |
417 | + | |
418 | + | #ifdef IS_MPI |
419 | + | if (storageLayout_ & DataStorage::dslForce) { |
420 | + | fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); |
421 | + | fill(atomColData.force.begin(), atomColData.force.end(), V3Zero); |
422 | + | } |
423 | + | |
424 | + | if (storageLayout_ & DataStorage::dslTorque) { |
425 | + | fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero); |
426 | + | fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero); |
427 | + | } |
428 | ||
429 | + | fill(pot_row.begin(), pot_row.end(), |
430 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
431 | ||
432 | + | fill(pot_col.begin(), pot_col.end(), |
433 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
434 | + | |
435 | + | pot_local = Vector<RealType, N_INTERACTION_FAMILIES>(0.0); |
436 | ||
437 | < | void ForceDecomposition::distributeData() { |
437 | > | if (storageLayout_ & DataStorage::dslParticlePot) { |
438 | > | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); |
439 | > | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); |
440 | > | } |
441 | > | |
442 | > | if (storageLayout_ & DataStorage::dslDensity) { |
443 | > | fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0); |
444 | > | fill(atomColData.density.begin(), atomColData.density.end(), 0.0); |
445 | > | } |
446 | > | |
447 | > | if (storageLayout_ & DataStorage::dslFunctional) { |
448 | > | fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); |
449 | > | fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); |
450 | > | } |
451 | > | |
452 | > | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
453 | > | fill(atomRowData.functionalDerivative.begin(), |
454 | > | atomRowData.functionalDerivative.end(), 0.0); |
455 | > | fill(atomColData.functionalDerivative.begin(), |
456 | > | atomColData.functionalDerivative.end(), 0.0); |
457 | > | } |
458 | > | |
459 | > | #else |
460 | > | |
461 | > | if (storageLayout_ & DataStorage::dslParticlePot) { |
462 | > | fill(snap_->atomData.particlePot.begin(), |
463 | > | snap_->atomData.particlePot.end(), 0.0); |
464 | > | } |
465 | > | |
466 | > | if (storageLayout_ & DataStorage::dslDensity) { |
467 | > | fill(snap_->atomData.density.begin(), |
468 | > | snap_->atomData.density.end(), 0.0); |
469 | > | } |
470 | > | if (storageLayout_ & DataStorage::dslFunctional) { |
471 | > | fill(snap_->atomData.functional.begin(), |
472 | > | snap_->atomData.functional.end(), 0.0); |
473 | > | } |
474 | > | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
475 | > | fill(snap_->atomData.functionalDerivative.begin(), |
476 | > | snap_->atomData.functionalDerivative.end(), 0.0); |
477 | > | } |
478 | > | #endif |
479 | > | |
480 | > | } |
481 | > | |
482 | > | |
483 | > | void ForceMatrixDecomposition::distributeData() { |
484 | > | snap_ = sman_->getCurrentSnapshot(); |
485 | > | storageLayout_ = sman_->getStorageLayout(); |
486 | #ifdef IS_MPI | |
83 | – | Snapshot* snap = sman_->getCurrentSnapshot(); |
487 | ||
488 | // gather up the atomic positions | |
489 | < | AtomCommVectorI->gather(snap->atomData.position, |
490 | < | snap->atomIData.position); |
491 | < | AtomCommVectorJ->gather(snap->atomData.position, |
492 | < | snap->atomJData.position); |
489 | > | AtomCommVectorRow->gather(snap_->atomData.position, |
490 | > | atomRowData.position); |
491 | > | AtomCommVectorColumn->gather(snap_->atomData.position, |
492 | > | atomColData.position); |
493 | ||
494 | // gather up the cutoff group positions | |
495 | < | cgCommVectorI->gather(snap->cgData.position, |
496 | < | snap->cgIData.position); |
497 | < | cgCommVectorJ->gather(snap->cgData.position, |
498 | < | snap->cgJData.position); |
495 | > | cgCommVectorRow->gather(snap_->cgData.position, |
496 | > | cgRowData.position); |
497 | > | cgCommVectorColumn->gather(snap_->cgData.position, |
498 | > | cgColData.position); |
499 | ||
500 | // if needed, gather the atomic rotation matrices | |
501 | < | if (snap->atomData.getStorageLayout() & DataStorage::dslAmat) { |
502 | < | AtomCommMatrixI->gather(snap->atomData.aMat, |
503 | < | snap->atomIData.aMat); |
504 | < | AtomCommMatrixJ->gather(snap->atomData.aMat, |
505 | < | snap->atomJData.aMat); |
501 | > | if (storageLayout_ & DataStorage::dslAmat) { |
502 | > | AtomCommMatrixRow->gather(snap_->atomData.aMat, |
503 | > | atomRowData.aMat); |
504 | > | AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
505 | > | atomColData.aMat); |
506 | } | |
507 | ||
508 | // if needed, gather the atomic eletrostatic frames | |
509 | < | if (snap->atomData.getStorageLayout() & DataStorage::dslElectroFrame) { |
510 | < | AtomCommMatrixI->gather(snap->atomData.electroFrame, |
511 | < | snap->atomIData.electroFrame); |
512 | < | AtomCommMatrixJ->gather(snap->atomData.electroFrame, |
513 | < | snap->atomJData.electroFrame); |
509 | > | if (storageLayout_ & DataStorage::dslElectroFrame) { |
510 | > | AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
511 | > | atomRowData.electroFrame); |
512 | > | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
513 | > | atomColData.electroFrame); |
514 | } | |
515 | #endif | |
516 | } | |
517 | ||
518 | < | void ForceDecomposition::collectIntermediateData() { |
518 | > | /* collects information obtained during the pre-pair loop onto local |
519 | > | * data structures. |
520 | > | */ |
521 | > | void ForceMatrixDecomposition::collectIntermediateData() { |
522 | > | snap_ = sman_->getCurrentSnapshot(); |
523 | > | storageLayout_ = sman_->getStorageLayout(); |
524 | #ifdef IS_MPI | |
117 | – | Snapshot* snap = sman_->getCurrentSnapshot(); |
525 | ||
526 | < | if (snap->atomData.getStorageLayout() & DataStorage::dslDensity) { |
527 | < | |
528 | < | AtomCommRealI->scatter(snap->atomIData.density, |
529 | < | snap->atomData.density); |
530 | < | |
531 | < | int n = snap->atomData.density.size(); |
532 | < | std::vector<RealType> rho_tmp(n, 0.0); |
533 | < | AtomCommRealJ->scatter(snap->atomJData.density, rho_tmp); |
526 | > | if (storageLayout_ & DataStorage::dslDensity) { |
527 | > | |
528 | > | AtomCommRealRow->scatter(atomRowData.density, |
529 | > | snap_->atomData.density); |
530 | > | |
531 | > | int n = snap_->atomData.density.size(); |
532 | > | vector<RealType> rho_tmp(n, 0.0); |
533 | > | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
534 | for (int i = 0; i < n; i++) | |
535 | < | snap->atomData.density[i] += rho_tmp[i]; |
535 | > | snap_->atomData.density[i] += rho_tmp[i]; |
536 | } | |
537 | #endif | |
538 | } | |
539 | < | |
540 | < | void ForceDecomposition::distributeIntermediateData() { |
539 | > | |
540 | > | /* |
541 | > | * redistributes information obtained during the pre-pair loop out to |
542 | > | * row and column-indexed data structures |
543 | > | */ |
544 | > | void ForceMatrixDecomposition::distributeIntermediateData() { |
545 | > | snap_ = sman_->getCurrentSnapshot(); |
546 | > | storageLayout_ = sman_->getStorageLayout(); |
547 | #ifdef IS_MPI | |
548 | < | Snapshot* snap = sman_->getCurrentSnapshot(); |
549 | < | if (snap->atomData.getStorageLayout() & DataStorage::dslFunctional) { |
550 | < | AtomCommRealI->gather(snap->atomData.functional, |
551 | < | snap->atomIData.functional); |
552 | < | AtomCommRealJ->gather(snap->atomData.functional, |
140 | < | snap->atomJData.functional); |
548 | > | if (storageLayout_ & DataStorage::dslFunctional) { |
549 | > | AtomCommRealRow->gather(snap_->atomData.functional, |
550 | > | atomRowData.functional); |
551 | > | AtomCommRealColumn->gather(snap_->atomData.functional, |
552 | > | atomColData.functional); |
553 | } | |
554 | ||
555 | < | if (snap->atomData.getStorageLayout() & DataStorage::dslFunctionalDerivative) { |
556 | < | AtomCommRealI->gather(snap->atomData.functionalDerivative, |
557 | < | snap->atomIData.functionalDerivative); |
558 | < | AtomCommRealJ->gather(snap->atomData.functionalDerivative, |
559 | < | snap->atomJData.functionalDerivative); |
555 | > | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
556 | > | AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
557 | > | atomRowData.functionalDerivative); |
558 | > | AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
559 | > | atomColData.functionalDerivative); |
560 | } | |
561 | #endif | |
562 | } | |
563 | ||
564 | ||
565 | < | void ForceDecomposition::collectData() { |
566 | < | #ifdef IS_MPI |
567 | < | Snapshot* snap = sman_->getCurrentSnapshot(); |
568 | < | |
569 | < | int n = snap->atomData.force.size(); |
570 | < | std::vector<Vector3d> frc_tmp(n, 0.0); |
571 | < | |
572 | < | AtomCommVectorI->scatter(snap->atomIData.force, frc_tmp); |
565 | > | void ForceMatrixDecomposition::collectData() { |
566 | > | snap_ = sman_->getCurrentSnapshot(); |
567 | > | storageLayout_ = sman_->getStorageLayout(); |
568 | > | #ifdef IS_MPI |
569 | > | int n = snap_->atomData.force.size(); |
570 | > | vector<Vector3d> frc_tmp(n, V3Zero); |
571 | > | |
572 | > | AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
573 | for (int i = 0; i < n; i++) { | |
574 | < | snap->atomData.force[i] += frc_tmp[i]; |
574 | > | snap_->atomData.force[i] += frc_tmp[i]; |
575 | frc_tmp[i] = 0.0; | |
576 | } | |
577 | ||
578 | < | AtomCommVectorJ->scatter(snap->atomJData.force, frc_tmp); |
578 | > | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
579 | for (int i = 0; i < n; i++) | |
580 | < | snap->atomData.force[i] += frc_tmp[i]; |
580 | > | snap_->atomData.force[i] += frc_tmp[i]; |
581 | ||
582 | ||
583 | < | if (snap->atomData.getStorageLayout() & DataStorage::dslTorque) { |
583 | > | if (storageLayout_ & DataStorage::dslTorque) { |
584 | ||
585 | < | int nt = snap->atomData.force.size(); |
586 | < | std::vector<Vector3d> trq_tmp(nt, 0.0); |
585 | > | int nt = snap_->atomData.force.size(); |
586 | > | vector<Vector3d> trq_tmp(nt, V3Zero); |
587 | ||
588 | < | AtomCommVectorI->scatter(snap->atomIData.torque, trq_tmp); |
588 | > | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
589 | for (int i = 0; i < n; i++) { | |
590 | < | snap->atomData.torque[i] += trq_tmp[i]; |
590 | > | snap_->atomData.torque[i] += trq_tmp[i]; |
591 | trq_tmp[i] = 0.0; | |
592 | } | |
593 | ||
594 | < | AtomCommVectorJ->scatter(snap->atomJData.torque, trq_tmp); |
594 | > | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
595 | for (int i = 0; i < n; i++) | |
596 | < | snap->atomData.torque[i] += trq_tmp[i]; |
596 | > | snap_->atomData.torque[i] += trq_tmp[i]; |
597 | } | |
598 | ||
599 | + | nLocal_ = snap_->getNumberOfAtoms(); |
600 | + | |
601 | + | vector<potVec> pot_temp(nLocal_, |
602 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
603 | + | |
604 | + | // scatter/gather pot_row into the members of my column |
605 | + | |
606 | + | AtomCommPotRow->scatter(pot_row, pot_temp); |
607 | + | |
608 | + | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
609 | + | pot_local += pot_temp[ii]; |
610 | ||
611 | < | vector<vector<RealType> > pot_temp(LR_POT_TYPES, |
612 | < | vector<RealType> (nAtoms, 0.0)); |
611 | > | fill(pot_temp.begin(), pot_temp.end(), |
612 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
613 | > | |
614 | > | AtomCommPotColumn->scatter(pot_col, pot_temp); |
615 | ||
616 | < | for (int i = 0; i < LR_POT_TYPES; i++) { |
617 | < | AtomCommRealI->scatter(pot_row[i], pot_temp[i]); |
618 | < | for (int ii = 0; ii < pot_temp[i].size(); ii++ ) { |
619 | < | pot_local[i] += pot_temp[i][ii]; |
620 | < | } |
616 | > | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
617 | > | pot_local += pot_temp[ii]; |
618 | > | |
619 | > | #endif |
620 | > | } |
621 | > | |
622 | > | int ForceMatrixDecomposition::getNAtomsInRow() { |
623 | > | #ifdef IS_MPI |
624 | > | return nAtomsInRow_; |
625 | > | #else |
626 | > | return nLocal_; |
627 | > | #endif |
628 | > | } |
629 | > | |
630 | > | /** |
631 | > | * returns the list of atoms belonging to this group. |
632 | > | */ |
633 | > | vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
634 | > | #ifdef IS_MPI |
635 | > | return groupListRow_[cg1]; |
636 | > | #else |
637 | > | return groupList_[cg1]; |
638 | > | #endif |
639 | > | } |
640 | > | |
641 | > | vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
642 | > | #ifdef IS_MPI |
643 | > | return groupListCol_[cg2]; |
644 | > | #else |
645 | > | return groupList_[cg2]; |
646 | > | #endif |
647 | > | } |
648 | > | |
649 | > | Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ |
650 | > | Vector3d d; |
651 | > | |
652 | > | #ifdef IS_MPI |
653 | > | d = cgColData.position[cg2] - cgRowData.position[cg1]; |
654 | > | #else |
655 | > | d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; |
656 | > | #endif |
657 | > | |
658 | > | snap_->wrapVector(d); |
659 | > | return d; |
660 | > | } |
661 | > | |
662 | > | |
663 | > | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ |
664 | > | |
665 | > | Vector3d d; |
666 | > | |
667 | > | #ifdef IS_MPI |
668 | > | d = cgRowData.position[cg1] - atomRowData.position[atom1]; |
669 | > | #else |
670 | > | d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; |
671 | > | #endif |
672 | > | |
673 | > | snap_->wrapVector(d); |
674 | > | return d; |
675 | > | } |
676 | > | |
677 | > | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){ |
678 | > | Vector3d d; |
679 | > | |
680 | > | #ifdef IS_MPI |
681 | > | d = cgColData.position[cg2] - atomColData.position[atom2]; |
682 | > | #else |
683 | > | d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; |
684 | > | #endif |
685 | > | |
686 | > | snap_->wrapVector(d); |
687 | > | return d; |
688 | > | } |
689 | > | |
690 | > | RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
691 | > | #ifdef IS_MPI |
692 | > | return massFactorsRow[atom1]; |
693 | > | #else |
694 | > | return massFactorsLocal[atom1]; |
695 | > | #endif |
696 | > | } |
697 | > | |
698 | > | RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
699 | > | #ifdef IS_MPI |
700 | > | return massFactorsCol[atom2]; |
701 | > | #else |
702 | > | return massFactorsLocal[atom2]; |
703 | > | #endif |
704 | > | |
705 | > | } |
706 | > | |
707 | > | Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ |
708 | > | Vector3d d; |
709 | > | |
710 | > | #ifdef IS_MPI |
711 | > | d = atomColData.position[atom2] - atomRowData.position[atom1]; |
712 | > | #else |
713 | > | d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; |
714 | > | #endif |
715 | > | |
716 | > | snap_->wrapVector(d); |
717 | > | return d; |
718 | > | } |
719 | > | |
720 | > | vector<int> ForceMatrixDecomposition::getSkipsForAtom(int atom1) { |
721 | > | return skipsForAtom[atom1]; |
722 | > | } |
723 | > | |
724 | > | /** |
725 | > | * There are a number of reasons to skip a pair or a |
726 | > | * particle. Mostly we do this to exclude atoms who are involved in |
727 | > | * short range interactions (bonds, bends, torsions), but we also |
728 | > | * need to exclude some overcounted interactions that result from |
729 | > | * the parallel decomposition. |
730 | > | */ |
731 | > | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
732 | > | int unique_id_1, unique_id_2; |
733 | > | |
734 | > | #ifdef IS_MPI |
735 | > | // in MPI, we have to look up the unique IDs for each atom |
736 | > | unique_id_1 = AtomRowToGlobal[atom1]; |
737 | > | unique_id_2 = AtomColToGlobal[atom2]; |
738 | > | |
739 | > | // this situation should only arise in MPI simulations |
740 | > | if (unique_id_1 == unique_id_2) return true; |
741 | > | |
742 | > | // this prevents us from doing the pair on multiple processors |
743 | > | if (unique_id_1 < unique_id_2) { |
744 | > | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
745 | > | } else { |
746 | > | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
747 | } | |
748 | + | #else |
749 | + | // in the normal loop, the atom numbers are unique |
750 | + | unique_id_1 = atom1; |
751 | + | unique_id_2 = atom2; |
752 | + | #endif |
753 | ||
754 | + | for (vector<int>::iterator i = skipsForAtom[atom1].begin(); |
755 | + | i != skipsForAtom[atom1].end(); ++i) { |
756 | + | if ( (*i) == unique_id_2 ) return true; |
757 | + | } |
758 | + | |
759 | + | } |
760 | + | |
761 | + | |
762 | + | void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ |
763 | + | #ifdef IS_MPI |
764 | + | atomRowData.force[atom1] += fg; |
765 | + | #else |
766 | + | snap_->atomData.force[atom1] += fg; |
767 | + | #endif |
768 | + | } |
769 | + | |
770 | + | void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){ |
771 | + | #ifdef IS_MPI |
772 | + | atomColData.force[atom2] += fg; |
773 | + | #else |
774 | + | snap_->atomData.force[atom2] += fg; |
775 | + | #endif |
776 | + | } |
777 | + | |
778 | + | // filling interaction blocks with pointers |
779 | + | InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) { |
780 | + | InteractionData idat; |
781 | + | |
782 | + | #ifdef IS_MPI |
783 | + | |
784 | + | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
785 | + | ff_->getAtomType(identsCol[atom2]) ); |
786 | + | |
787 | + | |
788 | + | if (storageLayout_ & DataStorage::dslAmat) { |
789 | + | idat.A1 = &(atomRowData.aMat[atom1]); |
790 | + | idat.A2 = &(atomColData.aMat[atom2]); |
791 | + | } |
792 | + | |
793 | + | if (storageLayout_ & DataStorage::dslElectroFrame) { |
794 | + | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
795 | + | idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
796 | + | } |
797 | + | |
798 | + | if (storageLayout_ & DataStorage::dslTorque) { |
799 | + | idat.t1 = &(atomRowData.torque[atom1]); |
800 | + | idat.t2 = &(atomColData.torque[atom2]); |
801 | + | } |
802 | + | |
803 | + | if (storageLayout_ & DataStorage::dslDensity) { |
804 | + | idat.rho1 = &(atomRowData.density[atom1]); |
805 | + | idat.rho2 = &(atomColData.density[atom2]); |
806 | + | } |
807 | + | |
808 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
809 | + | idat.frho1 = &(atomRowData.functional[atom1]); |
810 | + | idat.frho2 = &(atomColData.functional[atom2]); |
811 | + | } |
812 | + | |
813 | + | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
814 | + | idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); |
815 | + | idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); |
816 | + | } |
817 | + | |
818 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
819 | + | idat.particlePot1 = &(atomRowData.particlePot[atom1]); |
820 | + | idat.particlePot2 = &(atomColData.particlePot[atom2]); |
821 | + | } |
822 | + | |
823 | + | #else |
824 | + | |
825 | + | idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), |
826 | + | ff_->getAtomType(identsLocal[atom2]) ); |
827 | + | |
828 | + | if (storageLayout_ & DataStorage::dslAmat) { |
829 | + | idat.A1 = &(snap_->atomData.aMat[atom1]); |
830 | + | idat.A2 = &(snap_->atomData.aMat[atom2]); |
831 | + | } |
832 | + | |
833 | + | if (storageLayout_ & DataStorage::dslElectroFrame) { |
834 | + | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
835 | + | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
836 | + | } |
837 | ||
838 | + | if (storageLayout_ & DataStorage::dslTorque) { |
839 | + | idat.t1 = &(snap_->atomData.torque[atom1]); |
840 | + | idat.t2 = &(snap_->atomData.torque[atom2]); |
841 | + | } |
842 | ||
843 | + | if (storageLayout_ & DataStorage::dslDensity) { |
844 | + | idat.rho1 = &(snap_->atomData.density[atom1]); |
845 | + | idat.rho2 = &(snap_->atomData.density[atom2]); |
846 | + | } |
847 | + | |
848 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
849 | + | idat.frho1 = &(snap_->atomData.functional[atom1]); |
850 | + | idat.frho2 = &(snap_->atomData.functional[atom2]); |
851 | + | } |
852 | + | |
853 | + | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
854 | + | idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); |
855 | + | idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); |
856 | + | } |
857 | + | |
858 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
859 | + | idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); |
860 | + | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
861 | + | } |
862 | + | |
863 | #endif | |
864 | + | return idat; |
865 | } | |
866 | + | |
867 | ||
868 | + | void ForceMatrixDecomposition::unpackInteractionData(InteractionData idat, int atom1, int atom2) { |
869 | + | #ifdef IS_MPI |
870 | + | pot_row[atom1] += 0.5 * *(idat.pot); |
871 | + | pot_col[atom2] += 0.5 * *(idat.pot); |
872 | + | |
873 | + | atomRowData.force[atom1] += *(idat.f1); |
874 | + | atomColData.force[atom2] -= *(idat.f1); |
875 | + | #else |
876 | + | longRangePot_ += *(idat.pot); |
877 | + | |
878 | + | snap_->atomData.force[atom1] += *(idat.f1); |
879 | + | snap_->atomData.force[atom2] -= *(idat.f1); |
880 | + | #endif |
881 | + | |
882 | + | } |
883 | + | |
884 | + | |
885 | + | InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ |
886 | + | |
887 | + | InteractionData idat; |
888 | + | #ifdef IS_MPI |
889 | + | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
890 | + | ff_->getAtomType(identsCol[atom2]) ); |
891 | + | |
892 | + | if (storageLayout_ & DataStorage::dslElectroFrame) { |
893 | + | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
894 | + | idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
895 | + | } |
896 | + | if (storageLayout_ & DataStorage::dslTorque) { |
897 | + | idat.t1 = &(atomRowData.torque[atom1]); |
898 | + | idat.t2 = &(atomColData.torque[atom2]); |
899 | + | } |
900 | + | #else |
901 | + | idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), |
902 | + | ff_->getAtomType(identsLocal[atom2]) ); |
903 | + | |
904 | + | if (storageLayout_ & DataStorage::dslElectroFrame) { |
905 | + | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
906 | + | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
907 | + | } |
908 | + | if (storageLayout_ & DataStorage::dslTorque) { |
909 | + | idat.t1 = &(snap_->atomData.torque[atom1]); |
910 | + | idat.t2 = &(snap_->atomData.torque[atom2]); |
911 | + | } |
912 | + | #endif |
913 | + | } |
914 | + | |
915 | + | /* |
916 | + | * buildNeighborList |
917 | + | * |
918 | + | * first element of pair is row-indexed CutoffGroup |
919 | + | * second element of pair is column-indexed CutoffGroup |
920 | + | */ |
921 | + | vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { |
922 | + | |
923 | + | vector<pair<int, int> > neighborList; |
924 | + | groupCutoffs cuts; |
925 | + | #ifdef IS_MPI |
926 | + | cellListRow_.clear(); |
927 | + | cellListCol_.clear(); |
928 | + | #else |
929 | + | cellList_.clear(); |
930 | + | #endif |
931 | + | |
932 | + | RealType rList_ = (largestRcut_ + skinThickness_); |
933 | + | RealType rl2 = rList_ * rList_; |
934 | + | Snapshot* snap_ = sman_->getCurrentSnapshot(); |
935 | + | Mat3x3d Hmat = snap_->getHmat(); |
936 | + | Vector3d Hx = Hmat.getColumn(0); |
937 | + | Vector3d Hy = Hmat.getColumn(1); |
938 | + | Vector3d Hz = Hmat.getColumn(2); |
939 | + | |
940 | + | nCells_.x() = (int) ( Hx.length() )/ rList_; |
941 | + | nCells_.y() = (int) ( Hy.length() )/ rList_; |
942 | + | nCells_.z() = (int) ( Hz.length() )/ rList_; |
943 | + | |
944 | + | Mat3x3d invHmat = snap_->getInvHmat(); |
945 | + | Vector3d rs, scaled, dr; |
946 | + | Vector3i whichCell; |
947 | + | int cellIndex; |
948 | + | int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
949 | + | |
950 | + | #ifdef IS_MPI |
951 | + | cellListRow_.resize(nCtot); |
952 | + | cellListCol_.resize(nCtot); |
953 | + | #else |
954 | + | cellList_.resize(nCtot); |
955 | + | #endif |
956 | + | |
957 | + | #ifdef IS_MPI |
958 | + | for (int i = 0; i < nGroupsInRow_; i++) { |
959 | + | rs = cgRowData.position[i]; |
960 | + | // scaled positions relative to the box vectors |
961 | + | scaled = invHmat * rs; |
962 | + | // wrap the vector back into the unit box by subtracting integer box |
963 | + | // numbers |
964 | + | for (int j = 0; j < 3; j++) |
965 | + | scaled[j] -= roundMe(scaled[j]); |
966 | + | |
967 | + | // find xyz-indices of cell that cutoffGroup is in. |
968 | + | whichCell.x() = nCells_.x() * scaled.x(); |
969 | + | whichCell.y() = nCells_.y() * scaled.y(); |
970 | + | whichCell.z() = nCells_.z() * scaled.z(); |
971 | + | |
972 | + | // find single index of this cell: |
973 | + | cellIndex = Vlinear(whichCell, nCells_); |
974 | + | // add this cutoff group to the list of groups in this cell; |
975 | + | cellListRow_[cellIndex].push_back(i); |
976 | + | } |
977 | + | |
978 | + | for (int i = 0; i < nGroupsInCol_; i++) { |
979 | + | rs = cgColData.position[i]; |
980 | + | // scaled positions relative to the box vectors |
981 | + | scaled = invHmat * rs; |
982 | + | // wrap the vector back into the unit box by subtracting integer box |
983 | + | // numbers |
984 | + | for (int j = 0; j < 3; j++) |
985 | + | scaled[j] -= roundMe(scaled[j]); |
986 | + | |
987 | + | // find xyz-indices of cell that cutoffGroup is in. |
988 | + | whichCell.x() = nCells_.x() * scaled.x(); |
989 | + | whichCell.y() = nCells_.y() * scaled.y(); |
990 | + | whichCell.z() = nCells_.z() * scaled.z(); |
991 | + | |
992 | + | // find single index of this cell: |
993 | + | cellIndex = Vlinear(whichCell, nCells_); |
994 | + | // add this cutoff group to the list of groups in this cell; |
995 | + | cellListCol_[cellIndex].push_back(i); |
996 | + | } |
997 | + | #else |
998 | + | for (int i = 0; i < nGroups_; i++) { |
999 | + | rs = snap_->cgData.position[i]; |
1000 | + | // scaled positions relative to the box vectors |
1001 | + | scaled = invHmat * rs; |
1002 | + | // wrap the vector back into the unit box by subtracting integer box |
1003 | + | // numbers |
1004 | + | for (int j = 0; j < 3; j++) |
1005 | + | scaled[j] -= roundMe(scaled[j]); |
1006 | + | |
1007 | + | // find xyz-indices of cell that cutoffGroup is in. |
1008 | + | whichCell.x() = nCells_.x() * scaled.x(); |
1009 | + | whichCell.y() = nCells_.y() * scaled.y(); |
1010 | + | whichCell.z() = nCells_.z() * scaled.z(); |
1011 | + | |
1012 | + | // find single index of this cell: |
1013 | + | cellIndex = Vlinear(whichCell, nCells_); |
1014 | + | // add this cutoff group to the list of groups in this cell; |
1015 | + | cellList_[cellIndex].push_back(i); |
1016 | + | } |
1017 | + | #endif |
1018 | + | |
1019 | + | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1020 | + | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1021 | + | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1022 | + | Vector3i m1v(m1x, m1y, m1z); |
1023 | + | int m1 = Vlinear(m1v, nCells_); |
1024 | + | |
1025 | + | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1026 | + | os != cellOffsets_.end(); ++os) { |
1027 | + | |
1028 | + | Vector3i m2v = m1v + (*os); |
1029 | + | |
1030 | + | if (m2v.x() >= nCells_.x()) { |
1031 | + | m2v.x() = 0; |
1032 | + | } else if (m2v.x() < 0) { |
1033 | + | m2v.x() = nCells_.x() - 1; |
1034 | + | } |
1035 | + | |
1036 | + | if (m2v.y() >= nCells_.y()) { |
1037 | + | m2v.y() = 0; |
1038 | + | } else if (m2v.y() < 0) { |
1039 | + | m2v.y() = nCells_.y() - 1; |
1040 | + | } |
1041 | + | |
1042 | + | if (m2v.z() >= nCells_.z()) { |
1043 | + | m2v.z() = 0; |
1044 | + | } else if (m2v.z() < 0) { |
1045 | + | m2v.z() = nCells_.z() - 1; |
1046 | + | } |
1047 | + | |
1048 | + | int m2 = Vlinear (m2v, nCells_); |
1049 | + | |
1050 | + | #ifdef IS_MPI |
1051 | + | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1052 | + | j1 != cellListRow_[m1].end(); ++j1) { |
1053 | + | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1054 | + | j2 != cellListCol_[m2].end(); ++j2) { |
1055 | + | |
1056 | + | // Always do this if we're in different cells or if |
1057 | + | // we're in the same cell and the global index of the |
1058 | + | // j2 cutoff group is less than the j1 cutoff group |
1059 | + | |
1060 | + | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1061 | + | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1062 | + | snap_->wrapVector(dr); |
1063 | + | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1064 | + | if (dr.lengthSquare() < cuts.third) { |
1065 | + | neighborList.push_back(make_pair((*j1), (*j2))); |
1066 | + | } |
1067 | + | } |
1068 | + | } |
1069 | + | } |
1070 | + | #else |
1071 | + | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1072 | + | j1 != cellList_[m1].end(); ++j1) { |
1073 | + | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1074 | + | j2 != cellList_[m2].end(); ++j2) { |
1075 | + | |
1076 | + | // Always do this if we're in different cells or if |
1077 | + | // we're in the same cell and the global index of the |
1078 | + | // j2 cutoff group is less than the j1 cutoff group |
1079 | + | |
1080 | + | if (m2 != m1 || (*j2) < (*j1)) { |
1081 | + | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1082 | + | snap_->wrapVector(dr); |
1083 | + | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1084 | + | if (dr.lengthSquare() < cuts.third) { |
1085 | + | neighborList.push_back(make_pair((*j1), (*j2))); |
1086 | + | } |
1087 | + | } |
1088 | + | } |
1089 | + | } |
1090 | + | #endif |
1091 | + | } |
1092 | + | } |
1093 | + | } |
1094 | + | } |
1095 | + | |
1096 | + | // save the local cutoff group positions for the check that is |
1097 | + | // done on each loop: |
1098 | + | saved_CG_positions_.clear(); |
1099 | + | for (int i = 0; i < nGroups_; i++) |
1100 | + | saved_CG_positions_.push_back(snap_->cgData.position[i]); |
1101 | + | |
1102 | + | return neighborList; |
1103 | + | } |
1104 | } //end namespace OpenMD |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |