# | Line 36 | Line 36 | |
---|---|---|
36 | * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | |
37 | * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | |
38 | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | |
39 | < | * [4] Vardeman & Gezelter, in progress (2009). |
39 | > | * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 | > | * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 | */ | |
42 | #include "parallel/ForceMatrixDecomposition.hpp" | |
43 | #include "math/SquareMatrix3.hpp" | |
# | Line 47 | Line 48 | namespace OpenMD { | |
48 | using namespace std; | |
49 | namespace OpenMD { | |
50 | ||
51 | + | ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { |
52 | + | |
53 | + | // In a parallel computation, row and colum scans must visit all |
54 | + | // surrounding cells (not just the 14 upper triangular blocks that |
55 | + | // are used when the processor can see all pairs) |
56 | + | #ifdef IS_MPI |
57 | + | cellOffsets_.clear(); |
58 | + | cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
59 | + | cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
60 | + | cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
61 | + | cellOffsets_.push_back( Vector3i(-1, 0,-1) ); |
62 | + | cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
63 | + | cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
64 | + | cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
65 | + | cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
66 | + | cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
67 | + | cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
68 | + | cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
69 | + | cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
70 | + | cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
71 | + | cellOffsets_.push_back( Vector3i( 0, 0, 0) ); |
72 | + | cellOffsets_.push_back( Vector3i( 1, 0, 0) ); |
73 | + | cellOffsets_.push_back( Vector3i(-1, 1, 0) ); |
74 | + | cellOffsets_.push_back( Vector3i( 0, 1, 0) ); |
75 | + | cellOffsets_.push_back( Vector3i( 1, 1, 0) ); |
76 | + | cellOffsets_.push_back( Vector3i(-1,-1, 1) ); |
77 | + | cellOffsets_.push_back( Vector3i( 0,-1, 1) ); |
78 | + | cellOffsets_.push_back( Vector3i( 1,-1, 1) ); |
79 | + | cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
80 | + | cellOffsets_.push_back( Vector3i( 0, 0, 1) ); |
81 | + | cellOffsets_.push_back( Vector3i( 1, 0, 1) ); |
82 | + | cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
83 | + | cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
84 | + | cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
85 | + | #endif |
86 | + | } |
87 | + | |
88 | + | |
89 | /** | |
90 | * distributeInitialData is essentially a copy of the older fortran | |
91 | * SimulationSetup | |
92 | */ | |
54 | – | |
93 | void ForceMatrixDecomposition::distributeInitialData() { | |
94 | snap_ = sman_->getCurrentSnapshot(); | |
95 | storageLayout_ = sman_->getStorageLayout(); | |
96 | ff_ = info_->getForceField(); | |
97 | nLocal_ = snap_->getNumberOfAtoms(); | |
98 | < | |
98 | > | |
99 | nGroups_ = info_->getNLocalCutoffGroups(); | |
62 | – | cerr << "in dId, nGroups = " << nGroups_ << "\n"; |
100 | // gather the information for atomtype IDs (atids): | |
101 | < | identsLocal = info_->getIdentArray(); |
101 | > | idents = info_->getIdentArray(); |
102 | AtomLocalToGlobal = info_->getGlobalAtomIndices(); | |
103 | cgLocalToGlobal = info_->getGlobalGroupIndices(); | |
104 | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); | |
68 | – | vector<RealType> massFactorsLocal = info_->getMassFactors(); |
69 | – | PairList excludes = info_->getExcludedInteractions(); |
70 | – | PairList oneTwo = info_->getOneTwoInteractions(); |
71 | – | PairList oneThree = info_->getOneThreeInteractions(); |
72 | – | PairList oneFour = info_->getOneFourInteractions(); |
105 | ||
106 | + | massFactors = info_->getMassFactors(); |
107 | + | |
108 | + | PairList* excludes = info_->getExcludedInteractions(); |
109 | + | PairList* oneTwo = info_->getOneTwoInteractions(); |
110 | + | PairList* oneThree = info_->getOneThreeInteractions(); |
111 | + | PairList* oneFour = info_->getOneFourInteractions(); |
112 | + | |
113 | + | if (needVelocities_) |
114 | + | snap_->cgData.setStorageLayout(DataStorage::dslPosition | |
115 | + | DataStorage::dslVelocity); |
116 | + | else |
117 | + | snap_->cgData.setStorageLayout(DataStorage::dslPosition); |
118 | + | |
119 | #ifdef IS_MPI | |
120 | ||
121 | < | AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
122 | < | AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
78 | < | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
79 | < | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
80 | < | AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
121 | > | MPI::Intracomm row = rowComm.getComm(); |
122 | > | MPI::Intracomm col = colComm.getComm(); |
123 | ||
124 | < | AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
125 | < | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
126 | < | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
127 | < | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
128 | < | AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
124 | > | AtomPlanIntRow = new Plan<int>(row, nLocal_); |
125 | > | AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
126 | > | AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); |
127 | > | AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); |
128 | > | AtomPlanPotRow = new Plan<potVec>(row, nLocal_); |
129 | ||
130 | < | cgCommIntRow = new Communicator<Row,int>(nGroups_); |
131 | < | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
132 | < | cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
133 | < | cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
130 | > | AtomPlanIntColumn = new Plan<int>(col, nLocal_); |
131 | > | AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); |
132 | > | AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); |
133 | > | AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); |
134 | > | AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); |
135 | ||
136 | < | nAtomsInRow_ = AtomCommIntRow->getSize(); |
137 | < | nAtomsInCol_ = AtomCommIntColumn->getSize(); |
138 | < | nGroupsInRow_ = cgCommIntRow->getSize(); |
139 | < | nGroupsInCol_ = cgCommIntColumn->getSize(); |
136 | > | cgPlanIntRow = new Plan<int>(row, nGroups_); |
137 | > | cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); |
138 | > | cgPlanIntColumn = new Plan<int>(col, nGroups_); |
139 | > | cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); |
140 | ||
141 | + | nAtomsInRow_ = AtomPlanIntRow->getSize(); |
142 | + | nAtomsInCol_ = AtomPlanIntColumn->getSize(); |
143 | + | nGroupsInRow_ = cgPlanIntRow->getSize(); |
144 | + | nGroupsInCol_ = cgPlanIntColumn->getSize(); |
145 | + | |
146 | // Modify the data storage objects with the correct layouts and sizes: | |
147 | atomRowData.resize(nAtomsInRow_); | |
148 | atomRowData.setStorageLayout(storageLayout_); | |
# | Line 103 | Line 151 | namespace OpenMD { | |
151 | cgRowData.resize(nGroupsInRow_); | |
152 | cgRowData.setStorageLayout(DataStorage::dslPosition); | |
153 | cgColData.resize(nGroupsInCol_); | |
154 | < | cgColData.setStorageLayout(DataStorage::dslPosition); |
155 | < | |
154 | > | if (needVelocities_) |
155 | > | // we only need column velocities if we need them. |
156 | > | cgColData.setStorageLayout(DataStorage::dslPosition | |
157 | > | DataStorage::dslVelocity); |
158 | > | else |
159 | > | cgColData.setStorageLayout(DataStorage::dslPosition); |
160 | > | |
161 | identsRow.resize(nAtomsInRow_); | |
162 | identsCol.resize(nAtomsInCol_); | |
163 | ||
164 | < | AtomCommIntRow->gather(identsLocal, identsRow); |
165 | < | AtomCommIntColumn->gather(identsLocal, identsCol); |
164 | > | AtomPlanIntRow->gather(idents, identsRow); |
165 | > | AtomPlanIntColumn->gather(idents, identsCol); |
166 | ||
167 | < | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
168 | < | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
169 | < | |
117 | < | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
118 | < | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
167 | > | // allocate memory for the parallel objects |
168 | > | atypesRow.resize(nAtomsInRow_); |
169 | > | atypesCol.resize(nAtomsInCol_); |
170 | ||
171 | < | AtomCommRealRow->gather(massFactorsLocal, massFactorsRow); |
172 | < | AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol); |
171 | > | for (int i = 0; i < nAtomsInRow_; i++) |
172 | > | atypesRow[i] = ff_->getAtomType(identsRow[i]); |
173 | > | for (int i = 0; i < nAtomsInCol_; i++) |
174 | > | atypesCol[i] = ff_->getAtomType(identsCol[i]); |
175 | ||
176 | + | pot_row.resize(nAtomsInRow_); |
177 | + | pot_col.resize(nAtomsInCol_); |
178 | + | |
179 | + | AtomRowToGlobal.resize(nAtomsInRow_); |
180 | + | AtomColToGlobal.resize(nAtomsInCol_); |
181 | + | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
182 | + | AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
183 | + | |
184 | + | cgRowToGlobal.resize(nGroupsInRow_); |
185 | + | cgColToGlobal.resize(nGroupsInCol_); |
186 | + | cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
187 | + | cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
188 | + | |
189 | + | massFactorsRow.resize(nAtomsInRow_); |
190 | + | massFactorsCol.resize(nAtomsInCol_); |
191 | + | AtomPlanRealRow->gather(massFactors, massFactorsRow); |
192 | + | AtomPlanRealColumn->gather(massFactors, massFactorsCol); |
193 | + | |
194 | groupListRow_.clear(); | |
195 | groupListRow_.resize(nGroupsInRow_); | |
196 | for (int i = 0; i < nGroupsInRow_; i++) { | |
# | Line 142 | Line 213 | namespace OpenMD { | |
213 | } | |
214 | } | |
215 | ||
216 | < | skipsForAtom.clear(); |
217 | < | skipsForAtom.resize(nAtomsInRow_); |
216 | > | excludesForAtom.clear(); |
217 | > | excludesForAtom.resize(nAtomsInRow_); |
218 | toposForAtom.clear(); | |
219 | toposForAtom.resize(nAtomsInRow_); | |
220 | topoDist.clear(); | |
# | Line 154 | Line 225 | namespace OpenMD { | |
225 | for (int j = 0; j < nAtomsInCol_; j++) { | |
226 | int jglob = AtomColToGlobal[j]; | |
227 | ||
228 | < | if (excludes.hasPair(iglob, jglob)) |
229 | < | skipsForAtom[i].push_back(j); |
228 | > | if (excludes->hasPair(iglob, jglob)) |
229 | > | excludesForAtom[i].push_back(j); |
230 | ||
231 | < | if (oneTwo.hasPair(iglob, jglob)) { |
231 | > | if (oneTwo->hasPair(iglob, jglob)) { |
232 | toposForAtom[i].push_back(j); | |
233 | topoDist[i].push_back(1); | |
234 | } else { | |
235 | < | if (oneThree.hasPair(iglob, jglob)) { |
235 | > | if (oneThree->hasPair(iglob, jglob)) { |
236 | toposForAtom[i].push_back(j); | |
237 | topoDist[i].push_back(2); | |
238 | } else { | |
239 | < | if (oneFour.hasPair(iglob, jglob)) { |
239 | > | if (oneFour->hasPair(iglob, jglob)) { |
240 | toposForAtom[i].push_back(j); | |
241 | topoDist[i].push_back(3); | |
242 | } | |
# | Line 174 | Line 245 | namespace OpenMD { | |
245 | } | |
246 | } | |
247 | ||
248 | < | #endif |
249 | < | |
250 | < | groupList_.clear(); |
180 | < | groupList_.resize(nGroups_); |
181 | < | for (int i = 0; i < nGroups_; i++) { |
182 | < | int gid = cgLocalToGlobal[i]; |
183 | < | for (int j = 0; j < nLocal_; j++) { |
184 | < | int aid = AtomLocalToGlobal[j]; |
185 | < | if (globalGroupMembership[aid] == gid) { |
186 | < | groupList_[i].push_back(j); |
187 | < | } |
188 | < | } |
189 | < | } |
190 | < | |
191 | < | skipsForAtom.clear(); |
192 | < | skipsForAtom.resize(nLocal_); |
248 | > | #else |
249 | > | excludesForAtom.clear(); |
250 | > | excludesForAtom.resize(nLocal_); |
251 | toposForAtom.clear(); | |
252 | toposForAtom.resize(nLocal_); | |
253 | topoDist.clear(); | |
# | Line 201 | Line 259 | namespace OpenMD { | |
259 | for (int j = 0; j < nLocal_; j++) { | |
260 | int jglob = AtomLocalToGlobal[j]; | |
261 | ||
262 | < | if (excludes.hasPair(iglob, jglob)) |
263 | < | skipsForAtom[i].push_back(j); |
262 | > | if (excludes->hasPair(iglob, jglob)) |
263 | > | excludesForAtom[i].push_back(j); |
264 | ||
265 | < | if (oneTwo.hasPair(iglob, jglob)) { |
265 | > | if (oneTwo->hasPair(iglob, jglob)) { |
266 | toposForAtom[i].push_back(j); | |
267 | topoDist[i].push_back(1); | |
268 | } else { | |
269 | < | if (oneThree.hasPair(iglob, jglob)) { |
269 | > | if (oneThree->hasPair(iglob, jglob)) { |
270 | toposForAtom[i].push_back(j); | |
271 | topoDist[i].push_back(2); | |
272 | } else { | |
273 | < | if (oneFour.hasPair(iglob, jglob)) { |
273 | > | if (oneFour->hasPair(iglob, jglob)) { |
274 | toposForAtom[i].push_back(j); | |
275 | topoDist[i].push_back(3); | |
276 | } | |
# | Line 220 | Line 278 | namespace OpenMD { | |
278 | } | |
279 | } | |
280 | } | |
281 | < | |
281 | > | #endif |
282 | > | |
283 | > | // allocate memory for the parallel objects |
284 | > | atypesLocal.resize(nLocal_); |
285 | > | |
286 | > | for (int i = 0; i < nLocal_; i++) |
287 | > | atypesLocal[i] = ff_->getAtomType(idents[i]); |
288 | > | |
289 | > | groupList_.clear(); |
290 | > | groupList_.resize(nGroups_); |
291 | > | for (int i = 0; i < nGroups_; i++) { |
292 | > | int gid = cgLocalToGlobal[i]; |
293 | > | for (int j = 0; j < nLocal_; j++) { |
294 | > | int aid = AtomLocalToGlobal[j]; |
295 | > | if (globalGroupMembership[aid] == gid) { |
296 | > | groupList_[i].push_back(j); |
297 | > | } |
298 | > | } |
299 | > | } |
300 | > | |
301 | > | |
302 | createGtypeCutoffMap(); | |
303 | + | |
304 | } | |
305 | ||
306 | void ForceMatrixDecomposition::createGtypeCutoffMap() { | |
307 | < | |
307 | > | |
308 | RealType tol = 1e-6; | |
309 | + | largestRcut_ = 0.0; |
310 | RealType rc; | |
311 | int atid; | |
312 | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); | |
313 | < | vector<RealType> atypeCutoff; |
314 | < | atypeCutoff.resize( atypes.size() ); |
315 | < | |
313 | > | |
314 | > | map<int, RealType> atypeCutoff; |
315 | > | |
316 | for (set<AtomType*>::iterator at = atypes.begin(); | |
317 | at != atypes.end(); ++at){ | |
238 | – | rc = interactionMan_->getSuggestedCutoffRadius(*at); |
318 | atid = (*at)->getIdent(); | |
319 | < | atypeCutoff[atid] = rc; |
319 | > | if (userChoseCutoff_) |
320 | > | atypeCutoff[atid] = userCutoff_; |
321 | > | else |
322 | > | atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
323 | } | |
324 | < | |
324 | > | |
325 | vector<RealType> gTypeCutoffs; | |
244 | – | |
326 | // first we do a single loop over the cutoff groups to find the | |
327 | // largest cutoff for any atypes present in this group. | |
328 | #ifdef IS_MPI | |
# | Line 299 | Line 380 | namespace OpenMD { | |
380 | ||
381 | vector<RealType> groupCutoff(nGroups_, 0.0); | |
382 | groupToGtype.resize(nGroups_); | |
302 | – | |
303 | – | cerr << "nGroups = " << nGroups_ << "\n"; |
383 | for (int cg1 = 0; cg1 < nGroups_; cg1++) { | |
305 | – | |
384 | groupCutoff[cg1] = 0.0; | |
385 | vector<int> atomList = getAtomsInGroupRow(cg1); | |
308 | – | |
386 | for (vector<int>::iterator ia = atomList.begin(); | |
387 | ia != atomList.end(); ++ia) { | |
388 | int atom1 = (*ia); | |
389 | < | atid = identsLocal[atom1]; |
390 | < | if (atypeCutoff[atid] > groupCutoff[cg1]) { |
389 | > | atid = idents[atom1]; |
390 | > | if (atypeCutoff[atid] > groupCutoff[cg1]) |
391 | groupCutoff[cg1] = atypeCutoff[atid]; | |
315 | – | } |
392 | } | |
393 | < | |
393 | > | |
394 | bool gTypeFound = false; | |
395 | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { | |
396 | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { | |
# | Line 322 | Line 398 | namespace OpenMD { | |
398 | gTypeFound = true; | |
399 | } | |
400 | } | |
401 | < | if (!gTypeFound) { |
401 | > | if (!gTypeFound) { |
402 | gTypeCutoffs.push_back( groupCutoff[cg1] ); | |
403 | groupToGtype[cg1] = gTypeCutoffs.size() - 1; | |
404 | } | |
405 | } | |
406 | #endif | |
407 | ||
332 | – | cerr << "gTypeCutoffs.size() = " << gTypeCutoffs.size() << "\n"; |
408 | // Now we find the maximum group cutoff value present in the simulation | |
409 | ||
410 | < | RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); |
410 | > | RealType groupMax = *max_element(gTypeCutoffs.begin(), |
411 | > | gTypeCutoffs.end()); |
412 | ||
413 | #ifdef IS_MPI | |
414 | < | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); |
414 | > | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, |
415 | > | MPI::MAX); |
416 | #endif | |
417 | ||
418 | RealType tradRcut = groupMax; | |
# | Line 365 | Line 442 | namespace OpenMD { | |
442 | ||
443 | pair<int,int> key = make_pair(i,j); | |
444 | gTypeCutoffMap[key].first = thisRcut; | |
368 | – | |
445 | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; | |
370 | – | |
446 | gTypeCutoffMap[key].second = thisRcut*thisRcut; | |
372 | – | |
447 | gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); | |
374 | – | |
448 | // sanity check | |
449 | ||
450 | if (userChoseCutoff_) { | |
451 | if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { | |
452 | sprintf(painCave.errMsg, | |
453 | "ForceMatrixDecomposition::createGtypeCutoffMap " | |
454 | < | "user-specified rCut does not match computed group Cutoff\n"); |
454 | > | "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
455 | painCave.severity = OPENMD_ERROR; | |
456 | painCave.isFatal = 1; | |
457 | simError(); | |
# | Line 410 | Line 483 | namespace OpenMD { | |
483 | } | |
484 | ||
485 | void ForceMatrixDecomposition::zeroWorkArrays() { | |
486 | + | pairwisePot = 0.0; |
487 | + | embeddingPot = 0.0; |
488 | ||
414 | – | for (int j = 0; j < N_INTERACTION_FAMILIES; j++) { |
415 | – | longRangePot_[j] = 0.0; |
416 | – | } |
417 | – | |
489 | #ifdef IS_MPI | |
490 | if (storageLayout_ & DataStorage::dslForce) { | |
491 | fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); | |
# | Line 430 | Line 501 | namespace OpenMD { | |
501 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
502 | ||
503 | fill(pot_col.begin(), pot_col.end(), | |
504 | < | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
434 | < | |
435 | < | pot_local = Vector<RealType, N_INTERACTION_FAMILIES>(0.0); |
504 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
505 | ||
506 | if (storageLayout_ & DataStorage::dslParticlePot) { | |
507 | < | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); |
508 | < | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); |
507 | > | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
508 | > | 0.0); |
509 | > | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), |
510 | > | 0.0); |
511 | } | |
512 | ||
513 | if (storageLayout_ & DataStorage::dslDensity) { | |
# | Line 445 | Line 516 | namespace OpenMD { | |
516 | } | |
517 | ||
518 | if (storageLayout_ & DataStorage::dslFunctional) { | |
519 | < | fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); |
520 | < | fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); |
519 | > | fill(atomRowData.functional.begin(), atomRowData.functional.end(), |
520 | > | 0.0); |
521 | > | fill(atomColData.functional.begin(), atomColData.functional.end(), |
522 | > | 0.0); |
523 | } | |
524 | ||
525 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
# | Line 456 | Line 529 | namespace OpenMD { | |
529 | atomColData.functionalDerivative.end(), 0.0); | |
530 | } | |
531 | ||
532 | < | #else |
533 | < | |
532 | > | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
533 | > | fill(atomRowData.skippedCharge.begin(), |
534 | > | atomRowData.skippedCharge.end(), 0.0); |
535 | > | fill(atomColData.skippedCharge.begin(), |
536 | > | atomColData.skippedCharge.end(), 0.0); |
537 | > | } |
538 | > | |
539 | > | if (storageLayout_ & DataStorage::dslFlucQForce) { |
540 | > | fill(atomRowData.flucQFrc.begin(), |
541 | > | atomRowData.flucQFrc.end(), 0.0); |
542 | > | fill(atomColData.flucQFrc.begin(), |
543 | > | atomColData.flucQFrc.end(), 0.0); |
544 | > | } |
545 | > | |
546 | > | if (storageLayout_ & DataStorage::dslElectricField) { |
547 | > | fill(atomRowData.electricField.begin(), |
548 | > | atomRowData.electricField.end(), V3Zero); |
549 | > | fill(atomColData.electricField.begin(), |
550 | > | atomColData.electricField.end(), V3Zero); |
551 | > | } |
552 | > | |
553 | > | if (storageLayout_ & DataStorage::dslFlucQForce) { |
554 | > | fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), |
555 | > | 0.0); |
556 | > | fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), |
557 | > | 0.0); |
558 | > | } |
559 | > | |
560 | > | #endif |
561 | > | // even in parallel, we need to zero out the local arrays: |
562 | > | |
563 | if (storageLayout_ & DataStorage::dslParticlePot) { | |
564 | fill(snap_->atomData.particlePot.begin(), | |
565 | snap_->atomData.particlePot.end(), 0.0); | |
# | Line 467 | Line 569 | namespace OpenMD { | |
569 | fill(snap_->atomData.density.begin(), | |
570 | snap_->atomData.density.end(), 0.0); | |
571 | } | |
572 | + | |
573 | if (storageLayout_ & DataStorage::dslFunctional) { | |
574 | fill(snap_->atomData.functional.begin(), | |
575 | snap_->atomData.functional.end(), 0.0); | |
576 | } | |
577 | + | |
578 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
579 | fill(snap_->atomData.functionalDerivative.begin(), | |
580 | snap_->atomData.functionalDerivative.end(), 0.0); | |
581 | } | |
582 | < | #endif |
583 | < | |
582 | > | |
583 | > | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
584 | > | fill(snap_->atomData.skippedCharge.begin(), |
585 | > | snap_->atomData.skippedCharge.end(), 0.0); |
586 | > | } |
587 | > | |
588 | > | if (storageLayout_ & DataStorage::dslElectricField) { |
589 | > | fill(snap_->atomData.electricField.begin(), |
590 | > | snap_->atomData.electricField.end(), V3Zero); |
591 | > | } |
592 | } | |
593 | ||
594 | ||
# | Line 486 | Line 598 | namespace OpenMD { | |
598 | #ifdef IS_MPI | |
599 | ||
600 | // gather up the atomic positions | |
601 | < | AtomCommVectorRow->gather(snap_->atomData.position, |
601 | > | AtomPlanVectorRow->gather(snap_->atomData.position, |
602 | atomRowData.position); | |
603 | < | AtomCommVectorColumn->gather(snap_->atomData.position, |
603 | > | AtomPlanVectorColumn->gather(snap_->atomData.position, |
604 | atomColData.position); | |
605 | ||
606 | // gather up the cutoff group positions | |
607 | < | cgCommVectorRow->gather(snap_->cgData.position, |
607 | > | |
608 | > | cgPlanVectorRow->gather(snap_->cgData.position, |
609 | cgRowData.position); | |
610 | < | cgCommVectorColumn->gather(snap_->cgData.position, |
610 | > | |
611 | > | cgPlanVectorColumn->gather(snap_->cgData.position, |
612 | cgColData.position); | |
613 | + | |
614 | + | |
615 | + | |
616 | + | if (needVelocities_) { |
617 | + | // gather up the atomic velocities |
618 | + | AtomPlanVectorColumn->gather(snap_->atomData.velocity, |
619 | + | atomColData.velocity); |
620 | + | |
621 | + | cgPlanVectorColumn->gather(snap_->cgData.velocity, |
622 | + | cgColData.velocity); |
623 | + | } |
624 | + | |
625 | ||
626 | // if needed, gather the atomic rotation matrices | |
627 | if (storageLayout_ & DataStorage::dslAmat) { | |
628 | < | AtomCommMatrixRow->gather(snap_->atomData.aMat, |
628 | > | AtomPlanMatrixRow->gather(snap_->atomData.aMat, |
629 | atomRowData.aMat); | |
630 | < | AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
630 | > | AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
631 | atomColData.aMat); | |
632 | } | |
633 | ||
634 | // if needed, gather the atomic eletrostatic frames | |
635 | if (storageLayout_ & DataStorage::dslElectroFrame) { | |
636 | < | AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
636 | > | AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
637 | atomRowData.electroFrame); | |
638 | < | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
638 | > | AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
639 | atomColData.electroFrame); | |
640 | } | |
641 | + | |
642 | + | // if needed, gather the atomic fluctuating charge values |
643 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
644 | + | AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
645 | + | atomRowData.flucQPos); |
646 | + | AtomPlanRealColumn->gather(snap_->atomData.flucQPos, |
647 | + | atomColData.flucQPos); |
648 | + | } |
649 | + | |
650 | #endif | |
651 | } | |
652 | ||
# | Line 525 | Line 660 | namespace OpenMD { | |
660 | ||
661 | if (storageLayout_ & DataStorage::dslDensity) { | |
662 | ||
663 | < | AtomCommRealRow->scatter(atomRowData.density, |
663 | > | AtomPlanRealRow->scatter(atomRowData.density, |
664 | snap_->atomData.density); | |
665 | ||
666 | int n = snap_->atomData.density.size(); | |
667 | vector<RealType> rho_tmp(n, 0.0); | |
668 | < | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
668 | > | AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); |
669 | for (int i = 0; i < n; i++) | |
670 | snap_->atomData.density[i] += rho_tmp[i]; | |
671 | } | |
672 | + | |
673 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
674 | + | |
675 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, |
676 | + | snap_->atomData.electricField); |
677 | + | |
678 | + | int n = snap_->atomData.electricField.size(); |
679 | + | vector<Vector3d> field_tmp(n, V3Zero); |
680 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); |
681 | + | for (int i = 0; i < n; i++) |
682 | + | snap_->atomData.electricField[i] += field_tmp[i]; |
683 | + | } |
684 | #endif | |
685 | } | |
686 | ||
# | Line 546 | Line 693 | namespace OpenMD { | |
693 | storageLayout_ = sman_->getStorageLayout(); | |
694 | #ifdef IS_MPI | |
695 | if (storageLayout_ & DataStorage::dslFunctional) { | |
696 | < | AtomCommRealRow->gather(snap_->atomData.functional, |
696 | > | AtomPlanRealRow->gather(snap_->atomData.functional, |
697 | atomRowData.functional); | |
698 | < | AtomCommRealColumn->gather(snap_->atomData.functional, |
698 | > | AtomPlanRealColumn->gather(snap_->atomData.functional, |
699 | atomColData.functional); | |
700 | } | |
701 | ||
702 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
703 | < | AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
703 | > | AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, |
704 | atomRowData.functionalDerivative); | |
705 | < | AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
705 | > | AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, |
706 | atomColData.functionalDerivative); | |
707 | } | |
708 | #endif | |
# | Line 569 | Line 716 | namespace OpenMD { | |
716 | int n = snap_->atomData.force.size(); | |
717 | vector<Vector3d> frc_tmp(n, V3Zero); | |
718 | ||
719 | < | AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
719 | > | AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); |
720 | for (int i = 0; i < n; i++) { | |
721 | snap_->atomData.force[i] += frc_tmp[i]; | |
722 | frc_tmp[i] = 0.0; | |
723 | } | |
724 | ||
725 | < | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
726 | < | for (int i = 0; i < n; i++) |
725 | > | AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); |
726 | > | for (int i = 0; i < n; i++) { |
727 | snap_->atomData.force[i] += frc_tmp[i]; | |
728 | < | |
729 | < | |
728 | > | } |
729 | > | |
730 | if (storageLayout_ & DataStorage::dslTorque) { | |
731 | ||
732 | < | int nt = snap_->atomData.force.size(); |
732 | > | int nt = snap_->atomData.torque.size(); |
733 | vector<Vector3d> trq_tmp(nt, V3Zero); | |
734 | ||
735 | < | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
736 | < | for (int i = 0; i < n; i++) { |
735 | > | AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); |
736 | > | for (int i = 0; i < nt; i++) { |
737 | snap_->atomData.torque[i] += trq_tmp[i]; | |
738 | trq_tmp[i] = 0.0; | |
739 | } | |
740 | ||
741 | < | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
742 | < | for (int i = 0; i < n; i++) |
741 | > | AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); |
742 | > | for (int i = 0; i < nt; i++) |
743 | snap_->atomData.torque[i] += trq_tmp[i]; | |
744 | } | |
745 | + | |
746 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
747 | + | |
748 | + | int ns = snap_->atomData.skippedCharge.size(); |
749 | + | vector<RealType> skch_tmp(ns, 0.0); |
750 | + | |
751 | + | AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
752 | + | for (int i = 0; i < ns; i++) { |
753 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
754 | + | skch_tmp[i] = 0.0; |
755 | + | } |
756 | + | |
757 | + | AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
758 | + | for (int i = 0; i < ns; i++) |
759 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
760 | + | |
761 | + | } |
762 | ||
763 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
764 | + | |
765 | + | int nq = snap_->atomData.flucQFrc.size(); |
766 | + | vector<RealType> fqfrc_tmp(nq, 0.0); |
767 | + | |
768 | + | AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); |
769 | + | for (int i = 0; i < nq; i++) { |
770 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
771 | + | fqfrc_tmp[i] = 0.0; |
772 | + | } |
773 | + | |
774 | + | AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); |
775 | + | for (int i = 0; i < nq; i++) |
776 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
777 | + | |
778 | + | } |
779 | + | |
780 | nLocal_ = snap_->getNumberOfAtoms(); | |
781 | ||
782 | vector<potVec> pot_temp(nLocal_, | |
# | Line 603 | Line 784 | namespace OpenMD { | |
784 | ||
785 | // scatter/gather pot_row into the members of my column | |
786 | ||
787 | < | AtomCommPotRow->scatter(pot_row, pot_temp); |
787 | > | AtomPlanPotRow->scatter(pot_row, pot_temp); |
788 | ||
789 | for (int ii = 0; ii < pot_temp.size(); ii++ ) | |
790 | < | pot_local += pot_temp[ii]; |
791 | < | |
790 | > | pairwisePot += pot_temp[ii]; |
791 | > | |
792 | > | if (storageLayout_ & DataStorage::dslParticlePot) { |
793 | > | // This is the pairwise contribution to the particle pot. The |
794 | > | // embedding contribution is added in each of the low level |
795 | > | // non-bonded routines. In single processor, this is done in |
796 | > | // unpackInteractionData, not in collectData. |
797 | > | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
798 | > | for (int i = 0; i < nLocal_; i++) { |
799 | > | // factor of two is because the total potential terms are divided |
800 | > | // by 2 in parallel due to row/ column scatter |
801 | > | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
802 | > | } |
803 | > | } |
804 | > | } |
805 | > | |
806 | fill(pot_temp.begin(), pot_temp.end(), | |
807 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
808 | ||
809 | < | AtomCommPotColumn->scatter(pot_col, pot_temp); |
809 | > | AtomPlanPotColumn->scatter(pot_col, pot_temp); |
810 | ||
811 | for (int ii = 0; ii < pot_temp.size(); ii++ ) | |
812 | < | pot_local += pot_temp[ii]; |
812 | > | pairwisePot += pot_temp[ii]; |
813 | > | |
814 | > | if (storageLayout_ & DataStorage::dslParticlePot) { |
815 | > | // This is the pairwise contribution to the particle pot. The |
816 | > | // embedding contribution is added in each of the low level |
817 | > | // non-bonded routines. In single processor, this is done in |
818 | > | // unpackInteractionData, not in collectData. |
819 | > | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
820 | > | for (int i = 0; i < nLocal_; i++) { |
821 | > | // factor of two is because the total potential terms are divided |
822 | > | // by 2 in parallel due to row/ column scatter |
823 | > | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
824 | > | } |
825 | > | } |
826 | > | } |
827 | ||
828 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
829 | + | int npp = snap_->atomData.particlePot.size(); |
830 | + | vector<RealType> ppot_temp(npp, 0.0); |
831 | + | |
832 | + | // This is the direct or embedding contribution to the particle |
833 | + | // pot. |
834 | + | |
835 | + | AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); |
836 | + | for (int i = 0; i < npp; i++) { |
837 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; |
838 | + | } |
839 | + | |
840 | + | fill(ppot_temp.begin(), ppot_temp.end(), 0.0); |
841 | + | |
842 | + | AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); |
843 | + | for (int i = 0; i < npp; i++) { |
844 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; |
845 | + | } |
846 | + | } |
847 | + | |
848 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
849 | + | RealType ploc1 = pairwisePot[ii]; |
850 | + | RealType ploc2 = 0.0; |
851 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
852 | + | pairwisePot[ii] = ploc2; |
853 | + | } |
854 | + | |
855 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
856 | + | RealType ploc1 = embeddingPot[ii]; |
857 | + | RealType ploc2 = 0.0; |
858 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
859 | + | embeddingPot[ii] = ploc2; |
860 | + | } |
861 | + | |
862 | + | // Here be dragons. |
863 | + | MPI::Intracomm col = colComm.getComm(); |
864 | + | |
865 | + | col.Allreduce(MPI::IN_PLACE, |
866 | + | &snap_->frameData.conductiveHeatFlux[0], 3, |
867 | + | MPI::REALTYPE, MPI::SUM); |
868 | + | |
869 | + | |
870 | #endif | |
871 | + | |
872 | } | |
873 | ||
874 | int ForceMatrixDecomposition::getNAtomsInRow() { | |
# | Line 659 | Line 911 | namespace OpenMD { | |
911 | return d; | |
912 | } | |
913 | ||
914 | + | Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ |
915 | + | #ifdef IS_MPI |
916 | + | return cgColData.velocity[cg2]; |
917 | + | #else |
918 | + | return snap_->cgData.velocity[cg2]; |
919 | + | #endif |
920 | + | } |
921 | ||
922 | + | Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ |
923 | + | #ifdef IS_MPI |
924 | + | return atomColData.velocity[atom2]; |
925 | + | #else |
926 | + | return snap_->atomData.velocity[atom2]; |
927 | + | #endif |
928 | + | } |
929 | + | |
930 | + | |
931 | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ | |
932 | ||
933 | Vector3d d; | |
# | Line 691 | Line 959 | namespace OpenMD { | |
959 | #ifdef IS_MPI | |
960 | return massFactorsRow[atom1]; | |
961 | #else | |
962 | < | return massFactorsLocal[atom1]; |
962 | > | return massFactors[atom1]; |
963 | #endif | |
964 | } | |
965 | ||
# | Line 699 | Line 967 | namespace OpenMD { | |
967 | #ifdef IS_MPI | |
968 | return massFactorsCol[atom2]; | |
969 | #else | |
970 | < | return massFactorsLocal[atom2]; |
970 | > | return massFactors[atom2]; |
971 | #endif | |
972 | ||
973 | } | |
# | Line 717 | Line 985 | namespace OpenMD { | |
985 | return d; | |
986 | } | |
987 | ||
988 | < | vector<int> ForceMatrixDecomposition::getSkipsForAtom(int atom1) { |
989 | < | return skipsForAtom[atom1]; |
988 | > | vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
989 | > | return excludesForAtom[atom1]; |
990 | } | |
991 | ||
992 | /** | |
993 | < | * There are a number of reasons to skip a pair or a |
726 | < | * particle. Mostly we do this to exclude atoms who are involved in |
727 | < | * short range interactions (bonds, bends, torsions), but we also |
728 | < | * need to exclude some overcounted interactions that result from |
993 | > | * We need to exclude some overcounted interactions that result from |
994 | * the parallel decomposition. | |
995 | */ | |
996 | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { | |
997 | int unique_id_1, unique_id_2; | |
998 | < | |
998 | > | |
999 | #ifdef IS_MPI | |
1000 | // in MPI, we have to look up the unique IDs for each atom | |
1001 | unique_id_1 = AtomRowToGlobal[atom1]; | |
1002 | unique_id_2 = AtomColToGlobal[atom2]; | |
1003 | + | #else |
1004 | + | unique_id_1 = AtomLocalToGlobal[atom1]; |
1005 | + | unique_id_2 = AtomLocalToGlobal[atom2]; |
1006 | + | #endif |
1007 | ||
739 | – | // this situation should only arise in MPI simulations |
1008 | if (unique_id_1 == unique_id_2) return true; | |
1009 | < | |
1009 | > | |
1010 | > | #ifdef IS_MPI |
1011 | // this prevents us from doing the pair on multiple processors | |
1012 | if (unique_id_1 < unique_id_2) { | |
1013 | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; | |
1014 | } else { | |
1015 | < | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
1015 | > | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
1016 | } | |
748 | – | #else |
749 | – | // in the normal loop, the atom numbers are unique |
750 | – | unique_id_1 = atom1; |
751 | – | unique_id_2 = atom2; |
1017 | #endif | |
1018 | ||
1019 | < | for (vector<int>::iterator i = skipsForAtom[atom1].begin(); |
1020 | < | i != skipsForAtom[atom1].end(); ++i) { |
756 | < | if ( (*i) == unique_id_2 ) return true; |
757 | < | } |
1019 | > | return false; |
1020 | > | } |
1021 | ||
1022 | + | /** |
1023 | + | * We need to handle the interactions for atoms who are involved in |
1024 | + | * the same rigid body as well as some short range interactions |
1025 | + | * (bonds, bends, torsions) differently from other interactions. |
1026 | + | * We'll still visit the pairwise routines, but with a flag that |
1027 | + | * tells those routines to exclude the pair from direct long range |
1028 | + | * interactions. Some indirect interactions (notably reaction |
1029 | + | * field) must still be handled for these pairs. |
1030 | + | */ |
1031 | + | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
1032 | + | |
1033 | + | // excludesForAtom was constructed to use row/column indices in the MPI |
1034 | + | // version, and to use local IDs in the non-MPI version: |
1035 | + | |
1036 | + | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
1037 | + | i != excludesForAtom[atom1].end(); ++i) { |
1038 | + | if ( (*i) == atom2 ) return true; |
1039 | + | } |
1040 | + | |
1041 | + | return false; |
1042 | } | |
1043 | ||
1044 | ||
# | Line 776 | Line 1059 | namespace OpenMD { | |
1059 | } | |
1060 | ||
1061 | // filling interaction blocks with pointers | |
1062 | < | InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) { |
1063 | < | InteractionData idat; |
1062 | > | void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
1063 | > | int atom1, int atom2) { |
1064 | ||
1065 | + | idat.excluded = excludeAtomPair(atom1, atom2); |
1066 | + | |
1067 | #ifdef IS_MPI | |
1068 | + | idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
1069 | + | //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
1070 | + | // ff_->getAtomType(identsCol[atom2]) ); |
1071 | ||
784 | – | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
785 | – | ff_->getAtomType(identsCol[atom2]) ); |
786 | – | |
787 | – | |
1072 | if (storageLayout_ & DataStorage::dslAmat) { | |
1073 | idat.A1 = &(atomRowData.aMat[atom1]); | |
1074 | idat.A2 = &(atomColData.aMat[atom2]); | |
# | Line 820 | Line 1104 | namespace OpenMD { | |
1104 | idat.particlePot2 = &(atomColData.particlePot[atom2]); | |
1105 | } | |
1106 | ||
1107 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
1108 | + | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
1109 | + | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
1110 | + | } |
1111 | + | |
1112 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1113 | + | idat.flucQ1 = &(atomRowData.flucQPos[atom1]); |
1114 | + | idat.flucQ2 = &(atomColData.flucQPos[atom2]); |
1115 | + | } |
1116 | + | |
1117 | #else | |
1118 | + | |
1119 | ||
1120 | < | idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), |
1121 | < | ff_->getAtomType(identsLocal[atom2]) ); |
1120 | > | // cerr << "atoms = " << atom1 << " " << atom2 << "\n"; |
1121 | > | // cerr << "pos1 = " << snap_->atomData.position[atom1] << "\n"; |
1122 | > | // cerr << "pos2 = " << snap_->atomData.position[atom2] << "\n"; |
1123 | ||
1124 | + | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
1125 | + | //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
1126 | + | // ff_->getAtomType(idents[atom2]) ); |
1127 | + | |
1128 | if (storageLayout_ & DataStorage::dslAmat) { | |
1129 | idat.A1 = &(snap_->atomData.aMat[atom1]); | |
1130 | idat.A2 = &(snap_->atomData.aMat[atom2]); | |
# | Line 840 | Line 1140 | namespace OpenMD { | |
1140 | idat.t2 = &(snap_->atomData.torque[atom2]); | |
1141 | } | |
1142 | ||
1143 | < | if (storageLayout_ & DataStorage::dslDensity) { |
1143 | > | if (storageLayout_ & DataStorage::dslDensity) { |
1144 | idat.rho1 = &(snap_->atomData.density[atom1]); | |
1145 | idat.rho2 = &(snap_->atomData.density[atom2]); | |
1146 | } | |
# | Line 860 | Line 1160 | namespace OpenMD { | |
1160 | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); | |
1161 | } | |
1162 | ||
1163 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
1164 | + | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
1165 | + | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
1166 | + | } |
1167 | + | |
1168 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1169 | + | idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); |
1170 | + | idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); |
1171 | + | } |
1172 | + | |
1173 | #endif | |
864 | – | return idat; |
1174 | } | |
1175 | ||
1176 | ||
1177 | < | void ForceMatrixDecomposition::unpackInteractionData(InteractionData idat, int atom1, int atom2) { |
1177 | > | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
1178 | #ifdef IS_MPI | |
1179 | < | pot_row[atom1] += 0.5 * *(idat.pot); |
1180 | < | pot_col[atom2] += 0.5 * *(idat.pot); |
1179 | > | pot_row[atom1] += RealType(0.5) * *(idat.pot); |
1180 | > | pot_col[atom2] += RealType(0.5) * *(idat.pot); |
1181 | ||
1182 | atomRowData.force[atom1] += *(idat.f1); | |
1183 | atomColData.force[atom2] -= *(idat.f1); | |
875 | – | #else |
876 | – | longRangePot_ += *(idat.pot); |
877 | – | |
878 | – | snap_->atomData.force[atom1] += *(idat.f1); |
879 | – | snap_->atomData.force[atom2] -= *(idat.f1); |
880 | – | #endif |
1184 | ||
1185 | < | } |
1185 | > | if (storageLayout_ & DataStorage::dslFlucQForce) { |
1186 | > | atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1187 | > | atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1188 | > | } |
1189 | ||
1190 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
1191 | + | atomRowData.electricField[atom1] += *(idat.eField1); |
1192 | + | atomColData.electricField[atom2] += *(idat.eField2); |
1193 | + | } |
1194 | ||
1195 | < | InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ |
1195 | > | #else |
1196 | > | pairwisePot += *(idat.pot); |
1197 | ||
1198 | < | InteractionData idat; |
1199 | < | #ifdef IS_MPI |
889 | < | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
890 | < | ff_->getAtomType(identsCol[atom2]) ); |
1198 | > | snap_->atomData.force[atom1] += *(idat.f1); |
1199 | > | snap_->atomData.force[atom2] -= *(idat.f1); |
1200 | ||
1201 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { |
1202 | < | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
1203 | < | idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
1201 | > | if (idat.doParticlePot) { |
1202 | > | // This is the pairwise contribution to the particle pot. The |
1203 | > | // embedding contribution is added in each of the low level |
1204 | > | // non-bonded routines. In parallel, this calculation is done |
1205 | > | // in collectData, not in unpackInteractionData. |
1206 | > | snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); |
1207 | > | snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); |
1208 | } | |
1209 | < | if (storageLayout_ & DataStorage::dslTorque) { |
1210 | < | idat.t1 = &(atomRowData.torque[atom1]); |
1211 | < | idat.t2 = &(atomColData.torque[atom2]); |
1209 | > | |
1210 | > | if (storageLayout_ & DataStorage::dslFlucQForce) { |
1211 | > | snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1212 | > | snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1213 | } | |
900 | – | #else |
901 | – | idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), |
902 | – | ff_->getAtomType(identsLocal[atom2]) ); |
1214 | ||
1215 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { |
1216 | < | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
1217 | < | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
1215 | > | if (storageLayout_ & DataStorage::dslElectricField) { |
1216 | > | snap_->atomData.electricField[atom1] += *(idat.eField1); |
1217 | > | snap_->atomData.electricField[atom2] += *(idat.eField2); |
1218 | } | |
1219 | < | if (storageLayout_ & DataStorage::dslTorque) { |
1220 | < | idat.t1 = &(snap_->atomData.torque[atom1]); |
1221 | < | idat.t2 = &(snap_->atomData.torque[atom2]); |
911 | < | } |
912 | < | #endif |
1219 | > | |
1220 | > | #endif |
1221 | > | |
1222 | } | |
1223 | ||
1224 | /* | |
# | Line 922 | Line 1231 | namespace OpenMD { | |
1231 | ||
1232 | vector<pair<int, int> > neighborList; | |
1233 | groupCutoffs cuts; | |
1234 | + | bool doAllPairs = false; |
1235 | + | |
1236 | #ifdef IS_MPI | |
1237 | cellListRow_.clear(); | |
1238 | cellListCol_.clear(); | |
# | Line 941 | Line 1252 | namespace OpenMD { | |
1252 | nCells_.y() = (int) ( Hy.length() )/ rList_; | |
1253 | nCells_.z() = (int) ( Hz.length() )/ rList_; | |
1254 | ||
1255 | + | // handle small boxes where the cell offsets can end up repeating cells |
1256 | + | |
1257 | + | if (nCells_.x() < 3) doAllPairs = true; |
1258 | + | if (nCells_.y() < 3) doAllPairs = true; |
1259 | + | if (nCells_.z() < 3) doAllPairs = true; |
1260 | + | |
1261 | Mat3x3d invHmat = snap_->getInvHmat(); | |
1262 | Vector3d rs, scaled, dr; | |
1263 | Vector3i whichCell; | |
# | Line 954 | Line 1271 | namespace OpenMD { | |
1271 | cellList_.resize(nCtot); | |
1272 | #endif | |
1273 | ||
1274 | + | if (!doAllPairs) { |
1275 | #ifdef IS_MPI | |
958 | – | for (int i = 0; i < nGroupsInRow_; i++) { |
959 | – | rs = cgRowData.position[i]; |
960 | – | // scaled positions relative to the box vectors |
961 | – | scaled = invHmat * rs; |
962 | – | // wrap the vector back into the unit box by subtracting integer box |
963 | – | // numbers |
964 | – | for (int j = 0; j < 3; j++) |
965 | – | scaled[j] -= roundMe(scaled[j]); |
966 | – | |
967 | – | // find xyz-indices of cell that cutoffGroup is in. |
968 | – | whichCell.x() = nCells_.x() * scaled.x(); |
969 | – | whichCell.y() = nCells_.y() * scaled.y(); |
970 | – | whichCell.z() = nCells_.z() * scaled.z(); |
1276 | ||
1277 | < | // find single index of this cell: |
1278 | < | cellIndex = Vlinear(whichCell, nCells_); |
1279 | < | // add this cutoff group to the list of groups in this cell; |
1280 | < | cellListRow_[cellIndex].push_back(i); |
1281 | < | } |
1282 | < | |
1283 | < | for (int i = 0; i < nGroupsInCol_; i++) { |
1284 | < | rs = cgColData.position[i]; |
1285 | < | // scaled positions relative to the box vectors |
1286 | < | scaled = invHmat * rs; |
1287 | < | // wrap the vector back into the unit box by subtracting integer box |
1288 | < | // numbers |
1289 | < | for (int j = 0; j < 3; j++) |
1290 | < | scaled[j] -= roundMe(scaled[j]); |
1291 | < | |
1292 | < | // find xyz-indices of cell that cutoffGroup is in. |
1293 | < | whichCell.x() = nCells_.x() * scaled.x(); |
1294 | < | whichCell.y() = nCells_.y() * scaled.y(); |
1295 | < | whichCell.z() = nCells_.z() * scaled.z(); |
1296 | < | |
1297 | < | // find single index of this cell: |
1298 | < | cellIndex = Vlinear(whichCell, nCells_); |
1299 | < | // add this cutoff group to the list of groups in this cell; |
1300 | < | cellListCol_[cellIndex].push_back(i); |
1301 | < | } |
1277 | > | for (int i = 0; i < nGroupsInRow_; i++) { |
1278 | > | rs = cgRowData.position[i]; |
1279 | > | |
1280 | > | // scaled positions relative to the box vectors |
1281 | > | scaled = invHmat * rs; |
1282 | > | |
1283 | > | // wrap the vector back into the unit box by subtracting integer box |
1284 | > | // numbers |
1285 | > | for (int j = 0; j < 3; j++) { |
1286 | > | scaled[j] -= roundMe(scaled[j]); |
1287 | > | scaled[j] += 0.5; |
1288 | > | } |
1289 | > | |
1290 | > | // find xyz-indices of cell that cutoffGroup is in. |
1291 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1292 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1293 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1294 | > | |
1295 | > | // find single index of this cell: |
1296 | > | cellIndex = Vlinear(whichCell, nCells_); |
1297 | > | |
1298 | > | // add this cutoff group to the list of groups in this cell; |
1299 | > | cellListRow_[cellIndex].push_back(i); |
1300 | > | } |
1301 | > | for (int i = 0; i < nGroupsInCol_; i++) { |
1302 | > | rs = cgColData.position[i]; |
1303 | > | |
1304 | > | // scaled positions relative to the box vectors |
1305 | > | scaled = invHmat * rs; |
1306 | > | |
1307 | > | // wrap the vector back into the unit box by subtracting integer box |
1308 | > | // numbers |
1309 | > | for (int j = 0; j < 3; j++) { |
1310 | > | scaled[j] -= roundMe(scaled[j]); |
1311 | > | scaled[j] += 0.5; |
1312 | > | } |
1313 | > | |
1314 | > | // find xyz-indices of cell that cutoffGroup is in. |
1315 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1316 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1317 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1318 | > | |
1319 | > | // find single index of this cell: |
1320 | > | cellIndex = Vlinear(whichCell, nCells_); |
1321 | > | |
1322 | > | // add this cutoff group to the list of groups in this cell; |
1323 | > | cellListCol_[cellIndex].push_back(i); |
1324 | > | } |
1325 | > | |
1326 | #else | |
1327 | < | for (int i = 0; i < nGroups_; i++) { |
1328 | < | rs = snap_->cgData.position[i]; |
1329 | < | // scaled positions relative to the box vectors |
1330 | < | scaled = invHmat * rs; |
1331 | < | // wrap the vector back into the unit box by subtracting integer box |
1332 | < | // numbers |
1333 | < | for (int j = 0; j < 3; j++) |
1334 | < | scaled[j] -= roundMe(scaled[j]); |
1327 | > | for (int i = 0; i < nGroups_; i++) { |
1328 | > | rs = snap_->cgData.position[i]; |
1329 | > | |
1330 | > | // scaled positions relative to the box vectors |
1331 | > | scaled = invHmat * rs; |
1332 | > | |
1333 | > | // wrap the vector back into the unit box by subtracting integer box |
1334 | > | // numbers |
1335 | > | for (int j = 0; j < 3; j++) { |
1336 | > | scaled[j] -= roundMe(scaled[j]); |
1337 | > | scaled[j] += 0.5; |
1338 | > | } |
1339 | > | |
1340 | > | // find xyz-indices of cell that cutoffGroup is in. |
1341 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1342 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1343 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1344 | > | |
1345 | > | // find single index of this cell: |
1346 | > | cellIndex = Vlinear(whichCell, nCells_); |
1347 | > | |
1348 | > | // add this cutoff group to the list of groups in this cell; |
1349 | > | cellList_[cellIndex].push_back(i); |
1350 | > | } |
1351 | ||
1007 | – | // find xyz-indices of cell that cutoffGroup is in. |
1008 | – | whichCell.x() = nCells_.x() * scaled.x(); |
1009 | – | whichCell.y() = nCells_.y() * scaled.y(); |
1010 | – | whichCell.z() = nCells_.z() * scaled.z(); |
1011 | – | |
1012 | – | // find single index of this cell: |
1013 | – | cellIndex = Vlinear(whichCell, nCells_); |
1014 | – | // add this cutoff group to the list of groups in this cell; |
1015 | – | cellList_[cellIndex].push_back(i); |
1016 | – | } |
1352 | #endif | |
1353 | ||
1354 | < | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1355 | < | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1356 | < | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1357 | < | Vector3i m1v(m1x, m1y, m1z); |
1358 | < | int m1 = Vlinear(m1v, nCells_); |
1024 | < | |
1025 | < | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1026 | < | os != cellOffsets_.end(); ++os) { |
1354 | > | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1355 | > | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1356 | > | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1357 | > | Vector3i m1v(m1x, m1y, m1z); |
1358 | > | int m1 = Vlinear(m1v, nCells_); |
1359 | ||
1360 | < | Vector3i m2v = m1v + (*os); |
1361 | < | |
1362 | < | if (m2v.x() >= nCells_.x()) { |
1363 | < | m2v.x() = 0; |
1364 | < | } else if (m2v.x() < 0) { |
1033 | < | m2v.x() = nCells_.x() - 1; |
1034 | < | } |
1035 | < | |
1036 | < | if (m2v.y() >= nCells_.y()) { |
1037 | < | m2v.y() = 0; |
1038 | < | } else if (m2v.y() < 0) { |
1039 | < | m2v.y() = nCells_.y() - 1; |
1040 | < | } |
1041 | < | |
1042 | < | if (m2v.z() >= nCells_.z()) { |
1043 | < | m2v.z() = 0; |
1044 | < | } else if (m2v.z() < 0) { |
1045 | < | m2v.z() = nCells_.z() - 1; |
1046 | < | } |
1047 | < | |
1048 | < | int m2 = Vlinear (m2v, nCells_); |
1360 | > | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1361 | > | os != cellOffsets_.end(); ++os) { |
1362 | > | |
1363 | > | Vector3i m2v = m1v + (*os); |
1364 | > | |
1365 | ||
1366 | < | #ifdef IS_MPI |
1367 | < | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1368 | < | j1 != cellListRow_[m1].end(); ++j1) { |
1369 | < | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1370 | < | j2 != cellListCol_[m2].end(); ++j2) { |
1371 | < | |
1372 | < | // Always do this if we're in different cells or if |
1373 | < | // we're in the same cell and the global index of the |
1374 | < | // j2 cutoff group is less than the j1 cutoff group |
1366 | > | if (m2v.x() >= nCells_.x()) { |
1367 | > | m2v.x() = 0; |
1368 | > | } else if (m2v.x() < 0) { |
1369 | > | m2v.x() = nCells_.x() - 1; |
1370 | > | } |
1371 | > | |
1372 | > | if (m2v.y() >= nCells_.y()) { |
1373 | > | m2v.y() = 0; |
1374 | > | } else if (m2v.y() < 0) { |
1375 | > | m2v.y() = nCells_.y() - 1; |
1376 | > | } |
1377 | > | |
1378 | > | if (m2v.z() >= nCells_.z()) { |
1379 | > | m2v.z() = 0; |
1380 | > | } else if (m2v.z() < 0) { |
1381 | > | m2v.z() = nCells_.z() - 1; |
1382 | > | } |
1383 | ||
1384 | < | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1384 | > | int m2 = Vlinear (m2v, nCells_); |
1385 | > | |
1386 | > | #ifdef IS_MPI |
1387 | > | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1388 | > | j1 != cellListRow_[m1].end(); ++j1) { |
1389 | > | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1390 | > | j2 != cellListCol_[m2].end(); ++j2) { |
1391 | > | |
1392 | > | // In parallel, we need to visit *all* pairs of row |
1393 | > | // & column indicies and will divide labor in the |
1394 | > | // force evaluation later. |
1395 | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | |
1396 | snap_->wrapVector(dr); | |
1397 | cuts = getGroupCutoffs( (*j1), (*j2) ); | |
1398 | if (dr.lengthSquare() < cuts.third) { | |
1399 | neighborList.push_back(make_pair((*j1), (*j2))); | |
1400 | < | } |
1400 | > | } |
1401 | } | |
1402 | } | |
1069 | – | } |
1403 | #else | |
1404 | < | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1405 | < | j1 != cellList_[m1].end(); ++j1) { |
1406 | < | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1407 | < | j2 != cellList_[m2].end(); ++j2) { |
1408 | < | |
1409 | < | // Always do this if we're in different cells or if |
1410 | < | // we're in the same cell and the global index of the |
1411 | < | // j2 cutoff group is less than the j1 cutoff group |
1404 | > | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1405 | > | j1 != cellList_[m1].end(); ++j1) { |
1406 | > | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1407 | > | j2 != cellList_[m2].end(); ++j2) { |
1408 | > | |
1409 | > | // Always do this if we're in different cells or if |
1410 | > | // we're in the same cell and the global index of |
1411 | > | // the j2 cutoff group is greater than or equal to |
1412 | > | // the j1 cutoff group. Note that Rappaport's code |
1413 | > | // has a "less than" conditional here, but that |
1414 | > | // deals with atom-by-atom computation. OpenMD |
1415 | > | // allows atoms within a single cutoff group to |
1416 | > | // interact with each other. |
1417 | ||
1418 | < | if (m2 != m1 || (*j2) < (*j1)) { |
1419 | < | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1420 | < | snap_->wrapVector(dr); |
1421 | < | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1422 | < | if (dr.lengthSquare() < cuts.third) { |
1423 | < | neighborList.push_back(make_pair((*j1), (*j2))); |
1418 | > | |
1419 | > | |
1420 | > | if (m2 != m1 || (*j2) >= (*j1) ) { |
1421 | > | |
1422 | > | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1423 | > | snap_->wrapVector(dr); |
1424 | > | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1425 | > | if (dr.lengthSquare() < cuts.third) { |
1426 | > | neighborList.push_back(make_pair((*j1), (*j2))); |
1427 | > | } |
1428 | } | |
1429 | } | |
1430 | } | |
1089 | – | } |
1431 | #endif | |
1432 | + | } |
1433 | } | |
1434 | } | |
1435 | } | |
1436 | + | } else { |
1437 | + | // branch to do all cutoff group pairs |
1438 | + | #ifdef IS_MPI |
1439 | + | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1440 | + | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1441 | + | dr = cgColData.position[j2] - cgRowData.position[j1]; |
1442 | + | snap_->wrapVector(dr); |
1443 | + | cuts = getGroupCutoffs( j1, j2 ); |
1444 | + | if (dr.lengthSquare() < cuts.third) { |
1445 | + | neighborList.push_back(make_pair(j1, j2)); |
1446 | + | } |
1447 | + | } |
1448 | + | } |
1449 | + | #else |
1450 | + | // include all groups here. |
1451 | + | for (int j1 = 0; j1 < nGroups_; j1++) { |
1452 | + | // include self group interactions j2 == j1 |
1453 | + | for (int j2 = j1; j2 < nGroups_; j2++) { |
1454 | + | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1455 | + | snap_->wrapVector(dr); |
1456 | + | cuts = getGroupCutoffs( j1, j2 ); |
1457 | + | if (dr.lengthSquare() < cuts.third) { |
1458 | + | neighborList.push_back(make_pair(j1, j2)); |
1459 | + | } |
1460 | + | } |
1461 | + | } |
1462 | + | #endif |
1463 | } | |
1464 | < | |
1464 | > | |
1465 | // save the local cutoff group positions for the check that is | |
1466 | // done on each loop: | |
1467 | saved_CG_positions_.clear(); | |
1468 | for (int i = 0; i < nGroups_; i++) | |
1469 | saved_CG_positions_.push_back(snap_->cgData.position[i]); | |
1470 | < | |
1470 | > | |
1471 | return neighborList; | |
1472 | } | |
1473 | } //end namespace OpenMD |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |