# | Line 36 | Line 36 | |
---|---|---|
36 | * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | |
37 | * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | |
38 | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | |
39 | < | * [4] Vardeman & Gezelter, in progress (2009). |
39 | > | * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 | > | * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 | */ | |
42 | #include "parallel/ForceMatrixDecomposition.hpp" | |
43 | #include "math/SquareMatrix3.hpp" | |
# | Line 47 | Line 48 | namespace OpenMD { | |
48 | using namespace std; | |
49 | namespace OpenMD { | |
50 | ||
51 | + | ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { |
52 | + | |
53 | + | // In a parallel computation, row and colum scans must visit all |
54 | + | // surrounding cells (not just the 14 upper triangular blocks that |
55 | + | // are used when the processor can see all pairs) |
56 | + | #ifdef IS_MPI |
57 | + | cellOffsets_.clear(); |
58 | + | cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
59 | + | cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
60 | + | cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
61 | + | cellOffsets_.push_back( Vector3i(-1, 0,-1) ); |
62 | + | cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
63 | + | cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
64 | + | cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
65 | + | cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
66 | + | cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
67 | + | cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
68 | + | cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
69 | + | cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
70 | + | cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
71 | + | cellOffsets_.push_back( Vector3i( 0, 0, 0) ); |
72 | + | cellOffsets_.push_back( Vector3i( 1, 0, 0) ); |
73 | + | cellOffsets_.push_back( Vector3i(-1, 1, 0) ); |
74 | + | cellOffsets_.push_back( Vector3i( 0, 1, 0) ); |
75 | + | cellOffsets_.push_back( Vector3i( 1, 1, 0) ); |
76 | + | cellOffsets_.push_back( Vector3i(-1,-1, 1) ); |
77 | + | cellOffsets_.push_back( Vector3i( 0,-1, 1) ); |
78 | + | cellOffsets_.push_back( Vector3i( 1,-1, 1) ); |
79 | + | cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
80 | + | cellOffsets_.push_back( Vector3i( 0, 0, 1) ); |
81 | + | cellOffsets_.push_back( Vector3i( 1, 0, 1) ); |
82 | + | cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
83 | + | cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
84 | + | cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
85 | + | #endif |
86 | + | } |
87 | + | |
88 | + | |
89 | /** | |
90 | * distributeInitialData is essentially a copy of the older fortran | |
91 | * SimulationSetup | |
92 | */ | |
54 | – | |
93 | void ForceMatrixDecomposition::distributeInitialData() { | |
94 | snap_ = sman_->getCurrentSnapshot(); | |
95 | storageLayout_ = sman_->getStorageLayout(); | |
96 | + | ff_ = info_->getForceField(); |
97 | nLocal_ = snap_->getNumberOfAtoms(); | |
98 | < | nGroups_ = snap_->getNumberOfCutoffGroups(); |
99 | < | |
98 | > | |
99 | > | nGroups_ = info_->getNLocalCutoffGroups(); |
100 | // gather the information for atomtype IDs (atids): | |
101 | < | vector<int> identsLocal = info_->getIdentArray(); |
101 | > | idents = info_->getIdentArray(); |
102 | AtomLocalToGlobal = info_->getGlobalAtomIndices(); | |
103 | cgLocalToGlobal = info_->getGlobalGroupIndices(); | |
104 | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); | |
66 | – | vector<RealType> massFactorsLocal = info_->getMassFactors(); |
67 | – | PairList excludes = info_->getExcludedInteractions(); |
68 | – | PairList oneTwo = info_->getOneTwoInteractions(); |
69 | – | PairList oneThree = info_->getOneThreeInteractions(); |
70 | – | PairList oneFour = info_->getOneFourInteractions(); |
71 | – | vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0); |
105 | ||
106 | + | massFactors = info_->getMassFactors(); |
107 | + | |
108 | + | PairList* excludes = info_->getExcludedInteractions(); |
109 | + | PairList* oneTwo = info_->getOneTwoInteractions(); |
110 | + | PairList* oneThree = info_->getOneThreeInteractions(); |
111 | + | PairList* oneFour = info_->getOneFourInteractions(); |
112 | + | |
113 | + | if (needVelocities_) |
114 | + | snap_->cgData.setStorageLayout(DataStorage::dslPosition | |
115 | + | DataStorage::dslVelocity); |
116 | + | else |
117 | + | snap_->cgData.setStorageLayout(DataStorage::dslPosition); |
118 | + | |
119 | #ifdef IS_MPI | |
120 | ||
121 | < | AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
122 | < | AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
77 | < | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
78 | < | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
121 | > | MPI::Intracomm row = rowComm.getComm(); |
122 | > | MPI::Intracomm col = colComm.getComm(); |
123 | ||
124 | < | AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
125 | < | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
126 | < | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
127 | < | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
124 | > | AtomPlanIntRow = new Plan<int>(row, nLocal_); |
125 | > | AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
126 | > | AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); |
127 | > | AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); |
128 | > | AtomPlanPotRow = new Plan<potVec>(row, nLocal_); |
129 | ||
130 | < | cgCommIntRow = new Communicator<Row,int>(nGroups_); |
131 | < | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
132 | < | cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
133 | < | cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
130 | > | AtomPlanIntColumn = new Plan<int>(col, nLocal_); |
131 | > | AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); |
132 | > | AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); |
133 | > | AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); |
134 | > | AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); |
135 | ||
136 | < | nAtomsInRow_ = AtomCommIntRow->getSize(); |
137 | < | nAtomsInCol_ = AtomCommIntColumn->getSize(); |
138 | < | nGroupsInRow_ = cgCommIntRow->getSize(); |
139 | < | nGroupsInCol_ = cgCommIntColumn->getSize(); |
136 | > | cgPlanIntRow = new Plan<int>(row, nGroups_); |
137 | > | cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); |
138 | > | cgPlanIntColumn = new Plan<int>(col, nGroups_); |
139 | > | cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); |
140 | ||
141 | + | nAtomsInRow_ = AtomPlanIntRow->getSize(); |
142 | + | nAtomsInCol_ = AtomPlanIntColumn->getSize(); |
143 | + | nGroupsInRow_ = cgPlanIntRow->getSize(); |
144 | + | nGroupsInCol_ = cgPlanIntColumn->getSize(); |
145 | + | |
146 | // Modify the data storage objects with the correct layouts and sizes: | |
147 | atomRowData.resize(nAtomsInRow_); | |
148 | atomRowData.setStorageLayout(storageLayout_); | |
# | Line 100 | Line 151 | namespace OpenMD { | |
151 | cgRowData.resize(nGroupsInRow_); | |
152 | cgRowData.setStorageLayout(DataStorage::dslPosition); | |
153 | cgColData.resize(nGroupsInCol_); | |
154 | < | cgColData.setStorageLayout(DataStorage::dslPosition); |
154 | > | if (needVelocities_) |
155 | > | // we only need column velocities if we need them. |
156 | > | cgColData.setStorageLayout(DataStorage::dslPosition | |
157 | > | DataStorage::dslVelocity); |
158 | > | else |
159 | > | cgColData.setStorageLayout(DataStorage::dslPosition); |
160 | > | |
161 | > | identsRow.resize(nAtomsInRow_); |
162 | > | identsCol.resize(nAtomsInCol_); |
163 | ||
164 | < | vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES, |
165 | < | vector<RealType> (nAtomsInRow_, 0.0)); |
107 | < | vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES, |
108 | < | vector<RealType> (nAtomsInCol_, 0.0)); |
164 | > | AtomPlanIntRow->gather(idents, identsRow); |
165 | > | AtomPlanIntColumn->gather(idents, identsCol); |
166 | ||
167 | < | identsRow.reserve(nAtomsInRow_); |
168 | < | identsCol.reserve(nAtomsInCol_); |
169 | < | |
113 | < | AtomCommIntRow->gather(identsLocal, identsRow); |
114 | < | AtomCommIntColumn->gather(identsLocal, identsCol); |
115 | < | |
116 | < | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
117 | < | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
118 | < | |
119 | < | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
120 | < | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
167 | > | // allocate memory for the parallel objects |
168 | > | atypesRow.resize(nAtomsInRow_); |
169 | > | atypesCol.resize(nAtomsInCol_); |
170 | ||
171 | < | AtomCommRealRow->gather(massFactorsLocal, massFactorsRow); |
172 | < | AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol); |
171 | > | for (int i = 0; i < nAtomsInRow_; i++) |
172 | > | atypesRow[i] = ff_->getAtomType(identsRow[i]); |
173 | > | for (int i = 0; i < nAtomsInCol_; i++) |
174 | > | atypesCol[i] = ff_->getAtomType(identsCol[i]); |
175 | ||
176 | + | pot_row.resize(nAtomsInRow_); |
177 | + | pot_col.resize(nAtomsInCol_); |
178 | + | |
179 | + | expot_row.resize(nAtomsInRow_); |
180 | + | expot_col.resize(nAtomsInCol_); |
181 | + | |
182 | + | AtomRowToGlobal.resize(nAtomsInRow_); |
183 | + | AtomColToGlobal.resize(nAtomsInCol_); |
184 | + | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
185 | + | AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
186 | + | |
187 | + | cgRowToGlobal.resize(nGroupsInRow_); |
188 | + | cgColToGlobal.resize(nGroupsInCol_); |
189 | + | cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
190 | + | cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
191 | + | |
192 | + | massFactorsRow.resize(nAtomsInRow_); |
193 | + | massFactorsCol.resize(nAtomsInCol_); |
194 | + | AtomPlanRealRow->gather(massFactors, massFactorsRow); |
195 | + | AtomPlanRealColumn->gather(massFactors, massFactorsCol); |
196 | + | |
197 | groupListRow_.clear(); | |
198 | < | groupListRow_.reserve(nGroupsInRow_); |
198 | > | groupListRow_.resize(nGroupsInRow_); |
199 | for (int i = 0; i < nGroupsInRow_; i++) { | |
200 | int gid = cgRowToGlobal[i]; | |
201 | for (int j = 0; j < nAtomsInRow_; j++) { | |
# | Line 134 | Line 206 | namespace OpenMD { | |
206 | } | |
207 | ||
208 | groupListCol_.clear(); | |
209 | < | groupListCol_.reserve(nGroupsInCol_); |
209 | > | groupListCol_.resize(nGroupsInCol_); |
210 | for (int i = 0; i < nGroupsInCol_; i++) { | |
211 | int gid = cgColToGlobal[i]; | |
212 | for (int j = 0; j < nAtomsInCol_; j++) { | |
# | Line 144 | Line 216 | namespace OpenMD { | |
216 | } | |
217 | } | |
218 | ||
219 | < | skipsForRowAtom.clear(); |
220 | < | skipsForRowAtom.reserve(nAtomsInRow_); |
219 | > | excludesForAtom.clear(); |
220 | > | excludesForAtom.resize(nAtomsInRow_); |
221 | > | toposForAtom.clear(); |
222 | > | toposForAtom.resize(nAtomsInRow_); |
223 | > | topoDist.clear(); |
224 | > | topoDist.resize(nAtomsInRow_); |
225 | for (int i = 0; i < nAtomsInRow_; i++) { | |
226 | < | int iglob = AtomColToGlobal[i]; |
226 | > | int iglob = AtomRowToGlobal[i]; |
227 | > | |
228 | for (int j = 0; j < nAtomsInCol_; j++) { | |
229 | < | int jglob = AtomRowToGlobal[j]; |
230 | < | if (excludes.hasPair(iglob, jglob)) |
231 | < | skipsForRowAtom[i].push_back(j); |
229 | > | int jglob = AtomColToGlobal[j]; |
230 | > | |
231 | > | if (excludes->hasPair(iglob, jglob)) |
232 | > | excludesForAtom[i].push_back(j); |
233 | > | |
234 | > | if (oneTwo->hasPair(iglob, jglob)) { |
235 | > | toposForAtom[i].push_back(j); |
236 | > | topoDist[i].push_back(1); |
237 | > | } else { |
238 | > | if (oneThree->hasPair(iglob, jglob)) { |
239 | > | toposForAtom[i].push_back(j); |
240 | > | topoDist[i].push_back(2); |
241 | > | } else { |
242 | > | if (oneFour->hasPair(iglob, jglob)) { |
243 | > | toposForAtom[i].push_back(j); |
244 | > | topoDist[i].push_back(3); |
245 | > | } |
246 | > | } |
247 | > | } |
248 | } | |
249 | } | |
250 | ||
251 | < | toposForRowAtom.clear(); |
252 | < | toposForRowAtom.reserve(nAtomsInRow_); |
253 | < | for (int i = 0; i < nAtomsInRow_; i++) { |
254 | < | int iglob = AtomColToGlobal[i]; |
255 | < | int nTopos = 0; |
256 | < | for (int j = 0; j < nAtomsInCol_; j++) { |
257 | < | int jglob = AtomRowToGlobal[j]; |
258 | < | if (oneTwo.hasPair(iglob, jglob)) { |
259 | < | toposForRowAtom[i].push_back(j); |
260 | < | topoDistRow[i][nTopos] = 1; |
261 | < | nTopos++; |
251 | > | #else |
252 | > | excludesForAtom.clear(); |
253 | > | excludesForAtom.resize(nLocal_); |
254 | > | toposForAtom.clear(); |
255 | > | toposForAtom.resize(nLocal_); |
256 | > | topoDist.clear(); |
257 | > | topoDist.resize(nLocal_); |
258 | > | |
259 | > | for (int i = 0; i < nLocal_; i++) { |
260 | > | int iglob = AtomLocalToGlobal[i]; |
261 | > | |
262 | > | for (int j = 0; j < nLocal_; j++) { |
263 | > | int jglob = AtomLocalToGlobal[j]; |
264 | > | |
265 | > | if (excludes->hasPair(iglob, jglob)) |
266 | > | excludesForAtom[i].push_back(j); |
267 | > | |
268 | > | if (oneTwo->hasPair(iglob, jglob)) { |
269 | > | toposForAtom[i].push_back(j); |
270 | > | topoDist[i].push_back(1); |
271 | > | } else { |
272 | > | if (oneThree->hasPair(iglob, jglob)) { |
273 | > | toposForAtom[i].push_back(j); |
274 | > | topoDist[i].push_back(2); |
275 | > | } else { |
276 | > | if (oneFour->hasPair(iglob, jglob)) { |
277 | > | toposForAtom[i].push_back(j); |
278 | > | topoDist[i].push_back(3); |
279 | > | } |
280 | > | } |
281 | } | |
170 | – | if (oneThree.hasPair(iglob, jglob)) { |
171 | – | toposForRowAtom[i].push_back(j); |
172 | – | topoDistRow[i][nTopos] = 2; |
173 | – | nTopos++; |
174 | – | } |
175 | – | if (oneFour.hasPair(iglob, jglob)) { |
176 | – | toposForRowAtom[i].push_back(j); |
177 | – | topoDistRow[i][nTopos] = 3; |
178 | – | nTopos++; |
179 | – | } |
282 | } | |
283 | } | |
182 | – | |
284 | #endif | |
285 | ||
286 | + | // allocate memory for the parallel objects |
287 | + | atypesLocal.resize(nLocal_); |
288 | + | |
289 | + | for (int i = 0; i < nLocal_; i++) |
290 | + | atypesLocal[i] = ff_->getAtomType(idents[i]); |
291 | + | |
292 | groupList_.clear(); | |
293 | < | groupList_.reserve(nGroups_); |
293 | > | groupList_.resize(nGroups_); |
294 | for (int i = 0; i < nGroups_; i++) { | |
295 | int gid = cgLocalToGlobal[i]; | |
296 | for (int j = 0; j < nLocal_; j++) { | |
297 | int aid = AtomLocalToGlobal[j]; | |
298 | < | if (globalGroupMembership[aid] == gid) |
298 | > | if (globalGroupMembership[aid] == gid) { |
299 | groupList_[i].push_back(j); | |
300 | + | } |
301 | } | |
302 | } | |
303 | ||
196 | – | skipsForLocalAtom.clear(); |
197 | – | skipsForLocalAtom.reserve(nLocal_); |
304 | ||
305 | < | for (int i = 0; i < nLocal_; i++) { |
306 | < | int iglob = AtomLocalToGlobal[i]; |
307 | < | for (int j = 0; j < nLocal_; j++) { |
308 | < | int jglob = AtomLocalToGlobal[j]; |
309 | < | if (excludes.hasPair(iglob, jglob)) |
310 | < | skipsForLocalAtom[i].push_back(j); |
311 | < | } |
305 | > | createGtypeCutoffMap(); |
306 | > | |
307 | > | } |
308 | > | |
309 | > | void ForceMatrixDecomposition::createGtypeCutoffMap() { |
310 | > | |
311 | > | RealType tol = 1e-6; |
312 | > | largestRcut_ = 0.0; |
313 | > | RealType rc; |
314 | > | int atid; |
315 | > | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
316 | > | |
317 | > | map<int, RealType> atypeCutoff; |
318 | > | |
319 | > | for (set<AtomType*>::iterator at = atypes.begin(); |
320 | > | at != atypes.end(); ++at){ |
321 | > | atid = (*at)->getIdent(); |
322 | > | if (userChoseCutoff_) |
323 | > | atypeCutoff[atid] = userCutoff_; |
324 | > | else |
325 | > | atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
326 | } | |
327 | + | |
328 | + | vector<RealType> gTypeCutoffs; |
329 | + | // first we do a single loop over the cutoff groups to find the |
330 | + | // largest cutoff for any atypes present in this group. |
331 | + | #ifdef IS_MPI |
332 | + | vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); |
333 | + | groupRowToGtype.resize(nGroupsInRow_); |
334 | + | for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { |
335 | + | vector<int> atomListRow = getAtomsInGroupRow(cg1); |
336 | + | for (vector<int>::iterator ia = atomListRow.begin(); |
337 | + | ia != atomListRow.end(); ++ia) { |
338 | + | int atom1 = (*ia); |
339 | + | atid = identsRow[atom1]; |
340 | + | if (atypeCutoff[atid] > groupCutoffRow[cg1]) { |
341 | + | groupCutoffRow[cg1] = atypeCutoff[atid]; |
342 | + | } |
343 | + | } |
344 | ||
345 | < | toposForLocalAtom.clear(); |
346 | < | toposForLocalAtom.reserve(nLocal_); |
347 | < | for (int i = 0; i < nLocal_; i++) { |
348 | < | int iglob = AtomLocalToGlobal[i]; |
349 | < | int nTopos = 0; |
350 | < | for (int j = 0; j < nLocal_; j++) { |
351 | < | int jglob = AtomLocalToGlobal[j]; |
352 | < | if (oneTwo.hasPair(iglob, jglob)) { |
353 | < | toposForLocalAtom[i].push_back(j); |
354 | < | topoDistLocal[i][nTopos] = 1; |
355 | < | nTopos++; |
345 | > | bool gTypeFound = false; |
346 | > | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
347 | > | if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) { |
348 | > | groupRowToGtype[cg1] = gt; |
349 | > | gTypeFound = true; |
350 | > | } |
351 | > | } |
352 | > | if (!gTypeFound) { |
353 | > | gTypeCutoffs.push_back( groupCutoffRow[cg1] ); |
354 | > | groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; |
355 | > | } |
356 | > | |
357 | > | } |
358 | > | vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); |
359 | > | groupColToGtype.resize(nGroupsInCol_); |
360 | > | for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { |
361 | > | vector<int> atomListCol = getAtomsInGroupColumn(cg2); |
362 | > | for (vector<int>::iterator jb = atomListCol.begin(); |
363 | > | jb != atomListCol.end(); ++jb) { |
364 | > | int atom2 = (*jb); |
365 | > | atid = identsCol[atom2]; |
366 | > | if (atypeCutoff[atid] > groupCutoffCol[cg2]) { |
367 | > | groupCutoffCol[cg2] = atypeCutoff[atid]; |
368 | } | |
369 | < | if (oneThree.hasPair(iglob, jglob)) { |
370 | < | toposForLocalAtom[i].push_back(j); |
371 | < | topoDistLocal[i][nTopos] = 2; |
372 | < | nTopos++; |
373 | < | } |
374 | < | if (oneFour.hasPair(iglob, jglob)) { |
375 | < | toposForLocalAtom[i].push_back(j); |
376 | < | topoDistLocal[i][nTopos] = 3; |
377 | < | nTopos++; |
378 | < | } |
369 | > | } |
370 | > | bool gTypeFound = false; |
371 | > | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
372 | > | if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) { |
373 | > | groupColToGtype[cg2] = gt; |
374 | > | gTypeFound = true; |
375 | > | } |
376 | > | } |
377 | > | if (!gTypeFound) { |
378 | > | gTypeCutoffs.push_back( groupCutoffCol[cg2] ); |
379 | > | groupColToGtype[cg2] = gTypeCutoffs.size() - 1; |
380 | > | } |
381 | > | } |
382 | > | #else |
383 | > | |
384 | > | vector<RealType> groupCutoff(nGroups_, 0.0); |
385 | > | groupToGtype.resize(nGroups_); |
386 | > | for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
387 | > | groupCutoff[cg1] = 0.0; |
388 | > | vector<int> atomList = getAtomsInGroupRow(cg1); |
389 | > | for (vector<int>::iterator ia = atomList.begin(); |
390 | > | ia != atomList.end(); ++ia) { |
391 | > | int atom1 = (*ia); |
392 | > | atid = idents[atom1]; |
393 | > | if (atypeCutoff[atid] > groupCutoff[cg1]) |
394 | > | groupCutoff[cg1] = atypeCutoff[atid]; |
395 | > | } |
396 | > | |
397 | > | bool gTypeFound = false; |
398 | > | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
399 | > | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
400 | > | groupToGtype[cg1] = gt; |
401 | > | gTypeFound = true; |
402 | > | } |
403 | > | } |
404 | > | if (!gTypeFound) { |
405 | > | gTypeCutoffs.push_back( groupCutoff[cg1] ); |
406 | > | groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
407 | } | |
408 | } | |
409 | + | #endif |
410 | + | |
411 | + | // Now we find the maximum group cutoff value present in the simulation |
412 | + | |
413 | + | RealType groupMax = *max_element(gTypeCutoffs.begin(), |
414 | + | gTypeCutoffs.end()); |
415 | + | |
416 | + | #ifdef IS_MPI |
417 | + | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, |
418 | + | MPI::MAX); |
419 | + | #endif |
420 | + | |
421 | + | RealType tradRcut = groupMax; |
422 | + | |
423 | + | for (int i = 0; i < gTypeCutoffs.size(); i++) { |
424 | + | for (int j = 0; j < gTypeCutoffs.size(); j++) { |
425 | + | RealType thisRcut; |
426 | + | switch(cutoffPolicy_) { |
427 | + | case TRADITIONAL: |
428 | + | thisRcut = tradRcut; |
429 | + | break; |
430 | + | case MIX: |
431 | + | thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); |
432 | + | break; |
433 | + | case MAX: |
434 | + | thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); |
435 | + | break; |
436 | + | default: |
437 | + | sprintf(painCave.errMsg, |
438 | + | "ForceMatrixDecomposition::createGtypeCutoffMap " |
439 | + | "hit an unknown cutoff policy!\n"); |
440 | + | painCave.severity = OPENMD_ERROR; |
441 | + | painCave.isFatal = 1; |
442 | + | simError(); |
443 | + | break; |
444 | + | } |
445 | + | |
446 | + | pair<int,int> key = make_pair(i,j); |
447 | + | gTypeCutoffMap[key].first = thisRcut; |
448 | + | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
449 | + | gTypeCutoffMap[key].second = thisRcut*thisRcut; |
450 | + | gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
451 | + | // sanity check |
452 | + | |
453 | + | if (userChoseCutoff_) { |
454 | + | if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
455 | + | sprintf(painCave.errMsg, |
456 | + | "ForceMatrixDecomposition::createGtypeCutoffMap " |
457 | + | "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
458 | + | painCave.severity = OPENMD_ERROR; |
459 | + | painCave.isFatal = 1; |
460 | + | simError(); |
461 | + | } |
462 | + | } |
463 | + | } |
464 | + | } |
465 | } | |
466 | < | |
466 | > | |
467 | > | groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
468 | > | int i, j; |
469 | > | #ifdef IS_MPI |
470 | > | i = groupRowToGtype[cg1]; |
471 | > | j = groupColToGtype[cg2]; |
472 | > | #else |
473 | > | i = groupToGtype[cg1]; |
474 | > | j = groupToGtype[cg2]; |
475 | > | #endif |
476 | > | return gTypeCutoffMap[make_pair(i,j)]; |
477 | > | } |
478 | > | |
479 | > | int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
480 | > | for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
481 | > | if (toposForAtom[atom1][j] == atom2) |
482 | > | return topoDist[atom1][j]; |
483 | > | } |
484 | > | return 0; |
485 | > | } |
486 | > | |
487 | > | void ForceMatrixDecomposition::zeroWorkArrays() { |
488 | > | pairwisePot = 0.0; |
489 | > | embeddingPot = 0.0; |
490 | > | excludedPot = 0.0; |
491 | > | |
492 | > | #ifdef IS_MPI |
493 | > | if (storageLayout_ & DataStorage::dslForce) { |
494 | > | fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); |
495 | > | fill(atomColData.force.begin(), atomColData.force.end(), V3Zero); |
496 | > | } |
497 | > | |
498 | > | if (storageLayout_ & DataStorage::dslTorque) { |
499 | > | fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero); |
500 | > | fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero); |
501 | > | } |
502 | > | |
503 | > | fill(pot_row.begin(), pot_row.end(), |
504 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
505 | > | |
506 | > | fill(pot_col.begin(), pot_col.end(), |
507 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
508 | > | |
509 | > | fill(expot_row.begin(), expot_row.end(), |
510 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
511 | > | |
512 | > | fill(expot_col.begin(), expot_col.end(), |
513 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
514 | > | |
515 | > | if (storageLayout_ & DataStorage::dslParticlePot) { |
516 | > | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
517 | > | 0.0); |
518 | > | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), |
519 | > | 0.0); |
520 | > | } |
521 | > | |
522 | > | if (storageLayout_ & DataStorage::dslDensity) { |
523 | > | fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0); |
524 | > | fill(atomColData.density.begin(), atomColData.density.end(), 0.0); |
525 | > | } |
526 | > | |
527 | > | if (storageLayout_ & DataStorage::dslFunctional) { |
528 | > | fill(atomRowData.functional.begin(), atomRowData.functional.end(), |
529 | > | 0.0); |
530 | > | fill(atomColData.functional.begin(), atomColData.functional.end(), |
531 | > | 0.0); |
532 | > | } |
533 | > | |
534 | > | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
535 | > | fill(atomRowData.functionalDerivative.begin(), |
536 | > | atomRowData.functionalDerivative.end(), 0.0); |
537 | > | fill(atomColData.functionalDerivative.begin(), |
538 | > | atomColData.functionalDerivative.end(), 0.0); |
539 | > | } |
540 | > | |
541 | > | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
542 | > | fill(atomRowData.skippedCharge.begin(), |
543 | > | atomRowData.skippedCharge.end(), 0.0); |
544 | > | fill(atomColData.skippedCharge.begin(), |
545 | > | atomColData.skippedCharge.end(), 0.0); |
546 | > | } |
547 | > | |
548 | > | if (storageLayout_ & DataStorage::dslFlucQForce) { |
549 | > | fill(atomRowData.flucQFrc.begin(), |
550 | > | atomRowData.flucQFrc.end(), 0.0); |
551 | > | fill(atomColData.flucQFrc.begin(), |
552 | > | atomColData.flucQFrc.end(), 0.0); |
553 | > | } |
554 | > | |
555 | > | if (storageLayout_ & DataStorage::dslElectricField) { |
556 | > | fill(atomRowData.electricField.begin(), |
557 | > | atomRowData.electricField.end(), V3Zero); |
558 | > | fill(atomColData.electricField.begin(), |
559 | > | atomColData.electricField.end(), V3Zero); |
560 | > | } |
561 | > | |
562 | > | if (storageLayout_ & DataStorage::dslFlucQForce) { |
563 | > | fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), |
564 | > | 0.0); |
565 | > | fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), |
566 | > | 0.0); |
567 | > | } |
568 | > | |
569 | > | #endif |
570 | > | // even in parallel, we need to zero out the local arrays: |
571 | > | |
572 | > | if (storageLayout_ & DataStorage::dslParticlePot) { |
573 | > | fill(snap_->atomData.particlePot.begin(), |
574 | > | snap_->atomData.particlePot.end(), 0.0); |
575 | > | } |
576 | > | |
577 | > | if (storageLayout_ & DataStorage::dslDensity) { |
578 | > | fill(snap_->atomData.density.begin(), |
579 | > | snap_->atomData.density.end(), 0.0); |
580 | > | } |
581 | > | |
582 | > | if (storageLayout_ & DataStorage::dslFunctional) { |
583 | > | fill(snap_->atomData.functional.begin(), |
584 | > | snap_->atomData.functional.end(), 0.0); |
585 | > | } |
586 | > | |
587 | > | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
588 | > | fill(snap_->atomData.functionalDerivative.begin(), |
589 | > | snap_->atomData.functionalDerivative.end(), 0.0); |
590 | > | } |
591 | > | |
592 | > | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
593 | > | fill(snap_->atomData.skippedCharge.begin(), |
594 | > | snap_->atomData.skippedCharge.end(), 0.0); |
595 | > | } |
596 | > | |
597 | > | if (storageLayout_ & DataStorage::dslElectricField) { |
598 | > | fill(snap_->atomData.electricField.begin(), |
599 | > | snap_->atomData.electricField.end(), V3Zero); |
600 | > | } |
601 | > | } |
602 | > | |
603 | > | |
604 | void ForceMatrixDecomposition::distributeData() { | |
605 | snap_ = sman_->getCurrentSnapshot(); | |
606 | storageLayout_ = sman_->getStorageLayout(); | |
607 | #ifdef IS_MPI | |
608 | ||
609 | // gather up the atomic positions | |
610 | < | AtomCommVectorRow->gather(snap_->atomData.position, |
610 | > | AtomPlanVectorRow->gather(snap_->atomData.position, |
611 | atomRowData.position); | |
612 | < | AtomCommVectorColumn->gather(snap_->atomData.position, |
612 | > | AtomPlanVectorColumn->gather(snap_->atomData.position, |
613 | atomColData.position); | |
614 | ||
615 | // gather up the cutoff group positions | |
616 | < | cgCommVectorRow->gather(snap_->cgData.position, |
616 | > | |
617 | > | cgPlanVectorRow->gather(snap_->cgData.position, |
618 | cgRowData.position); | |
619 | < | cgCommVectorColumn->gather(snap_->cgData.position, |
619 | > | |
620 | > | cgPlanVectorColumn->gather(snap_->cgData.position, |
621 | cgColData.position); | |
622 | + | |
623 | + | |
624 | + | |
625 | + | if (needVelocities_) { |
626 | + | // gather up the atomic velocities |
627 | + | AtomPlanVectorColumn->gather(snap_->atomData.velocity, |
628 | + | atomColData.velocity); |
629 | + | |
630 | + | cgPlanVectorColumn->gather(snap_->cgData.velocity, |
631 | + | cgColData.velocity); |
632 | + | } |
633 | + | |
634 | ||
635 | // if needed, gather the atomic rotation matrices | |
636 | if (storageLayout_ & DataStorage::dslAmat) { | |
637 | < | AtomCommMatrixRow->gather(snap_->atomData.aMat, |
637 | > | AtomPlanMatrixRow->gather(snap_->atomData.aMat, |
638 | atomRowData.aMat); | |
639 | < | AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
639 | > | AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
640 | atomColData.aMat); | |
641 | } | |
642 | ||
643 | // if needed, gather the atomic eletrostatic frames | |
644 | if (storageLayout_ & DataStorage::dslElectroFrame) { | |
645 | < | AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
645 | > | AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
646 | atomRowData.electroFrame); | |
647 | < | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
647 | > | AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
648 | atomColData.electroFrame); | |
649 | } | |
650 | + | |
651 | + | // if needed, gather the atomic fluctuating charge values |
652 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
653 | + | AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
654 | + | atomRowData.flucQPos); |
655 | + | AtomPlanRealColumn->gather(snap_->atomData.flucQPos, |
656 | + | atomColData.flucQPos); |
657 | + | } |
658 | + | |
659 | #endif | |
660 | } | |
661 | ||
662 | + | /* collects information obtained during the pre-pair loop onto local |
663 | + | * data structures. |
664 | + | */ |
665 | void ForceMatrixDecomposition::collectIntermediateData() { | |
666 | snap_ = sman_->getCurrentSnapshot(); | |
667 | storageLayout_ = sman_->getStorageLayout(); | |
# | Line 273 | Line 669 | namespace OpenMD { | |
669 | ||
670 | if (storageLayout_ & DataStorage::dslDensity) { | |
671 | ||
672 | < | AtomCommRealRow->scatter(atomRowData.density, |
672 | > | AtomPlanRealRow->scatter(atomRowData.density, |
673 | snap_->atomData.density); | |
674 | ||
675 | int n = snap_->atomData.density.size(); | |
676 | < | std::vector<RealType> rho_tmp(n, 0.0); |
677 | < | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
676 | > | vector<RealType> rho_tmp(n, 0.0); |
677 | > | AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); |
678 | for (int i = 0; i < n; i++) | |
679 | snap_->atomData.density[i] += rho_tmp[i]; | |
680 | } | |
681 | + | |
682 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
683 | + | |
684 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, |
685 | + | snap_->atomData.electricField); |
686 | + | |
687 | + | int n = snap_->atomData.electricField.size(); |
688 | + | vector<Vector3d> field_tmp(n, V3Zero); |
689 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); |
690 | + | for (int i = 0; i < n; i++) |
691 | + | snap_->atomData.electricField[i] += field_tmp[i]; |
692 | + | } |
693 | #endif | |
694 | } | |
695 | < | |
695 | > | |
696 | > | /* |
697 | > | * redistributes information obtained during the pre-pair loop out to |
698 | > | * row and column-indexed data structures |
699 | > | */ |
700 | void ForceMatrixDecomposition::distributeIntermediateData() { | |
701 | snap_ = sman_->getCurrentSnapshot(); | |
702 | storageLayout_ = sman_->getStorageLayout(); | |
703 | #ifdef IS_MPI | |
704 | if (storageLayout_ & DataStorage::dslFunctional) { | |
705 | < | AtomCommRealRow->gather(snap_->atomData.functional, |
705 | > | AtomPlanRealRow->gather(snap_->atomData.functional, |
706 | atomRowData.functional); | |
707 | < | AtomCommRealColumn->gather(snap_->atomData.functional, |
707 | > | AtomPlanRealColumn->gather(snap_->atomData.functional, |
708 | atomColData.functional); | |
709 | } | |
710 | ||
711 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
712 | < | AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
712 | > | AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, |
713 | atomRowData.functionalDerivative); | |
714 | < | AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
714 | > | AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, |
715 | atomColData.functionalDerivative); | |
716 | } | |
717 | #endif | |
# | Line 313 | Line 725 | namespace OpenMD { | |
725 | int n = snap_->atomData.force.size(); | |
726 | vector<Vector3d> frc_tmp(n, V3Zero); | |
727 | ||
728 | < | AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
728 | > | AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); |
729 | for (int i = 0; i < n; i++) { | |
730 | snap_->atomData.force[i] += frc_tmp[i]; | |
731 | frc_tmp[i] = 0.0; | |
732 | } | |
733 | ||
734 | < | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
735 | < | for (int i = 0; i < n; i++) |
734 | > | AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); |
735 | > | for (int i = 0; i < n; i++) { |
736 | snap_->atomData.force[i] += frc_tmp[i]; | |
737 | < | |
738 | < | |
737 | > | } |
738 | > | |
739 | if (storageLayout_ & DataStorage::dslTorque) { | |
740 | ||
741 | < | int nt = snap_->atomData.force.size(); |
741 | > | int nt = snap_->atomData.torque.size(); |
742 | vector<Vector3d> trq_tmp(nt, V3Zero); | |
743 | ||
744 | < | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
745 | < | for (int i = 0; i < n; i++) { |
744 | > | AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); |
745 | > | for (int i = 0; i < nt; i++) { |
746 | snap_->atomData.torque[i] += trq_tmp[i]; | |
747 | trq_tmp[i] = 0.0; | |
748 | } | |
749 | ||
750 | < | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
751 | < | for (int i = 0; i < n; i++) |
750 | > | AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); |
751 | > | for (int i = 0; i < nt; i++) |
752 | snap_->atomData.torque[i] += trq_tmp[i]; | |
753 | } | |
754 | + | |
755 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
756 | + | |
757 | + | int ns = snap_->atomData.skippedCharge.size(); |
758 | + | vector<RealType> skch_tmp(ns, 0.0); |
759 | + | |
760 | + | AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
761 | + | for (int i = 0; i < ns; i++) { |
762 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
763 | + | skch_tmp[i] = 0.0; |
764 | + | } |
765 | + | |
766 | + | AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
767 | + | for (int i = 0; i < ns; i++) |
768 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
769 | + | |
770 | + | } |
771 | ||
772 | < | nLocal_ = snap_->getNumberOfAtoms(); |
772 | > | if (storageLayout_ & DataStorage::dslFlucQForce) { |
773 | ||
774 | < | vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES, |
775 | < | vector<RealType> (nLocal_, 0.0)); |
774 | > | int nq = snap_->atomData.flucQFrc.size(); |
775 | > | vector<RealType> fqfrc_tmp(nq, 0.0); |
776 | > | |
777 | > | AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); |
778 | > | for (int i = 0; i < nq; i++) { |
779 | > | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
780 | > | fqfrc_tmp[i] = 0.0; |
781 | > | } |
782 | > | |
783 | > | AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); |
784 | > | for (int i = 0; i < nq; i++) |
785 | > | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
786 | > | |
787 | > | } |
788 | > | |
789 | > | nLocal_ = snap_->getNumberOfAtoms(); |
790 | > | |
791 | > | vector<potVec> pot_temp(nLocal_, |
792 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
793 | > | vector<potVec> expot_temp(nLocal_, |
794 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
795 | > | |
796 | > | // scatter/gather pot_row into the members of my column |
797 | > | |
798 | > | AtomPlanPotRow->scatter(pot_row, pot_temp); |
799 | > | AtomPlanPotRow->scatter(expot_row, expot_temp); |
800 | > | |
801 | > | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
802 | > | pairwisePot += pot_temp[ii]; |
803 | > | |
804 | > | for (int ii = 0; ii < expot_temp.size(); ii++ ) |
805 | > | excludedPot += expot_temp[ii]; |
806 | > | |
807 | > | if (storageLayout_ & DataStorage::dslParticlePot) { |
808 | > | // This is the pairwise contribution to the particle pot. The |
809 | > | // embedding contribution is added in each of the low level |
810 | > | // non-bonded routines. In single processor, this is done in |
811 | > | // unpackInteractionData, not in collectData. |
812 | > | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
813 | > | for (int i = 0; i < nLocal_; i++) { |
814 | > | // factor of two is because the total potential terms are divided |
815 | > | // by 2 in parallel due to row/ column scatter |
816 | > | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
817 | > | } |
818 | > | } |
819 | > | } |
820 | > | |
821 | > | fill(pot_temp.begin(), pot_temp.end(), |
822 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
823 | > | fill(expot_temp.begin(), expot_temp.end(), |
824 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
825 | > | |
826 | > | AtomPlanPotColumn->scatter(pot_col, pot_temp); |
827 | > | AtomPlanPotColumn->scatter(expot_col, expot_temp); |
828 | ||
829 | < | for (int i = 0; i < N_INTERACTION_FAMILIES; i++) { |
830 | < | AtomCommRealRow->scatter(pot_row[i], pot_temp[i]); |
831 | < | for (int ii = 0; ii < pot_temp[i].size(); ii++ ) { |
832 | < | pot_local[i] += pot_temp[i][ii]; |
829 | > | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
830 | > | pairwisePot += pot_temp[ii]; |
831 | > | |
832 | > | for (int ii = 0; ii < expot_temp.size(); ii++ ) |
833 | > | excludedPot += expot_temp[ii]; |
834 | > | |
835 | > | if (storageLayout_ & DataStorage::dslParticlePot) { |
836 | > | // This is the pairwise contribution to the particle pot. The |
837 | > | // embedding contribution is added in each of the low level |
838 | > | // non-bonded routines. In single processor, this is done in |
839 | > | // unpackInteractionData, not in collectData. |
840 | > | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
841 | > | for (int i = 0; i < nLocal_; i++) { |
842 | > | // factor of two is because the total potential terms are divided |
843 | > | // by 2 in parallel due to row/ column scatter |
844 | > | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
845 | > | } |
846 | } | |
847 | } | |
848 | + | |
849 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
850 | + | int npp = snap_->atomData.particlePot.size(); |
851 | + | vector<RealType> ppot_temp(npp, 0.0); |
852 | + | |
853 | + | // This is the direct or embedding contribution to the particle |
854 | + | // pot. |
855 | + | |
856 | + | AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); |
857 | + | for (int i = 0; i < npp; i++) { |
858 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; |
859 | + | } |
860 | + | |
861 | + | fill(ppot_temp.begin(), ppot_temp.end(), 0.0); |
862 | + | |
863 | + | AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); |
864 | + | for (int i = 0; i < npp; i++) { |
865 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; |
866 | + | } |
867 | + | } |
868 | + | |
869 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
870 | + | RealType ploc1 = pairwisePot[ii]; |
871 | + | RealType ploc2 = 0.0; |
872 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
873 | + | pairwisePot[ii] = ploc2; |
874 | + | } |
875 | + | |
876 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
877 | + | RealType ploc1 = excludedPot[ii]; |
878 | + | RealType ploc2 = 0.0; |
879 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
880 | + | excludedPot[ii] = ploc2; |
881 | + | } |
882 | + | |
883 | + | // Here be dragons. |
884 | + | MPI::Intracomm col = colComm.getComm(); |
885 | + | |
886 | + | col.Allreduce(MPI::IN_PLACE, |
887 | + | &snap_->frameData.conductiveHeatFlux[0], 3, |
888 | + | MPI::REALTYPE, MPI::SUM); |
889 | + | |
890 | + | |
891 | #endif | |
892 | + | |
893 | } | |
894 | ||
895 | + | /** |
896 | + | * Collects information obtained during the post-pair (and embedding |
897 | + | * functional) loops onto local data structures. |
898 | + | */ |
899 | + | void ForceMatrixDecomposition::collectSelfData() { |
900 | + | snap_ = sman_->getCurrentSnapshot(); |
901 | + | storageLayout_ = sman_->getStorageLayout(); |
902 | + | |
903 | + | #ifdef IS_MPI |
904 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
905 | + | RealType ploc1 = embeddingPot[ii]; |
906 | + | RealType ploc2 = 0.0; |
907 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
908 | + | embeddingPot[ii] = ploc2; |
909 | + | } |
910 | + | #endif |
911 | + | |
912 | + | } |
913 | + | |
914 | + | |
915 | + | |
916 | int ForceMatrixDecomposition::getNAtomsInRow() { | |
917 | #ifdef IS_MPI | |
918 | return nAtomsInRow_; | |
# | Line 394 | Line 953 | namespace OpenMD { | |
953 | return d; | |
954 | } | |
955 | ||
956 | + | Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ |
957 | + | #ifdef IS_MPI |
958 | + | return cgColData.velocity[cg2]; |
959 | + | #else |
960 | + | return snap_->cgData.velocity[cg2]; |
961 | + | #endif |
962 | + | } |
963 | ||
964 | + | Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ |
965 | + | #ifdef IS_MPI |
966 | + | return atomColData.velocity[atom2]; |
967 | + | #else |
968 | + | return snap_->atomData.velocity[atom2]; |
969 | + | #endif |
970 | + | } |
971 | + | |
972 | + | |
973 | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ | |
974 | ||
975 | Vector3d d; | |
# | Line 426 | Line 1001 | namespace OpenMD { | |
1001 | #ifdef IS_MPI | |
1002 | return massFactorsRow[atom1]; | |
1003 | #else | |
1004 | < | return massFactorsLocal[atom1]; |
1004 | > | return massFactors[atom1]; |
1005 | #endif | |
1006 | } | |
1007 | ||
# | Line 434 | Line 1009 | namespace OpenMD { | |
1009 | #ifdef IS_MPI | |
1010 | return massFactorsCol[atom2]; | |
1011 | #else | |
1012 | < | return massFactorsLocal[atom2]; |
1012 | > | return massFactors[atom2]; |
1013 | #endif | |
1014 | ||
1015 | } | |
# | Line 452 | Line 1027 | namespace OpenMD { | |
1027 | return d; | |
1028 | } | |
1029 | ||
1030 | < | vector<int> ForceMatrixDecomposition::getSkipsForRowAtom(int atom1) { |
1031 | < | #ifdef IS_MPI |
457 | < | return skipsForRowAtom[atom1]; |
458 | < | #else |
459 | < | return skipsForLocalAtom[atom1]; |
460 | < | #endif |
1030 | > | vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
1031 | > | return excludesForAtom[atom1]; |
1032 | } | |
1033 | ||
1034 | /** | |
1035 | < | * there are a number of reasons to skip a pair or a particle mostly |
1036 | < | * we do this to exclude atoms who are involved in short range |
466 | < | * interactions (bonds, bends, torsions), but we also need to |
467 | < | * exclude some overcounted interactions that result from the |
468 | < | * parallel decomposition. |
1035 | > | * We need to exclude some overcounted interactions that result from |
1036 | > | * the parallel decomposition. |
1037 | */ | |
1038 | < | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
1039 | < | int unique_id_1, unique_id_2; |
1040 | < | |
1038 | > | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { |
1039 | > | int unique_id_1, unique_id_2, group1, group2; |
1040 | > | |
1041 | #ifdef IS_MPI | |
1042 | // in MPI, we have to look up the unique IDs for each atom | |
1043 | unique_id_1 = AtomRowToGlobal[atom1]; | |
1044 | unique_id_2 = AtomColToGlobal[atom2]; | |
1045 | < | |
1046 | < | // this situation should only arise in MPI simulations |
1045 | > | group1 = cgRowToGlobal[cg1]; |
1046 | > | group2 = cgColToGlobal[cg2]; |
1047 | > | #else |
1048 | > | unique_id_1 = AtomLocalToGlobal[atom1]; |
1049 | > | unique_id_2 = AtomLocalToGlobal[atom2]; |
1050 | > | group1 = cgLocalToGlobal[cg1]; |
1051 | > | group2 = cgLocalToGlobal[cg2]; |
1052 | > | #endif |
1053 | > | |
1054 | if (unique_id_1 == unique_id_2) return true; | |
1055 | < | |
1055 | > | |
1056 | > | #ifdef IS_MPI |
1057 | // this prevents us from doing the pair on multiple processors | |
1058 | if (unique_id_1 < unique_id_2) { | |
1059 | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; | |
1060 | } else { | |
1061 | < | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
1061 | > | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
1062 | } | |
1063 | < | #else |
1064 | < | // in the normal loop, the atom numbers are unique |
1065 | < | unique_id_1 = atom1; |
1066 | < | unique_id_2 = atom2; |
1063 | > | #endif |
1064 | > | |
1065 | > | #ifndef IS_MPI |
1066 | > | if (group1 == group2) { |
1067 | > | if (unique_id_1 < unique_id_2) return true; |
1068 | > | } |
1069 | #endif | |
1070 | ||
1071 | < | #ifdef IS_MPI |
494 | < | for (vector<int>::iterator i = skipsForRowAtom[atom1].begin(); |
495 | < | i != skipsForRowAtom[atom1].end(); ++i) { |
496 | < | if ( (*i) == unique_id_2 ) return true; |
497 | < | } |
498 | < | #else |
499 | < | for (vector<int>::iterator i = skipsForLocalAtom[atom1].begin(); |
500 | < | i != skipsForLocalAtom[atom1].end(); ++i) { |
501 | < | if ( (*i) == unique_id_2 ) return true; |
502 | < | } |
503 | < | #endif |
1071 | > | return false; |
1072 | } | |
1073 | ||
1074 | < | int ForceMatrixDecomposition::getTopoDistance(int atom1, int atom2) { |
1074 | > | /** |
1075 | > | * We need to handle the interactions for atoms who are involved in |
1076 | > | * the same rigid body as well as some short range interactions |
1077 | > | * (bonds, bends, torsions) differently from other interactions. |
1078 | > | * We'll still visit the pairwise routines, but with a flag that |
1079 | > | * tells those routines to exclude the pair from direct long range |
1080 | > | * interactions. Some indirect interactions (notably reaction |
1081 | > | * field) must still be handled for these pairs. |
1082 | > | */ |
1083 | > | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
1084 | > | |
1085 | > | // excludesForAtom was constructed to use row/column indices in the MPI |
1086 | > | // version, and to use local IDs in the non-MPI version: |
1087 | ||
1088 | < | #ifdef IS_MPI |
1089 | < | for (int i = 0; i < toposForRowAtom[atom1].size(); i++) { |
1090 | < | if ( toposForRowAtom[atom1][i] == atom2 ) return topoDistRow[atom1][i]; |
1088 | > | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
1089 | > | i != excludesForAtom[atom1].end(); ++i) { |
1090 | > | if ( (*i) == atom2 ) return true; |
1091 | } | |
512 | – | #else |
513 | – | for (int i = 0; i < toposForLocalAtom[atom1].size(); i++) { |
514 | – | if ( toposForLocalAtom[atom1][i] == atom2 ) return topoDistLocal[atom1][i]; |
515 | – | } |
516 | – | #endif |
1092 | ||
1093 | < | // zero is default for unconnected (i.e. normal) pair interactions |
519 | < | return 0; |
1093 | > | return false; |
1094 | } | |
1095 | ||
1096 | + | |
1097 | void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ | |
1098 | #ifdef IS_MPI | |
1099 | atomRowData.force[atom1] += fg; | |
# | Line 536 | Line 1111 | namespace OpenMD { | |
1111 | } | |
1112 | ||
1113 | // filling interaction blocks with pointers | |
1114 | < | InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) { |
1115 | < | InteractionData idat; |
1114 | > | void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
1115 | > | int atom1, int atom2) { |
1116 | ||
1117 | + | idat.excluded = excludeAtomPair(atom1, atom2); |
1118 | + | |
1119 | #ifdef IS_MPI | |
1120 | + | idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
1121 | + | //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
1122 | + | // ff_->getAtomType(identsCol[atom2]) ); |
1123 | + | |
1124 | if (storageLayout_ & DataStorage::dslAmat) { | |
1125 | idat.A1 = &(atomRowData.aMat[atom1]); | |
1126 | idat.A2 = &(atomColData.aMat[atom2]); | |
# | Line 560 | Line 1141 | namespace OpenMD { | |
1141 | idat.rho2 = &(atomColData.density[atom2]); | |
1142 | } | |
1143 | ||
1144 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
1145 | + | idat.frho1 = &(atomRowData.functional[atom1]); |
1146 | + | idat.frho2 = &(atomColData.functional[atom2]); |
1147 | + | } |
1148 | + | |
1149 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
1150 | idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); | |
1151 | idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); | |
1152 | } | |
1153 | ||
1154 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
1155 | + | idat.particlePot1 = &(atomRowData.particlePot[atom1]); |
1156 | + | idat.particlePot2 = &(atomColData.particlePot[atom2]); |
1157 | + | } |
1158 | + | |
1159 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
1160 | + | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
1161 | + | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
1162 | + | } |
1163 | + | |
1164 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1165 | + | idat.flucQ1 = &(atomRowData.flucQPos[atom1]); |
1166 | + | idat.flucQ2 = &(atomColData.flucQPos[atom2]); |
1167 | + | } |
1168 | + | |
1169 | #else | |
1170 | + | |
1171 | + | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
1172 | + | |
1173 | if (storageLayout_ & DataStorage::dslAmat) { | |
1174 | idat.A1 = &(snap_->atomData.aMat[atom1]); | |
1175 | idat.A2 = &(snap_->atomData.aMat[atom2]); | |
# | Line 581 | Line 1185 | namespace OpenMD { | |
1185 | idat.t2 = &(snap_->atomData.torque[atom2]); | |
1186 | } | |
1187 | ||
1188 | < | if (storageLayout_ & DataStorage::dslDensity) { |
1188 | > | if (storageLayout_ & DataStorage::dslDensity) { |
1189 | idat.rho1 = &(snap_->atomData.density[atom1]); | |
1190 | idat.rho2 = &(snap_->atomData.density[atom2]); | |
1191 | } | |
1192 | ||
1193 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
1194 | + | idat.frho1 = &(snap_->atomData.functional[atom1]); |
1195 | + | idat.frho2 = &(snap_->atomData.functional[atom2]); |
1196 | + | } |
1197 | + | |
1198 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
1199 | idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); | |
1200 | idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); | |
1201 | } | |
1202 | + | |
1203 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
1204 | + | idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); |
1205 | + | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
1206 | + | } |
1207 | + | |
1208 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
1209 | + | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
1210 | + | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
1211 | + | } |
1212 | + | |
1213 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1214 | + | idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); |
1215 | + | idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); |
1216 | + | } |
1217 | + | |
1218 | #endif | |
594 | – | return idat; |
1219 | } | |
1220 | ||
1221 | < | InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ |
1222 | < | |
599 | < | InteractionData idat; |
1221 | > | |
1222 | > | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
1223 | #ifdef IS_MPI | |
1224 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { |
1225 | < | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
1226 | < | idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
1224 | > | pot_row[atom1] += RealType(0.5) * *(idat.pot); |
1225 | > | pot_col[atom2] += RealType(0.5) * *(idat.pot); |
1226 | > | expot_row[atom1] += RealType(0.5) * *(idat.excludedPot); |
1227 | > | expot_col[atom2] += RealType(0.5) * *(idat.excludedPot); |
1228 | > | |
1229 | > | atomRowData.force[atom1] += *(idat.f1); |
1230 | > | atomColData.force[atom2] -= *(idat.f1); |
1231 | > | |
1232 | > | if (storageLayout_ & DataStorage::dslFlucQForce) { |
1233 | > | atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1234 | > | atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1235 | } | |
1236 | < | if (storageLayout_ & DataStorage::dslTorque) { |
1237 | < | idat.t1 = &(atomRowData.torque[atom1]); |
1238 | < | idat.t2 = &(atomColData.torque[atom2]); |
1236 | > | |
1237 | > | if (storageLayout_ & DataStorage::dslElectricField) { |
1238 | > | atomRowData.electricField[atom1] += *(idat.eField1); |
1239 | > | atomColData.electricField[atom2] += *(idat.eField2); |
1240 | } | |
1241 | < | if (storageLayout_ & DataStorage::dslForce) { |
610 | < | idat.t1 = &(atomRowData.force[atom1]); |
611 | < | idat.t2 = &(atomColData.force[atom2]); |
612 | < | } |
1241 | > | |
1242 | #else | |
1243 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { |
1244 | < | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
1245 | < | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
1246 | < | } |
1247 | < | if (storageLayout_ & DataStorage::dslTorque) { |
1248 | < | idat.t1 = &(snap_->atomData.torque[atom1]); |
1249 | < | idat.t2 = &(snap_->atomData.torque[atom2]); |
1250 | < | } |
1251 | < | if (storageLayout_ & DataStorage::dslForce) { |
1252 | < | idat.t1 = &(snap_->atomData.force[atom1]); |
1253 | < | idat.t2 = &(snap_->atomData.force[atom2]); |
1243 | > | pairwisePot += *(idat.pot); |
1244 | > | excludedPot += *(idat.excludedPot); |
1245 | > | |
1246 | > | snap_->atomData.force[atom1] += *(idat.f1); |
1247 | > | snap_->atomData.force[atom2] -= *(idat.f1); |
1248 | > | |
1249 | > | if (idat.doParticlePot) { |
1250 | > | // This is the pairwise contribution to the particle pot. The |
1251 | > | // embedding contribution is added in each of the low level |
1252 | > | // non-bonded routines. In parallel, this calculation is done |
1253 | > | // in collectData, not in unpackInteractionData. |
1254 | > | snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); |
1255 | > | snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); |
1256 | } | |
1257 | + | |
1258 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
1259 | + | snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1260 | + | snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1261 | + | } |
1262 | + | |
1263 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
1264 | + | snap_->atomData.electricField[atom1] += *(idat.eField1); |
1265 | + | snap_->atomData.electricField[atom2] += *(idat.eField2); |
1266 | + | } |
1267 | + | |
1268 | #endif | |
1269 | ||
1270 | } | |
1271 | ||
630 | – | |
631 | – | |
632 | – | |
1272 | /* | |
1273 | * buildNeighborList | |
1274 | * | |
# | Line 639 | Line 1278 | namespace OpenMD { | |
1278 | vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { | |
1279 | ||
1280 | vector<pair<int, int> > neighborList; | |
1281 | + | groupCutoffs cuts; |
1282 | + | bool doAllPairs = false; |
1283 | + | |
1284 | #ifdef IS_MPI | |
1285 | cellListRow_.clear(); | |
1286 | cellListCol_.clear(); | |
# | Line 646 | Line 1288 | namespace OpenMD { | |
1288 | cellList_.clear(); | |
1289 | #endif | |
1290 | ||
1291 | < | // dangerous to not do error checking. |
650 | < | RealType rCut_; |
651 | < | |
652 | < | RealType rList_ = (rCut_ + skinThickness_); |
1291 | > | RealType rList_ = (largestRcut_ + skinThickness_); |
1292 | RealType rl2 = rList_ * rList_; | |
1293 | Snapshot* snap_ = sman_->getCurrentSnapshot(); | |
1294 | Mat3x3d Hmat = snap_->getHmat(); | |
# | Line 661 | Line 1300 | namespace OpenMD { | |
1300 | nCells_.y() = (int) ( Hy.length() )/ rList_; | |
1301 | nCells_.z() = (int) ( Hz.length() )/ rList_; | |
1302 | ||
1303 | + | // handle small boxes where the cell offsets can end up repeating cells |
1304 | + | |
1305 | + | if (nCells_.x() < 3) doAllPairs = true; |
1306 | + | if (nCells_.y() < 3) doAllPairs = true; |
1307 | + | if (nCells_.z() < 3) doAllPairs = true; |
1308 | + | |
1309 | Mat3x3d invHmat = snap_->getInvHmat(); | |
1310 | Vector3d rs, scaled, dr; | |
1311 | Vector3i whichCell; | |
1312 | int cellIndex; | |
1313 | + | int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
1314 | ||
1315 | #ifdef IS_MPI | |
1316 | < | for (int i = 0; i < nGroupsInRow_; i++) { |
1317 | < | rs = cgRowData.position[i]; |
1318 | < | // scaled positions relative to the box vectors |
1319 | < | scaled = invHmat * rs; |
1320 | < | // wrap the vector back into the unit box by subtracting integer box |
675 | < | // numbers |
676 | < | for (int j = 0; j < 3; j++) |
677 | < | scaled[j] -= roundMe(scaled[j]); |
678 | < | |
679 | < | // find xyz-indices of cell that cutoffGroup is in. |
680 | < | whichCell.x() = nCells_.x() * scaled.x(); |
681 | < | whichCell.y() = nCells_.y() * scaled.y(); |
682 | < | whichCell.z() = nCells_.z() * scaled.z(); |
1316 | > | cellListRow_.resize(nCtot); |
1317 | > | cellListCol_.resize(nCtot); |
1318 | > | #else |
1319 | > | cellList_.resize(nCtot); |
1320 | > | #endif |
1321 | ||
1322 | < | // find single index of this cell: |
1323 | < | cellIndex = Vlinear(whichCell, nCells_); |
686 | < | // add this cutoff group to the list of groups in this cell; |
687 | < | cellListRow_[cellIndex].push_back(i); |
688 | < | } |
1322 | > | if (!doAllPairs) { |
1323 | > | #ifdef IS_MPI |
1324 | ||
1325 | < | for (int i = 0; i < nGroupsInCol_; i++) { |
1326 | < | rs = cgColData.position[i]; |
1327 | < | // scaled positions relative to the box vectors |
1328 | < | scaled = invHmat * rs; |
1329 | < | // wrap the vector back into the unit box by subtracting integer box |
1330 | < | // numbers |
1331 | < | for (int j = 0; j < 3; j++) |
1332 | < | scaled[j] -= roundMe(scaled[j]); |
1333 | < | |
1334 | < | // find xyz-indices of cell that cutoffGroup is in. |
1335 | < | whichCell.x() = nCells_.x() * scaled.x(); |
1336 | < | whichCell.y() = nCells_.y() * scaled.y(); |
1337 | < | whichCell.z() = nCells_.z() * scaled.z(); |
1338 | < | |
1339 | < | // find single index of this cell: |
1340 | < | cellIndex = Vlinear(whichCell, nCells_); |
1341 | < | // add this cutoff group to the list of groups in this cell; |
1342 | < | cellListCol_[cellIndex].push_back(i); |
1343 | < | } |
1325 | > | for (int i = 0; i < nGroupsInRow_; i++) { |
1326 | > | rs = cgRowData.position[i]; |
1327 | > | |
1328 | > | // scaled positions relative to the box vectors |
1329 | > | scaled = invHmat * rs; |
1330 | > | |
1331 | > | // wrap the vector back into the unit box by subtracting integer box |
1332 | > | // numbers |
1333 | > | for (int j = 0; j < 3; j++) { |
1334 | > | scaled[j] -= roundMe(scaled[j]); |
1335 | > | scaled[j] += 0.5; |
1336 | > | } |
1337 | > | |
1338 | > | // find xyz-indices of cell that cutoffGroup is in. |
1339 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1340 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1341 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1342 | > | |
1343 | > | // find single index of this cell: |
1344 | > | cellIndex = Vlinear(whichCell, nCells_); |
1345 | > | |
1346 | > | // add this cutoff group to the list of groups in this cell; |
1347 | > | cellListRow_[cellIndex].push_back(i); |
1348 | > | } |
1349 | > | for (int i = 0; i < nGroupsInCol_; i++) { |
1350 | > | rs = cgColData.position[i]; |
1351 | > | |
1352 | > | // scaled positions relative to the box vectors |
1353 | > | scaled = invHmat * rs; |
1354 | > | |
1355 | > | // wrap the vector back into the unit box by subtracting integer box |
1356 | > | // numbers |
1357 | > | for (int j = 0; j < 3; j++) { |
1358 | > | scaled[j] -= roundMe(scaled[j]); |
1359 | > | scaled[j] += 0.5; |
1360 | > | } |
1361 | > | |
1362 | > | // find xyz-indices of cell that cutoffGroup is in. |
1363 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1364 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1365 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1366 | > | |
1367 | > | // find single index of this cell: |
1368 | > | cellIndex = Vlinear(whichCell, nCells_); |
1369 | > | |
1370 | > | // add this cutoff group to the list of groups in this cell; |
1371 | > | cellListCol_[cellIndex].push_back(i); |
1372 | > | } |
1373 | > | |
1374 | #else | |
1375 | < | for (int i = 0; i < nGroups_; i++) { |
1376 | < | rs = snap_->cgData.position[i]; |
1377 | < | // scaled positions relative to the box vectors |
1378 | < | scaled = invHmat * rs; |
1379 | < | // wrap the vector back into the unit box by subtracting integer box |
1380 | < | // numbers |
1381 | < | for (int j = 0; j < 3; j++) |
1382 | < | scaled[j] -= roundMe(scaled[j]); |
1375 | > | for (int i = 0; i < nGroups_; i++) { |
1376 | > | rs = snap_->cgData.position[i]; |
1377 | > | |
1378 | > | // scaled positions relative to the box vectors |
1379 | > | scaled = invHmat * rs; |
1380 | > | |
1381 | > | // wrap the vector back into the unit box by subtracting integer box |
1382 | > | // numbers |
1383 | > | for (int j = 0; j < 3; j++) { |
1384 | > | scaled[j] -= roundMe(scaled[j]); |
1385 | > | scaled[j] += 0.5; |
1386 | > | } |
1387 | > | |
1388 | > | // find xyz-indices of cell that cutoffGroup is in. |
1389 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1390 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1391 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1392 | > | |
1393 | > | // find single index of this cell: |
1394 | > | cellIndex = Vlinear(whichCell, nCells_); |
1395 | > | |
1396 | > | // add this cutoff group to the list of groups in this cell; |
1397 | > | cellList_[cellIndex].push_back(i); |
1398 | > | } |
1399 | ||
719 | – | // find xyz-indices of cell that cutoffGroup is in. |
720 | – | whichCell.x() = nCells_.x() * scaled.x(); |
721 | – | whichCell.y() = nCells_.y() * scaled.y(); |
722 | – | whichCell.z() = nCells_.z() * scaled.z(); |
723 | – | |
724 | – | // find single index of this cell: |
725 | – | cellIndex = Vlinear(whichCell, nCells_); |
726 | – | // add this cutoff group to the list of groups in this cell; |
727 | – | cellList_[cellIndex].push_back(i); |
728 | – | } |
1400 | #endif | |
1401 | ||
1402 | < | |
1403 | < | |
1404 | < | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1405 | < | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1406 | < | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
736 | < | Vector3i m1v(m1x, m1y, m1z); |
737 | < | int m1 = Vlinear(m1v, nCells_); |
738 | < | |
739 | < | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
740 | < | os != cellOffsets_.end(); ++os) { |
1402 | > | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1403 | > | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1404 | > | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1405 | > | Vector3i m1v(m1x, m1y, m1z); |
1406 | > | int m1 = Vlinear(m1v, nCells_); |
1407 | ||
1408 | < | Vector3i m2v = m1v + (*os); |
1409 | < | |
1410 | < | if (m2v.x() >= nCells_.x()) { |
1411 | < | m2v.x() = 0; |
1412 | < | } else if (m2v.x() < 0) { |
747 | < | m2v.x() = nCells_.x() - 1; |
748 | < | } |
749 | < | |
750 | < | if (m2v.y() >= nCells_.y()) { |
751 | < | m2v.y() = 0; |
752 | < | } else if (m2v.y() < 0) { |
753 | < | m2v.y() = nCells_.y() - 1; |
754 | < | } |
755 | < | |
756 | < | if (m2v.z() >= nCells_.z()) { |
757 | < | m2v.z() = 0; |
758 | < | } else if (m2v.z() < 0) { |
759 | < | m2v.z() = nCells_.z() - 1; |
760 | < | } |
761 | < | |
762 | < | int m2 = Vlinear (m2v, nCells_); |
1408 | > | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1409 | > | os != cellOffsets_.end(); ++os) { |
1410 | > | |
1411 | > | Vector3i m2v = m1v + (*os); |
1412 | > | |
1413 | ||
1414 | < | #ifdef IS_MPI |
1415 | < | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1416 | < | j1 != cellListRow_[m1].end(); ++j1) { |
1417 | < | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1418 | < | j2 != cellListCol_[m2].end(); ++j2) { |
1419 | < | |
1420 | < | // Always do this if we're in different cells or if |
1421 | < | // we're in the same cell and the global index of the |
1422 | < | // j2 cutoff group is less than the j1 cutoff group |
1414 | > | if (m2v.x() >= nCells_.x()) { |
1415 | > | m2v.x() = 0; |
1416 | > | } else if (m2v.x() < 0) { |
1417 | > | m2v.x() = nCells_.x() - 1; |
1418 | > | } |
1419 | > | |
1420 | > | if (m2v.y() >= nCells_.y()) { |
1421 | > | m2v.y() = 0; |
1422 | > | } else if (m2v.y() < 0) { |
1423 | > | m2v.y() = nCells_.y() - 1; |
1424 | > | } |
1425 | > | |
1426 | > | if (m2v.z() >= nCells_.z()) { |
1427 | > | m2v.z() = 0; |
1428 | > | } else if (m2v.z() < 0) { |
1429 | > | m2v.z() = nCells_.z() - 1; |
1430 | > | } |
1431 | ||
1432 | < | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1432 | > | int m2 = Vlinear (m2v, nCells_); |
1433 | > | |
1434 | > | #ifdef IS_MPI |
1435 | > | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1436 | > | j1 != cellListRow_[m1].end(); ++j1) { |
1437 | > | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1438 | > | j2 != cellListCol_[m2].end(); ++j2) { |
1439 | > | |
1440 | > | // In parallel, we need to visit *all* pairs of row |
1441 | > | // & column indicies and will divide labor in the |
1442 | > | // force evaluation later. |
1443 | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | |
1444 | snap_->wrapVector(dr); | |
1445 | < | if (dr.lengthSquare() < rl2) { |
1445 | > | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1446 | > | if (dr.lengthSquare() < cuts.third) { |
1447 | neighborList.push_back(make_pair((*j1), (*j2))); | |
1448 | < | } |
1448 | > | } |
1449 | } | |
1450 | } | |
782 | – | } |
1451 | #else | |
1452 | < | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1453 | < | j1 != cellList_[m1].end(); ++j1) { |
1454 | < | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1455 | < | j2 != cellList_[m2].end(); ++j2) { |
1456 | < | |
1457 | < | // Always do this if we're in different cells or if |
1458 | < | // we're in the same cell and the global index of the |
1459 | < | // j2 cutoff group is less than the j1 cutoff group |
1452 | > | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1453 | > | j1 != cellList_[m1].end(); ++j1) { |
1454 | > | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1455 | > | j2 != cellList_[m2].end(); ++j2) { |
1456 | > | |
1457 | > | // Always do this if we're in different cells or if |
1458 | > | // we're in the same cell and the global index of |
1459 | > | // the j2 cutoff group is greater than or equal to |
1460 | > | // the j1 cutoff group. Note that Rappaport's code |
1461 | > | // has a "less than" conditional here, but that |
1462 | > | // deals with atom-by-atom computation. OpenMD |
1463 | > | // allows atoms within a single cutoff group to |
1464 | > | // interact with each other. |
1465 | ||
1466 | < | if (m2 != m1 || (*j2) < (*j1)) { |
1467 | < | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1468 | < | snap_->wrapVector(dr); |
1469 | < | if (dr.lengthSquare() < rl2) { |
1470 | < | neighborList.push_back(make_pair((*j1), (*j2))); |
1466 | > | |
1467 | > | |
1468 | > | if (m2 != m1 || (*j2) >= (*j1) ) { |
1469 | > | |
1470 | > | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1471 | > | snap_->wrapVector(dr); |
1472 | > | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1473 | > | if (dr.lengthSquare() < cuts.third) { |
1474 | > | neighborList.push_back(make_pair((*j1), (*j2))); |
1475 | > | } |
1476 | } | |
1477 | } | |
1478 | } | |
801 | – | } |
1479 | #endif | |
1480 | + | } |
1481 | } | |
1482 | } | |
1483 | } | |
1484 | + | } else { |
1485 | + | // branch to do all cutoff group pairs |
1486 | + | #ifdef IS_MPI |
1487 | + | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1488 | + | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1489 | + | dr = cgColData.position[j2] - cgRowData.position[j1]; |
1490 | + | snap_->wrapVector(dr); |
1491 | + | cuts = getGroupCutoffs( j1, j2 ); |
1492 | + | if (dr.lengthSquare() < cuts.third) { |
1493 | + | neighborList.push_back(make_pair(j1, j2)); |
1494 | + | } |
1495 | + | } |
1496 | + | } |
1497 | + | #else |
1498 | + | // include all groups here. |
1499 | + | for (int j1 = 0; j1 < nGroups_; j1++) { |
1500 | + | // include self group interactions j2 == j1 |
1501 | + | for (int j2 = j1; j2 < nGroups_; j2++) { |
1502 | + | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1503 | + | snap_->wrapVector(dr); |
1504 | + | cuts = getGroupCutoffs( j1, j2 ); |
1505 | + | if (dr.lengthSquare() < cuts.third) { |
1506 | + | neighborList.push_back(make_pair(j1, j2)); |
1507 | + | } |
1508 | + | } |
1509 | + | } |
1510 | + | #endif |
1511 | } | |
1512 | < | |
1512 | > | |
1513 | // save the local cutoff group positions for the check that is | |
1514 | // done on each loop: | |
1515 | saved_CG_positions_.clear(); | |
1516 | for (int i = 0; i < nGroups_; i++) | |
1517 | saved_CG_positions_.push_back(snap_->cgData.position[i]); | |
1518 | < | |
1518 | > | |
1519 | return neighborList; | |
1520 | } | |
1521 | } //end namespace OpenMD |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |