# | Line 55 | Line 55 | namespace OpenMD { | |
---|---|---|
55 | void ForceMatrixDecomposition::distributeInitialData() { | |
56 | snap_ = sman_->getCurrentSnapshot(); | |
57 | storageLayout_ = sman_->getStorageLayout(); | |
58 | + | ff_ = info_->getForceField(); |
59 | nLocal_ = snap_->getNumberOfAtoms(); | |
60 | < | nGroups_ = snap_->getNumberOfCutoffGroups(); |
61 | < | |
60 | > | |
61 | > | nGroups_ = info_->getNLocalCutoffGroups(); |
62 | // gather the information for atomtype IDs (atids): | |
63 | < | vector<int> identsLocal = info_->getIdentArray(); |
63 | > | idents = info_->getIdentArray(); |
64 | AtomLocalToGlobal = info_->getGlobalAtomIndices(); | |
65 | cgLocalToGlobal = info_->getGlobalGroupIndices(); | |
66 | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); | |
66 | – | vector<RealType> massFactorsLocal = info_->getMassFactors(); |
67 | – | PairList excludes = info_->getExcludedInteractions(); |
68 | – | PairList oneTwo = info_->getOneTwoInteractions(); |
69 | – | PairList oneThree = info_->getOneThreeInteractions(); |
70 | – | PairList oneFour = info_->getOneFourInteractions(); |
71 | – | vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0); |
67 | ||
68 | + | massFactors = info_->getMassFactors(); |
69 | + | |
70 | + | PairList* excludes = info_->getExcludedInteractions(); |
71 | + | PairList* oneTwo = info_->getOneTwoInteractions(); |
72 | + | PairList* oneThree = info_->getOneThreeInteractions(); |
73 | + | PairList* oneFour = info_->getOneFourInteractions(); |
74 | + | |
75 | #ifdef IS_MPI | |
76 | ||
77 | AtomCommIntRow = new Communicator<Row,int>(nLocal_); | |
78 | AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); | |
79 | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); | |
80 | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); | |
81 | + | AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
82 | ||
83 | AtomCommIntColumn = new Communicator<Column,int>(nLocal_); | |
84 | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); | |
85 | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); | |
86 | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); | |
87 | + | AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
88 | ||
89 | cgCommIntRow = new Communicator<Row,int>(nGroups_); | |
90 | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); | |
# | Line 101 | Line 105 | namespace OpenMD { | |
105 | cgRowData.setStorageLayout(DataStorage::dslPosition); | |
106 | cgColData.resize(nGroupsInCol_); | |
107 | cgColData.setStorageLayout(DataStorage::dslPosition); | |
108 | + | |
109 | + | identsRow.resize(nAtomsInRow_); |
110 | + | identsCol.resize(nAtomsInCol_); |
111 | ||
112 | < | vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES, |
113 | < | vector<RealType> (nAtomsInRow_, 0.0)); |
107 | < | vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES, |
108 | < | vector<RealType> (nAtomsInCol_, 0.0)); |
112 | > | AtomCommIntRow->gather(idents, identsRow); |
113 | > | AtomCommIntColumn->gather(idents, identsCol); |
114 | ||
115 | < | identsRow.reserve(nAtomsInRow_); |
116 | < | identsCol.reserve(nAtomsInCol_); |
117 | < | |
118 | < | AtomCommIntRow->gather(identsLocal, identsRow); |
119 | < | AtomCommIntColumn->gather(identsLocal, identsCol); |
120 | < | |
115 | > | // allocate memory for the parallel objects |
116 | > | atypesRow.resize(nAtomsInRow_); |
117 | > | atypesCol.resize(nAtomsInCol_); |
118 | > | |
119 | > | for (int i = 0; i < nAtomsInRow_; i++) |
120 | > | atypesRow[i] = ff_->getAtomType(identsRow[i]); |
121 | > | for (int i = 0; i < nAtomsInCol_; i++) |
122 | > | atypesCol[i] = ff_->getAtomType(identsCol[i]); |
123 | > | |
124 | > | pot_row.resize(nAtomsInRow_); |
125 | > | pot_col.resize(nAtomsInCol_); |
126 | > | |
127 | > | AtomRowToGlobal.resize(nAtomsInRow_); |
128 | > | AtomColToGlobal.resize(nAtomsInCol_); |
129 | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | |
130 | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); | |
131 | ||
132 | + | cgRowToGlobal.resize(nGroupsInRow_); |
133 | + | cgColToGlobal.resize(nGroupsInCol_); |
134 | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); | |
135 | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); | |
136 | ||
137 | < | AtomCommRealRow->gather(massFactorsLocal, massFactorsRow); |
138 | < | AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol); |
137 | > | massFactorsRow.resize(nAtomsInRow_); |
138 | > | massFactorsCol.resize(nAtomsInCol_); |
139 | > | AtomCommRealRow->gather(massFactors, massFactorsRow); |
140 | > | AtomCommRealColumn->gather(massFactors, massFactorsCol); |
141 | ||
142 | groupListRow_.clear(); | |
143 | < | groupListRow_.reserve(nGroupsInRow_); |
143 | > | groupListRow_.resize(nGroupsInRow_); |
144 | for (int i = 0; i < nGroupsInRow_; i++) { | |
145 | int gid = cgRowToGlobal[i]; | |
146 | for (int j = 0; j < nAtomsInRow_; j++) { | |
# | Line 134 | Line 151 | namespace OpenMD { | |
151 | } | |
152 | ||
153 | groupListCol_.clear(); | |
154 | < | groupListCol_.reserve(nGroupsInCol_); |
154 | > | groupListCol_.resize(nGroupsInCol_); |
155 | for (int i = 0; i < nGroupsInCol_; i++) { | |
156 | int gid = cgColToGlobal[i]; | |
157 | for (int j = 0; j < nAtomsInCol_; j++) { | |
# | Line 144 | Line 161 | namespace OpenMD { | |
161 | } | |
162 | } | |
163 | ||
164 | < | skipsForRowAtom.clear(); |
165 | < | skipsForRowAtom.reserve(nAtomsInRow_); |
164 | > | excludesForAtom.clear(); |
165 | > | excludesForAtom.resize(nAtomsInRow_); |
166 | > | toposForAtom.clear(); |
167 | > | toposForAtom.resize(nAtomsInRow_); |
168 | > | topoDist.clear(); |
169 | > | topoDist.resize(nAtomsInRow_); |
170 | for (int i = 0; i < nAtomsInRow_; i++) { | |
171 | < | int iglob = AtomColToGlobal[i]; |
151 | < | for (int j = 0; j < nAtomsInCol_; j++) { |
152 | < | int jglob = AtomRowToGlobal[j]; |
153 | < | if (excludes.hasPair(iglob, jglob)) |
154 | < | skipsForRowAtom[i].push_back(j); |
155 | < | } |
156 | < | } |
171 | > | int iglob = AtomRowToGlobal[i]; |
172 | ||
158 | – | toposForRowAtom.clear(); |
159 | – | toposForRowAtom.reserve(nAtomsInRow_); |
160 | – | for (int i = 0; i < nAtomsInRow_; i++) { |
161 | – | int iglob = AtomColToGlobal[i]; |
162 | – | int nTopos = 0; |
173 | for (int j = 0; j < nAtomsInCol_; j++) { | |
174 | < | int jglob = AtomRowToGlobal[j]; |
175 | < | if (oneTwo.hasPair(iglob, jglob)) { |
176 | < | toposForRowAtom[i].push_back(j); |
177 | < | topoDistRow[i][nTopos] = 1; |
178 | < | nTopos++; |
174 | > | int jglob = AtomColToGlobal[j]; |
175 | > | |
176 | > | if (excludes->hasPair(iglob, jglob)) |
177 | > | excludesForAtom[i].push_back(j); |
178 | > | |
179 | > | if (oneTwo->hasPair(iglob, jglob)) { |
180 | > | toposForAtom[i].push_back(j); |
181 | > | topoDist[i].push_back(1); |
182 | > | } else { |
183 | > | if (oneThree->hasPair(iglob, jglob)) { |
184 | > | toposForAtom[i].push_back(j); |
185 | > | topoDist[i].push_back(2); |
186 | > | } else { |
187 | > | if (oneFour->hasPair(iglob, jglob)) { |
188 | > | toposForAtom[i].push_back(j); |
189 | > | topoDist[i].push_back(3); |
190 | > | } |
191 | > | } |
192 | } | |
170 | – | if (oneThree.hasPair(iglob, jglob)) { |
171 | – | toposForRowAtom[i].push_back(j); |
172 | – | topoDistRow[i][nTopos] = 2; |
173 | – | nTopos++; |
174 | – | } |
175 | – | if (oneFour.hasPair(iglob, jglob)) { |
176 | – | toposForRowAtom[i].push_back(j); |
177 | – | topoDistRow[i][nTopos] = 3; |
178 | – | nTopos++; |
179 | – | } |
193 | } | |
194 | } | |
195 | ||
196 | #endif | |
197 | ||
198 | + | // allocate memory for the parallel objects |
199 | + | atypesLocal.resize(nLocal_); |
200 | + | |
201 | + | for (int i = 0; i < nLocal_; i++) |
202 | + | atypesLocal[i] = ff_->getAtomType(idents[i]); |
203 | + | |
204 | groupList_.clear(); | |
205 | < | groupList_.reserve(nGroups_); |
205 | > | groupList_.resize(nGroups_); |
206 | for (int i = 0; i < nGroups_; i++) { | |
207 | int gid = cgLocalToGlobal[i]; | |
208 | for (int j = 0; j < nLocal_; j++) { | |
209 | int aid = AtomLocalToGlobal[j]; | |
210 | < | if (globalGroupMembership[aid] == gid) |
210 | > | if (globalGroupMembership[aid] == gid) { |
211 | groupList_[i].push_back(j); | |
212 | + | } |
213 | } | |
214 | } | |
215 | ||
216 | < | skipsForLocalAtom.clear(); |
217 | < | skipsForLocalAtom.reserve(nLocal_); |
216 | > | excludesForAtom.clear(); |
217 | > | excludesForAtom.resize(nLocal_); |
218 | > | toposForAtom.clear(); |
219 | > | toposForAtom.resize(nLocal_); |
220 | > | topoDist.clear(); |
221 | > | topoDist.resize(nLocal_); |
222 | ||
223 | for (int i = 0; i < nLocal_; i++) { | |
224 | int iglob = AtomLocalToGlobal[i]; | |
225 | + | |
226 | for (int j = 0; j < nLocal_; j++) { | |
227 | < | int jglob = AtomLocalToGlobal[j]; |
228 | < | if (excludes.hasPair(iglob, jglob)) |
229 | < | skipsForLocalAtom[i].push_back(j); |
227 | > | int jglob = AtomLocalToGlobal[j]; |
228 | > | |
229 | > | if (excludes->hasPair(iglob, jglob)) |
230 | > | excludesForAtom[i].push_back(j); |
231 | > | |
232 | > | if (oneTwo->hasPair(iglob, jglob)) { |
233 | > | toposForAtom[i].push_back(j); |
234 | > | topoDist[i].push_back(1); |
235 | > | } else { |
236 | > | if (oneThree->hasPair(iglob, jglob)) { |
237 | > | toposForAtom[i].push_back(j); |
238 | > | topoDist[i].push_back(2); |
239 | > | } else { |
240 | > | if (oneFour->hasPair(iglob, jglob)) { |
241 | > | toposForAtom[i].push_back(j); |
242 | > | topoDist[i].push_back(3); |
243 | > | } |
244 | > | } |
245 | > | } |
246 | } | |
247 | } | |
248 | + | |
249 | + | createGtypeCutoffMap(); |
250 | ||
251 | < | toposForLocalAtom.clear(); |
252 | < | toposForLocalAtom.reserve(nLocal_); |
253 | < | for (int i = 0; i < nLocal_; i++) { |
254 | < | int iglob = AtomLocalToGlobal[i]; |
255 | < | int nTopos = 0; |
256 | < | for (int j = 0; j < nLocal_; j++) { |
257 | < | int jglob = AtomLocalToGlobal[j]; |
258 | < | if (oneTwo.hasPair(iglob, jglob)) { |
259 | < | toposForLocalAtom[i].push_back(j); |
260 | < | topoDistLocal[i][nTopos] = 1; |
261 | < | nTopos++; |
251 | > | } |
252 | > | |
253 | > | void ForceMatrixDecomposition::createGtypeCutoffMap() { |
254 | > | |
255 | > | RealType tol = 1e-6; |
256 | > | RealType rc; |
257 | > | int atid; |
258 | > | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
259 | > | map<int, RealType> atypeCutoff; |
260 | > | |
261 | > | for (set<AtomType*>::iterator at = atypes.begin(); |
262 | > | at != atypes.end(); ++at){ |
263 | > | atid = (*at)->getIdent(); |
264 | > | if (userChoseCutoff_) |
265 | > | atypeCutoff[atid] = userCutoff_; |
266 | > | else |
267 | > | atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
268 | > | } |
269 | > | |
270 | > | vector<RealType> gTypeCutoffs; |
271 | > | // first we do a single loop over the cutoff groups to find the |
272 | > | // largest cutoff for any atypes present in this group. |
273 | > | #ifdef IS_MPI |
274 | > | vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); |
275 | > | groupRowToGtype.resize(nGroupsInRow_); |
276 | > | for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { |
277 | > | vector<int> atomListRow = getAtomsInGroupRow(cg1); |
278 | > | for (vector<int>::iterator ia = atomListRow.begin(); |
279 | > | ia != atomListRow.end(); ++ia) { |
280 | > | int atom1 = (*ia); |
281 | > | atid = identsRow[atom1]; |
282 | > | if (atypeCutoff[atid] > groupCutoffRow[cg1]) { |
283 | > | groupCutoffRow[cg1] = atypeCutoff[atid]; |
284 | } | |
285 | < | if (oneThree.hasPair(iglob, jglob)) { |
286 | < | toposForLocalAtom[i].push_back(j); |
287 | < | topoDistLocal[i][nTopos] = 2; |
288 | < | nTopos++; |
285 | > | } |
286 | > | |
287 | > | bool gTypeFound = false; |
288 | > | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
289 | > | if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) { |
290 | > | groupRowToGtype[cg1] = gt; |
291 | > | gTypeFound = true; |
292 | > | } |
293 | > | } |
294 | > | if (!gTypeFound) { |
295 | > | gTypeCutoffs.push_back( groupCutoffRow[cg1] ); |
296 | > | groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; |
297 | > | } |
298 | > | |
299 | > | } |
300 | > | vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); |
301 | > | groupColToGtype.resize(nGroupsInCol_); |
302 | > | for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { |
303 | > | vector<int> atomListCol = getAtomsInGroupColumn(cg2); |
304 | > | for (vector<int>::iterator jb = atomListCol.begin(); |
305 | > | jb != atomListCol.end(); ++jb) { |
306 | > | int atom2 = (*jb); |
307 | > | atid = identsCol[atom2]; |
308 | > | if (atypeCutoff[atid] > groupCutoffCol[cg2]) { |
309 | > | groupCutoffCol[cg2] = atypeCutoff[atid]; |
310 | } | |
311 | < | if (oneFour.hasPair(iglob, jglob)) { |
312 | < | toposForLocalAtom[i].push_back(j); |
313 | < | topoDistLocal[i][nTopos] = 3; |
314 | < | nTopos++; |
311 | > | } |
312 | > | bool gTypeFound = false; |
313 | > | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
314 | > | if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) { |
315 | > | groupColToGtype[cg2] = gt; |
316 | > | gTypeFound = true; |
317 | > | } |
318 | > | } |
319 | > | if (!gTypeFound) { |
320 | > | gTypeCutoffs.push_back( groupCutoffCol[cg2] ); |
321 | > | groupColToGtype[cg2] = gTypeCutoffs.size() - 1; |
322 | > | } |
323 | > | } |
324 | > | #else |
325 | > | |
326 | > | vector<RealType> groupCutoff(nGroups_, 0.0); |
327 | > | groupToGtype.resize(nGroups_); |
328 | > | for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
329 | > | |
330 | > | groupCutoff[cg1] = 0.0; |
331 | > | vector<int> atomList = getAtomsInGroupRow(cg1); |
332 | > | |
333 | > | for (vector<int>::iterator ia = atomList.begin(); |
334 | > | ia != atomList.end(); ++ia) { |
335 | > | int atom1 = (*ia); |
336 | > | atid = idents[atom1]; |
337 | > | if (atypeCutoff[atid] > groupCutoff[cg1]) { |
338 | > | groupCutoff[cg1] = atypeCutoff[atid]; |
339 | } | |
340 | + | } |
341 | + | |
342 | + | bool gTypeFound = false; |
343 | + | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
344 | + | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
345 | + | groupToGtype[cg1] = gt; |
346 | + | gTypeFound = true; |
347 | + | } |
348 | + | } |
349 | + | if (!gTypeFound) { |
350 | + | gTypeCutoffs.push_back( groupCutoff[cg1] ); |
351 | + | groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
352 | } | |
353 | } | |
354 | + | #endif |
355 | + | |
356 | + | // Now we find the maximum group cutoff value present in the simulation |
357 | + | |
358 | + | RealType groupMax = *max_element(gTypeCutoffs.begin(), |
359 | + | gTypeCutoffs.end()); |
360 | + | |
361 | + | #ifdef IS_MPI |
362 | + | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, |
363 | + | MPI::MAX); |
364 | + | #endif |
365 | + | |
366 | + | RealType tradRcut = groupMax; |
367 | + | |
368 | + | for (int i = 0; i < gTypeCutoffs.size(); i++) { |
369 | + | for (int j = 0; j < gTypeCutoffs.size(); j++) { |
370 | + | RealType thisRcut; |
371 | + | switch(cutoffPolicy_) { |
372 | + | case TRADITIONAL: |
373 | + | thisRcut = tradRcut; |
374 | + | break; |
375 | + | case MIX: |
376 | + | thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); |
377 | + | break; |
378 | + | case MAX: |
379 | + | thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); |
380 | + | break; |
381 | + | default: |
382 | + | sprintf(painCave.errMsg, |
383 | + | "ForceMatrixDecomposition::createGtypeCutoffMap " |
384 | + | "hit an unknown cutoff policy!\n"); |
385 | + | painCave.severity = OPENMD_ERROR; |
386 | + | painCave.isFatal = 1; |
387 | + | simError(); |
388 | + | break; |
389 | + | } |
390 | + | |
391 | + | pair<int,int> key = make_pair(i,j); |
392 | + | gTypeCutoffMap[key].first = thisRcut; |
393 | + | |
394 | + | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
395 | + | |
396 | + | gTypeCutoffMap[key].second = thisRcut*thisRcut; |
397 | + | |
398 | + | gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
399 | + | |
400 | + | // sanity check |
401 | + | |
402 | + | if (userChoseCutoff_) { |
403 | + | if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
404 | + | sprintf(painCave.errMsg, |
405 | + | "ForceMatrixDecomposition::createGtypeCutoffMap " |
406 | + | "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
407 | + | painCave.severity = OPENMD_ERROR; |
408 | + | painCave.isFatal = 1; |
409 | + | simError(); |
410 | + | } |
411 | + | } |
412 | + | } |
413 | + | } |
414 | } | |
415 | < | |
415 | > | |
416 | > | |
417 | > | groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
418 | > | int i, j; |
419 | > | #ifdef IS_MPI |
420 | > | i = groupRowToGtype[cg1]; |
421 | > | j = groupColToGtype[cg2]; |
422 | > | #else |
423 | > | i = groupToGtype[cg1]; |
424 | > | j = groupToGtype[cg2]; |
425 | > | #endif |
426 | > | return gTypeCutoffMap[make_pair(i,j)]; |
427 | > | } |
428 | > | |
429 | > | int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
430 | > | for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
431 | > | if (toposForAtom[atom1][j] == atom2) |
432 | > | return topoDist[atom1][j]; |
433 | > | } |
434 | > | return 0; |
435 | > | } |
436 | > | |
437 | > | void ForceMatrixDecomposition::zeroWorkArrays() { |
438 | > | pairwisePot = 0.0; |
439 | > | embeddingPot = 0.0; |
440 | > | |
441 | > | #ifdef IS_MPI |
442 | > | if (storageLayout_ & DataStorage::dslForce) { |
443 | > | fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); |
444 | > | fill(atomColData.force.begin(), atomColData.force.end(), V3Zero); |
445 | > | } |
446 | > | |
447 | > | if (storageLayout_ & DataStorage::dslTorque) { |
448 | > | fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero); |
449 | > | fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero); |
450 | > | } |
451 | > | |
452 | > | fill(pot_row.begin(), pot_row.end(), |
453 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
454 | > | |
455 | > | fill(pot_col.begin(), pot_col.end(), |
456 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
457 | > | |
458 | > | if (storageLayout_ & DataStorage::dslParticlePot) { |
459 | > | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
460 | > | 0.0); |
461 | > | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), |
462 | > | 0.0); |
463 | > | } |
464 | > | |
465 | > | if (storageLayout_ & DataStorage::dslDensity) { |
466 | > | fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0); |
467 | > | fill(atomColData.density.begin(), atomColData.density.end(), 0.0); |
468 | > | } |
469 | > | |
470 | > | if (storageLayout_ & DataStorage::dslFunctional) { |
471 | > | fill(atomRowData.functional.begin(), atomRowData.functional.end(), |
472 | > | 0.0); |
473 | > | fill(atomColData.functional.begin(), atomColData.functional.end(), |
474 | > | 0.0); |
475 | > | } |
476 | > | |
477 | > | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
478 | > | fill(atomRowData.functionalDerivative.begin(), |
479 | > | atomRowData.functionalDerivative.end(), 0.0); |
480 | > | fill(atomColData.functionalDerivative.begin(), |
481 | > | atomColData.functionalDerivative.end(), 0.0); |
482 | > | } |
483 | > | |
484 | > | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
485 | > | fill(atomRowData.skippedCharge.begin(), |
486 | > | atomRowData.skippedCharge.end(), 0.0); |
487 | > | fill(atomColData.skippedCharge.begin(), |
488 | > | atomColData.skippedCharge.end(), 0.0); |
489 | > | } |
490 | > | |
491 | > | #endif |
492 | > | // even in parallel, we need to zero out the local arrays: |
493 | > | |
494 | > | if (storageLayout_ & DataStorage::dslParticlePot) { |
495 | > | fill(snap_->atomData.particlePot.begin(), |
496 | > | snap_->atomData.particlePot.end(), 0.0); |
497 | > | } |
498 | > | |
499 | > | if (storageLayout_ & DataStorage::dslDensity) { |
500 | > | fill(snap_->atomData.density.begin(), |
501 | > | snap_->atomData.density.end(), 0.0); |
502 | > | } |
503 | > | if (storageLayout_ & DataStorage::dslFunctional) { |
504 | > | fill(snap_->atomData.functional.begin(), |
505 | > | snap_->atomData.functional.end(), 0.0); |
506 | > | } |
507 | > | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
508 | > | fill(snap_->atomData.functionalDerivative.begin(), |
509 | > | snap_->atomData.functionalDerivative.end(), 0.0); |
510 | > | } |
511 | > | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
512 | > | fill(snap_->atomData.skippedCharge.begin(), |
513 | > | snap_->atomData.skippedCharge.end(), 0.0); |
514 | > | } |
515 | > | |
516 | > | } |
517 | > | |
518 | > | |
519 | void ForceMatrixDecomposition::distributeData() { | |
520 | snap_ = sman_->getCurrentSnapshot(); | |
521 | storageLayout_ = sman_->getStorageLayout(); | |
# | Line 263 | Line 548 | namespace OpenMD { | |
548 | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, | |
549 | atomColData.electroFrame); | |
550 | } | |
551 | + | |
552 | #endif | |
553 | } | |
554 | ||
555 | + | /* collects information obtained during the pre-pair loop onto local |
556 | + | * data structures. |
557 | + | */ |
558 | void ForceMatrixDecomposition::collectIntermediateData() { | |
559 | snap_ = sman_->getCurrentSnapshot(); | |
560 | storageLayout_ = sman_->getStorageLayout(); | |
# | Line 277 | Line 566 | namespace OpenMD { | |
566 | snap_->atomData.density); | |
567 | ||
568 | int n = snap_->atomData.density.size(); | |
569 | < | std::vector<RealType> rho_tmp(n, 0.0); |
569 | > | vector<RealType> rho_tmp(n, 0.0); |
570 | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); | |
571 | for (int i = 0; i < n; i++) | |
572 | snap_->atomData.density[i] += rho_tmp[i]; | |
573 | } | |
574 | #endif | |
575 | } | |
576 | < | |
576 | > | |
577 | > | /* |
578 | > | * redistributes information obtained during the pre-pair loop out to |
579 | > | * row and column-indexed data structures |
580 | > | */ |
581 | void ForceMatrixDecomposition::distributeIntermediateData() { | |
582 | snap_ = sman_->getCurrentSnapshot(); | |
583 | storageLayout_ = sman_->getStorageLayout(); | |
# | Line 322 | Line 615 | namespace OpenMD { | |
615 | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); | |
616 | for (int i = 0; i < n; i++) | |
617 | snap_->atomData.force[i] += frc_tmp[i]; | |
618 | < | |
326 | < | |
618 | > | |
619 | if (storageLayout_ & DataStorage::dslTorque) { | |
620 | ||
621 | < | int nt = snap_->atomData.force.size(); |
621 | > | int nt = snap_->atomData.torque.size(); |
622 | vector<Vector3d> trq_tmp(nt, V3Zero); | |
623 | ||
624 | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); | |
625 | < | for (int i = 0; i < n; i++) { |
625 | > | for (int i = 0; i < nt; i++) { |
626 | snap_->atomData.torque[i] += trq_tmp[i]; | |
627 | trq_tmp[i] = 0.0; | |
628 | } | |
629 | ||
630 | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); | |
631 | < | for (int i = 0; i < n; i++) |
631 | > | for (int i = 0; i < nt; i++) |
632 | snap_->atomData.torque[i] += trq_tmp[i]; | |
633 | } | |
342 | – | |
343 | – | nLocal_ = snap_->getNumberOfAtoms(); |
634 | ||
635 | < | vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES, |
636 | < | vector<RealType> (nLocal_, 0.0)); |
637 | < | |
638 | < | for (int i = 0; i < N_INTERACTION_FAMILIES; i++) { |
639 | < | AtomCommRealRow->scatter(pot_row[i], pot_temp[i]); |
640 | < | for (int ii = 0; ii < pot_temp[i].size(); ii++ ) { |
641 | < | pot_local[i] += pot_temp[i][ii]; |
635 | > | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
636 | > | |
637 | > | int ns = snap_->atomData.skippedCharge.size(); |
638 | > | vector<RealType> skch_tmp(ns, 0.0); |
639 | > | |
640 | > | AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
641 | > | for (int i = 0; i < ns; i++) { |
642 | > | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
643 | > | skch_tmp[i] = 0.0; |
644 | } | |
645 | + | |
646 | + | AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
647 | + | for (int i = 0; i < ns; i++) |
648 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
649 | } | |
650 | + | |
651 | + | nLocal_ = snap_->getNumberOfAtoms(); |
652 | + | |
653 | + | vector<potVec> pot_temp(nLocal_, |
654 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
655 | + | |
656 | + | // scatter/gather pot_row into the members of my column |
657 | + | |
658 | + | AtomCommPotRow->scatter(pot_row, pot_temp); |
659 | + | |
660 | + | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
661 | + | pairwisePot += pot_temp[ii]; |
662 | + | |
663 | + | fill(pot_temp.begin(), pot_temp.end(), |
664 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
665 | + | |
666 | + | AtomCommPotColumn->scatter(pot_col, pot_temp); |
667 | + | |
668 | + | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
669 | + | pairwisePot += pot_temp[ii]; |
670 | #endif | |
671 | + | |
672 | } | |
673 | ||
674 | int ForceMatrixDecomposition::getNAtomsInRow() { | |
# | Line 426 | Line 743 | namespace OpenMD { | |
743 | #ifdef IS_MPI | |
744 | return massFactorsRow[atom1]; | |
745 | #else | |
746 | < | return massFactorsLocal[atom1]; |
746 | > | return massFactors[atom1]; |
747 | #endif | |
748 | } | |
749 | ||
# | Line 434 | Line 751 | namespace OpenMD { | |
751 | #ifdef IS_MPI | |
752 | return massFactorsCol[atom2]; | |
753 | #else | |
754 | < | return massFactorsLocal[atom2]; |
754 | > | return massFactors[atom2]; |
755 | #endif | |
756 | ||
757 | } | |
# | Line 452 | Line 769 | namespace OpenMD { | |
769 | return d; | |
770 | } | |
771 | ||
772 | < | vector<int> ForceMatrixDecomposition::getSkipsForRowAtom(int atom1) { |
773 | < | #ifdef IS_MPI |
457 | < | return skipsForRowAtom[atom1]; |
458 | < | #else |
459 | < | return skipsForLocalAtom[atom1]; |
460 | < | #endif |
772 | > | vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
773 | > | return excludesForAtom[atom1]; |
774 | } | |
775 | ||
776 | /** | |
777 | < | * there are a number of reasons to skip a pair or a particle mostly |
778 | < | * we do this to exclude atoms who are involved in short range |
466 | < | * interactions (bonds, bends, torsions), but we also need to |
467 | < | * exclude some overcounted interactions that result from the |
468 | < | * parallel decomposition. |
777 | > | * We need to exclude some overcounted interactions that result from |
778 | > | * the parallel decomposition. |
779 | */ | |
780 | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { | |
781 | int unique_id_1, unique_id_2; | |
# | Line 484 | Line 794 | namespace OpenMD { | |
794 | } else { | |
795 | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | |
796 | } | |
797 | + | #endif |
798 | + | return false; |
799 | + | } |
800 | + | |
801 | + | /** |
802 | + | * We need to handle the interactions for atoms who are involved in |
803 | + | * the same rigid body as well as some short range interactions |
804 | + | * (bonds, bends, torsions) differently from other interactions. |
805 | + | * We'll still visit the pairwise routines, but with a flag that |
806 | + | * tells those routines to exclude the pair from direct long range |
807 | + | * interactions. Some indirect interactions (notably reaction |
808 | + | * field) must still be handled for these pairs. |
809 | + | */ |
810 | + | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
811 | + | int unique_id_2; |
812 | + | |
813 | + | #ifdef IS_MPI |
814 | + | // in MPI, we have to look up the unique IDs for the row atom. |
815 | + | unique_id_2 = AtomColToGlobal[atom2]; |
816 | #else | |
817 | // in the normal loop, the atom numbers are unique | |
489 | – | unique_id_1 = atom1; |
818 | unique_id_2 = atom2; | |
819 | #endif | |
820 | ||
821 | < | #ifdef IS_MPI |
822 | < | for (vector<int>::iterator i = skipsForRowAtom[atom1].begin(); |
495 | < | i != skipsForRowAtom[atom1].end(); ++i) { |
496 | < | if ( (*i) == unique_id_2 ) return true; |
497 | < | } |
498 | < | #else |
499 | < | for (vector<int>::iterator i = skipsForLocalAtom[atom1].begin(); |
500 | < | i != skipsForLocalAtom[atom1].end(); ++i) { |
821 | > | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
822 | > | i != excludesForAtom[atom1].end(); ++i) { |
823 | if ( (*i) == unique_id_2 ) return true; | |
502 | – | } |
503 | – | #endif |
504 | – | } |
505 | – | |
506 | – | int ForceMatrixDecomposition::getTopoDistance(int atom1, int atom2) { |
507 | – | |
508 | – | #ifdef IS_MPI |
509 | – | for (int i = 0; i < toposForRowAtom[atom1].size(); i++) { |
510 | – | if ( toposForRowAtom[atom1][i] == atom2 ) return topoDistRow[atom1][i]; |
824 | } | |
512 | – | #else |
513 | – | for (int i = 0; i < toposForLocalAtom[atom1].size(); i++) { |
514 | – | if ( toposForLocalAtom[atom1][i] == atom2 ) return topoDistLocal[atom1][i]; |
515 | – | } |
516 | – | #endif |
825 | ||
826 | < | // zero is default for unconnected (i.e. normal) pair interactions |
519 | < | return 0; |
826 | > | return false; |
827 | } | |
828 | ||
829 | + | |
830 | void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ | |
831 | #ifdef IS_MPI | |
832 | atomRowData.force[atom1] += fg; | |
# | Line 536 | Line 844 | namespace OpenMD { | |
844 | } | |
845 | ||
846 | // filling interaction blocks with pointers | |
847 | < | InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) { |
848 | < | InteractionData idat; |
847 | > | void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
848 | > | int atom1, int atom2) { |
849 | ||
850 | + | idat.excluded = excludeAtomPair(atom1, atom2); |
851 | + | |
852 | #ifdef IS_MPI | |
853 | + | idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
854 | + | //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
855 | + | // ff_->getAtomType(identsCol[atom2]) ); |
856 | + | |
857 | if (storageLayout_ & DataStorage::dslAmat) { | |
858 | idat.A1 = &(atomRowData.aMat[atom1]); | |
859 | idat.A2 = &(atomColData.aMat[atom2]); | |
# | Line 560 | Line 874 | namespace OpenMD { | |
874 | idat.rho2 = &(atomColData.density[atom2]); | |
875 | } | |
876 | ||
877 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
878 | + | idat.frho1 = &(atomRowData.functional[atom1]); |
879 | + | idat.frho2 = &(atomColData.functional[atom2]); |
880 | + | } |
881 | + | |
882 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
883 | idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); | |
884 | idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); | |
885 | } | |
886 | ||
887 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
888 | + | idat.particlePot1 = &(atomRowData.particlePot[atom1]); |
889 | + | idat.particlePot2 = &(atomColData.particlePot[atom2]); |
890 | + | } |
891 | + | |
892 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
893 | + | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
894 | + | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
895 | + | } |
896 | + | |
897 | #else | |
898 | + | |
899 | + | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
900 | + | //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
901 | + | // ff_->getAtomType(idents[atom2]) ); |
902 | + | |
903 | if (storageLayout_ & DataStorage::dslAmat) { | |
904 | idat.A1 = &(snap_->atomData.aMat[atom1]); | |
905 | idat.A2 = &(snap_->atomData.aMat[atom2]); | |
# | Line 581 | Line 915 | namespace OpenMD { | |
915 | idat.t2 = &(snap_->atomData.torque[atom2]); | |
916 | } | |
917 | ||
918 | < | if (storageLayout_ & DataStorage::dslDensity) { |
918 | > | if (storageLayout_ & DataStorage::dslDensity) { |
919 | idat.rho1 = &(snap_->atomData.density[atom1]); | |
920 | idat.rho2 = &(snap_->atomData.density[atom2]); | |
921 | } | |
922 | ||
923 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
924 | + | idat.frho1 = &(snap_->atomData.functional[atom1]); |
925 | + | idat.frho2 = &(snap_->atomData.functional[atom2]); |
926 | + | } |
927 | + | |
928 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
929 | idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); | |
930 | idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); | |
931 | } | |
593 | – | #endif |
594 | – | return idat; |
595 | – | } |
932 | ||
933 | < | InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ |
933 | > | if (storageLayout_ & DataStorage::dslParticlePot) { |
934 | > | idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); |
935 | > | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
936 | > | } |
937 | ||
938 | < | InteractionData idat; |
939 | < | #ifdef IS_MPI |
940 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { |
602 | < | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
603 | < | idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
938 | > | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
939 | > | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
940 | > | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
941 | } | |
605 | – | if (storageLayout_ & DataStorage::dslTorque) { |
606 | – | idat.t1 = &(atomRowData.torque[atom1]); |
607 | – | idat.t2 = &(atomColData.torque[atom2]); |
608 | – | } |
609 | – | if (storageLayout_ & DataStorage::dslForce) { |
610 | – | idat.t1 = &(atomRowData.force[atom1]); |
611 | – | idat.t2 = &(atomColData.force[atom2]); |
612 | – | } |
613 | – | #else |
614 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { |
615 | – | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
616 | – | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
617 | – | } |
618 | – | if (storageLayout_ & DataStorage::dslTorque) { |
619 | – | idat.t1 = &(snap_->atomData.torque[atom1]); |
620 | – | idat.t2 = &(snap_->atomData.torque[atom2]); |
621 | – | } |
622 | – | if (storageLayout_ & DataStorage::dslForce) { |
623 | – | idat.t1 = &(snap_->atomData.force[atom1]); |
624 | – | idat.t2 = &(snap_->atomData.force[atom2]); |
625 | – | } |
942 | #endif | |
627 | – | |
943 | } | |
944 | ||
945 | + | |
946 | + | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
947 | + | #ifdef IS_MPI |
948 | + | pot_row[atom1] += 0.5 * *(idat.pot); |
949 | + | pot_col[atom2] += 0.5 * *(idat.pot); |
950 | ||
951 | + | atomRowData.force[atom1] += *(idat.f1); |
952 | + | atomColData.force[atom2] -= *(idat.f1); |
953 | + | #else |
954 | + | pairwisePot += *(idat.pot); |
955 | ||
956 | + | snap_->atomData.force[atom1] += *(idat.f1); |
957 | + | snap_->atomData.force[atom2] -= *(idat.f1); |
958 | + | #endif |
959 | + | |
960 | + | } |
961 | ||
962 | /* | |
963 | * buildNeighborList | |
# | Line 639 | Line 968 | namespace OpenMD { | |
968 | vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { | |
969 | ||
970 | vector<pair<int, int> > neighborList; | |
971 | + | groupCutoffs cuts; |
972 | + | bool doAllPairs = false; |
973 | + | |
974 | #ifdef IS_MPI | |
975 | cellListRow_.clear(); | |
976 | cellListCol_.clear(); | |
# | Line 646 | Line 978 | namespace OpenMD { | |
978 | cellList_.clear(); | |
979 | #endif | |
980 | ||
981 | < | // dangerous to not do error checking. |
650 | < | RealType rCut_; |
651 | < | |
652 | < | RealType rList_ = (rCut_ + skinThickness_); |
981 | > | RealType rList_ = (largestRcut_ + skinThickness_); |
982 | RealType rl2 = rList_ * rList_; | |
983 | Snapshot* snap_ = sman_->getCurrentSnapshot(); | |
984 | Mat3x3d Hmat = snap_->getHmat(); | |
# | Line 661 | Line 990 | namespace OpenMD { | |
990 | nCells_.y() = (int) ( Hy.length() )/ rList_; | |
991 | nCells_.z() = (int) ( Hz.length() )/ rList_; | |
992 | ||
993 | + | // handle small boxes where the cell offsets can end up repeating cells |
994 | + | |
995 | + | if (nCells_.x() < 3) doAllPairs = true; |
996 | + | if (nCells_.y() < 3) doAllPairs = true; |
997 | + | if (nCells_.z() < 3) doAllPairs = true; |
998 | + | |
999 | Mat3x3d invHmat = snap_->getInvHmat(); | |
1000 | Vector3d rs, scaled, dr; | |
1001 | Vector3i whichCell; | |
1002 | int cellIndex; | |
1003 | + | int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
1004 | ||
1005 | #ifdef IS_MPI | |
1006 | < | for (int i = 0; i < nGroupsInRow_; i++) { |
1007 | < | rs = cgRowData.position[i]; |
672 | < | // scaled positions relative to the box vectors |
673 | < | scaled = invHmat * rs; |
674 | < | // wrap the vector back into the unit box by subtracting integer box |
675 | < | // numbers |
676 | < | for (int j = 0; j < 3; j++) |
677 | < | scaled[j] -= roundMe(scaled[j]); |
678 | < | |
679 | < | // find xyz-indices of cell that cutoffGroup is in. |
680 | < | whichCell.x() = nCells_.x() * scaled.x(); |
681 | < | whichCell.y() = nCells_.y() * scaled.y(); |
682 | < | whichCell.z() = nCells_.z() * scaled.z(); |
683 | < | |
684 | < | // find single index of this cell: |
685 | < | cellIndex = Vlinear(whichCell, nCells_); |
686 | < | // add this cutoff group to the list of groups in this cell; |
687 | < | cellListRow_[cellIndex].push_back(i); |
688 | < | } |
689 | < | |
690 | < | for (int i = 0; i < nGroupsInCol_; i++) { |
691 | < | rs = cgColData.position[i]; |
692 | < | // scaled positions relative to the box vectors |
693 | < | scaled = invHmat * rs; |
694 | < | // wrap the vector back into the unit box by subtracting integer box |
695 | < | // numbers |
696 | < | for (int j = 0; j < 3; j++) |
697 | < | scaled[j] -= roundMe(scaled[j]); |
698 | < | |
699 | < | // find xyz-indices of cell that cutoffGroup is in. |
700 | < | whichCell.x() = nCells_.x() * scaled.x(); |
701 | < | whichCell.y() = nCells_.y() * scaled.y(); |
702 | < | whichCell.z() = nCells_.z() * scaled.z(); |
703 | < | |
704 | < | // find single index of this cell: |
705 | < | cellIndex = Vlinear(whichCell, nCells_); |
706 | < | // add this cutoff group to the list of groups in this cell; |
707 | < | cellListCol_[cellIndex].push_back(i); |
708 | < | } |
1006 | > | cellListRow_.resize(nCtot); |
1007 | > | cellListCol_.resize(nCtot); |
1008 | #else | |
1009 | < | for (int i = 0; i < nGroups_; i++) { |
711 | < | rs = snap_->cgData.position[i]; |
712 | < | // scaled positions relative to the box vectors |
713 | < | scaled = invHmat * rs; |
714 | < | // wrap the vector back into the unit box by subtracting integer box |
715 | < | // numbers |
716 | < | for (int j = 0; j < 3; j++) |
717 | < | scaled[j] -= roundMe(scaled[j]); |
718 | < | |
719 | < | // find xyz-indices of cell that cutoffGroup is in. |
720 | < | whichCell.x() = nCells_.x() * scaled.x(); |
721 | < | whichCell.y() = nCells_.y() * scaled.y(); |
722 | < | whichCell.z() = nCells_.z() * scaled.z(); |
723 | < | |
724 | < | // find single index of this cell: |
725 | < | cellIndex = Vlinear(whichCell, nCells_); |
726 | < | // add this cutoff group to the list of groups in this cell; |
727 | < | cellList_[cellIndex].push_back(i); |
728 | < | } |
1009 | > | cellList_.resize(nCtot); |
1010 | #endif | |
1011 | ||
1012 | + | if (!doAllPairs) { |
1013 | + | #ifdef IS_MPI |
1014 | ||
1015 | + | for (int i = 0; i < nGroupsInRow_; i++) { |
1016 | + | rs = cgRowData.position[i]; |
1017 | + | |
1018 | + | // scaled positions relative to the box vectors |
1019 | + | scaled = invHmat * rs; |
1020 | + | |
1021 | + | // wrap the vector back into the unit box by subtracting integer box |
1022 | + | // numbers |
1023 | + | for (int j = 0; j < 3; j++) { |
1024 | + | scaled[j] -= roundMe(scaled[j]); |
1025 | + | scaled[j] += 0.5; |
1026 | + | } |
1027 | + | |
1028 | + | // find xyz-indices of cell that cutoffGroup is in. |
1029 | + | whichCell.x() = nCells_.x() * scaled.x(); |
1030 | + | whichCell.y() = nCells_.y() * scaled.y(); |
1031 | + | whichCell.z() = nCells_.z() * scaled.z(); |
1032 | + | |
1033 | + | // find single index of this cell: |
1034 | + | cellIndex = Vlinear(whichCell, nCells_); |
1035 | + | |
1036 | + | // add this cutoff group to the list of groups in this cell; |
1037 | + | cellListRow_[cellIndex].push_back(i); |
1038 | + | } |
1039 | + | |
1040 | + | for (int i = 0; i < nGroupsInCol_; i++) { |
1041 | + | rs = cgColData.position[i]; |
1042 | + | |
1043 | + | // scaled positions relative to the box vectors |
1044 | + | scaled = invHmat * rs; |
1045 | + | |
1046 | + | // wrap the vector back into the unit box by subtracting integer box |
1047 | + | // numbers |
1048 | + | for (int j = 0; j < 3; j++) { |
1049 | + | scaled[j] -= roundMe(scaled[j]); |
1050 | + | scaled[j] += 0.5; |
1051 | + | } |
1052 | + | |
1053 | + | // find xyz-indices of cell that cutoffGroup is in. |
1054 | + | whichCell.x() = nCells_.x() * scaled.x(); |
1055 | + | whichCell.y() = nCells_.y() * scaled.y(); |
1056 | + | whichCell.z() = nCells_.z() * scaled.z(); |
1057 | + | |
1058 | + | // find single index of this cell: |
1059 | + | cellIndex = Vlinear(whichCell, nCells_); |
1060 | + | |
1061 | + | // add this cutoff group to the list of groups in this cell; |
1062 | + | cellListCol_[cellIndex].push_back(i); |
1063 | + | } |
1064 | + | #else |
1065 | + | for (int i = 0; i < nGroups_; i++) { |
1066 | + | rs = snap_->cgData.position[i]; |
1067 | + | |
1068 | + | // scaled positions relative to the box vectors |
1069 | + | scaled = invHmat * rs; |
1070 | + | |
1071 | + | // wrap the vector back into the unit box by subtracting integer box |
1072 | + | // numbers |
1073 | + | for (int j = 0; j < 3; j++) { |
1074 | + | scaled[j] -= roundMe(scaled[j]); |
1075 | + | scaled[j] += 0.5; |
1076 | + | } |
1077 | + | |
1078 | + | // find xyz-indices of cell that cutoffGroup is in. |
1079 | + | whichCell.x() = nCells_.x() * scaled.x(); |
1080 | + | whichCell.y() = nCells_.y() * scaled.y(); |
1081 | + | whichCell.z() = nCells_.z() * scaled.z(); |
1082 | + | |
1083 | + | // find single index of this cell: |
1084 | + | cellIndex = Vlinear(whichCell, nCells_); |
1085 | + | |
1086 | + | // add this cutoff group to the list of groups in this cell; |
1087 | + | cellList_[cellIndex].push_back(i); |
1088 | + | } |
1089 | + | #endif |
1090 | ||
1091 | < | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1092 | < | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1093 | < | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1094 | < | Vector3i m1v(m1x, m1y, m1z); |
1095 | < | int m1 = Vlinear(m1v, nCells_); |
738 | < | |
739 | < | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
740 | < | os != cellOffsets_.end(); ++os) { |
1091 | > | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1092 | > | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1093 | > | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1094 | > | Vector3i m1v(m1x, m1y, m1z); |
1095 | > | int m1 = Vlinear(m1v, nCells_); |
1096 | ||
1097 | < | Vector3i m2v = m1v + (*os); |
1098 | < | |
1099 | < | if (m2v.x() >= nCells_.x()) { |
1100 | < | m2v.x() = 0; |
1101 | < | } else if (m2v.x() < 0) { |
1102 | < | m2v.x() = nCells_.x() - 1; |
1103 | < | } |
1104 | < | |
1105 | < | if (m2v.y() >= nCells_.y()) { |
1106 | < | m2v.y() = 0; |
1107 | < | } else if (m2v.y() < 0) { |
1108 | < | m2v.y() = nCells_.y() - 1; |
1109 | < | } |
1110 | < | |
1111 | < | if (m2v.z() >= nCells_.z()) { |
1112 | < | m2v.z() = 0; |
1113 | < | } else if (m2v.z() < 0) { |
1114 | < | m2v.z() = nCells_.z() - 1; |
1115 | < | } |
1116 | < | |
1117 | < | int m2 = Vlinear (m2v, nCells_); |
1118 | < | |
1097 | > | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1098 | > | os != cellOffsets_.end(); ++os) { |
1099 | > | |
1100 | > | Vector3i m2v = m1v + (*os); |
1101 | > | |
1102 | > | if (m2v.x() >= nCells_.x()) { |
1103 | > | m2v.x() = 0; |
1104 | > | } else if (m2v.x() < 0) { |
1105 | > | m2v.x() = nCells_.x() - 1; |
1106 | > | } |
1107 | > | |
1108 | > | if (m2v.y() >= nCells_.y()) { |
1109 | > | m2v.y() = 0; |
1110 | > | } else if (m2v.y() < 0) { |
1111 | > | m2v.y() = nCells_.y() - 1; |
1112 | > | } |
1113 | > | |
1114 | > | if (m2v.z() >= nCells_.z()) { |
1115 | > | m2v.z() = 0; |
1116 | > | } else if (m2v.z() < 0) { |
1117 | > | m2v.z() = nCells_.z() - 1; |
1118 | > | } |
1119 | > | |
1120 | > | int m2 = Vlinear (m2v, nCells_); |
1121 | > | |
1122 | #ifdef IS_MPI | |
1123 | < | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1124 | < | j1 != cellListRow_[m1].end(); ++j1) { |
1125 | < | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1126 | < | j2 != cellListCol_[m2].end(); ++j2) { |
1127 | < | |
1128 | < | // Always do this if we're in different cells or if |
1129 | < | // we're in the same cell and the global index of the |
1130 | < | // j2 cutoff group is less than the j1 cutoff group |
1131 | < | |
1132 | < | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1133 | < | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1134 | < | snap_->wrapVector(dr); |
1135 | < | if (dr.lengthSquare() < rl2) { |
1136 | < | neighborList.push_back(make_pair((*j1), (*j2))); |
1123 | > | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1124 | > | j1 != cellListRow_[m1].end(); ++j1) { |
1125 | > | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1126 | > | j2 != cellListCol_[m2].end(); ++j2) { |
1127 | > | |
1128 | > | // Always do this if we're in different cells or if |
1129 | > | // we're in the same cell and the global index of the |
1130 | > | // j2 cutoff group is less than the j1 cutoff group |
1131 | > | |
1132 | > | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1133 | > | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1134 | > | snap_->wrapVector(dr); |
1135 | > | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1136 | > | if (dr.lengthSquare() < cuts.third) { |
1137 | > | neighborList.push_back(make_pair((*j1), (*j2))); |
1138 | > | } |
1139 | } | |
1140 | } | |
1141 | } | |
782 | – | } |
1142 | #else | |
1143 | < | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1144 | < | j1 != cellList_[m1].end(); ++j1) { |
1145 | < | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1146 | < | j2 != cellList_[m2].end(); ++j2) { |
1147 | < | |
1148 | < | // Always do this if we're in different cells or if |
1149 | < | // we're in the same cell and the global index of the |
1150 | < | // j2 cutoff group is less than the j1 cutoff group |
1151 | < | |
1152 | < | if (m2 != m1 || (*j2) < (*j1)) { |
1153 | < | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1154 | < | snap_->wrapVector(dr); |
1155 | < | if (dr.lengthSquare() < rl2) { |
1156 | < | neighborList.push_back(make_pair((*j1), (*j2))); |
1143 | > | |
1144 | > | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1145 | > | j1 != cellList_[m1].end(); ++j1) { |
1146 | > | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1147 | > | j2 != cellList_[m2].end(); ++j2) { |
1148 | > | |
1149 | > | // Always do this if we're in different cells or if |
1150 | > | // we're in the same cell and the global index of the |
1151 | > | // j2 cutoff group is less than the j1 cutoff group |
1152 | > | |
1153 | > | if (m2 != m1 || (*j2) < (*j1)) { |
1154 | > | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1155 | > | snap_->wrapVector(dr); |
1156 | > | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1157 | > | if (dr.lengthSquare() < cuts.third) { |
1158 | > | neighborList.push_back(make_pair((*j1), (*j2))); |
1159 | > | } |
1160 | } | |
1161 | } | |
1162 | } | |
801 | – | } |
1163 | #endif | |
1164 | + | } |
1165 | } | |
1166 | } | |
1167 | } | |
1168 | + | } else { |
1169 | + | // branch to do all cutoff group pairs |
1170 | + | #ifdef IS_MPI |
1171 | + | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1172 | + | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1173 | + | dr = cgColData.position[j2] - cgRowData.position[j1]; |
1174 | + | snap_->wrapVector(dr); |
1175 | + | cuts = getGroupCutoffs( j1, j2 ); |
1176 | + | if (dr.lengthSquare() < cuts.third) { |
1177 | + | neighborList.push_back(make_pair(j1, j2)); |
1178 | + | } |
1179 | + | } |
1180 | + | } |
1181 | + | #else |
1182 | + | for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1183 | + | for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1184 | + | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1185 | + | snap_->wrapVector(dr); |
1186 | + | cuts = getGroupCutoffs( j1, j2 ); |
1187 | + | if (dr.lengthSquare() < cuts.third) { |
1188 | + | neighborList.push_back(make_pair(j1, j2)); |
1189 | + | } |
1190 | + | } |
1191 | + | } |
1192 | + | #endif |
1193 | } | |
1194 | < | |
1194 | > | |
1195 | // save the local cutoff group positions for the check that is | |
1196 | // done on each loop: | |
1197 | saved_CG_positions_.clear(); | |
1198 | for (int i = 0; i < nGroups_; i++) | |
1199 | saved_CG_positions_.push_back(snap_->cgData.position[i]); | |
1200 | < | |
1200 | > | |
1201 | return neighborList; | |
1202 | } | |
1203 | } //end namespace OpenMD |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |