# | Line 36 | Line 36 | |
---|---|---|
36 | * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | |
37 | * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | |
38 | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | |
39 | < | * [4] Vardeman & Gezelter, in progress (2009). |
39 | > | * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 | > | * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 | */ | |
42 | #include "parallel/ForceMatrixDecomposition.hpp" | |
43 | #include "math/SquareMatrix3.hpp" | |
# | Line 47 | Line 48 | namespace OpenMD { | |
48 | using namespace std; | |
49 | namespace OpenMD { | |
50 | ||
51 | + | ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { |
52 | + | |
53 | + | // In a parallel computation, row and colum scans must visit all |
54 | + | // surrounding cells (not just the 14 upper triangular blocks that |
55 | + | // are used when the processor can see all pairs) |
56 | + | #ifdef IS_MPI |
57 | + | cellOffsets_.clear(); |
58 | + | cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
59 | + | cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
60 | + | cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
61 | + | cellOffsets_.push_back( Vector3i(-1, 0,-1) ); |
62 | + | cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
63 | + | cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
64 | + | cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
65 | + | cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
66 | + | cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
67 | + | cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
68 | + | cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
69 | + | cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
70 | + | cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
71 | + | cellOffsets_.push_back( Vector3i( 0, 0, 0) ); |
72 | + | cellOffsets_.push_back( Vector3i( 1, 0, 0) ); |
73 | + | cellOffsets_.push_back( Vector3i(-1, 1, 0) ); |
74 | + | cellOffsets_.push_back( Vector3i( 0, 1, 0) ); |
75 | + | cellOffsets_.push_back( Vector3i( 1, 1, 0) ); |
76 | + | cellOffsets_.push_back( Vector3i(-1,-1, 1) ); |
77 | + | cellOffsets_.push_back( Vector3i( 0,-1, 1) ); |
78 | + | cellOffsets_.push_back( Vector3i( 1,-1, 1) ); |
79 | + | cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
80 | + | cellOffsets_.push_back( Vector3i( 0, 0, 1) ); |
81 | + | cellOffsets_.push_back( Vector3i( 1, 0, 1) ); |
82 | + | cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
83 | + | cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
84 | + | cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
85 | + | #endif |
86 | + | } |
87 | + | |
88 | + | |
89 | /** | |
90 | * distributeInitialData is essentially a copy of the older fortran | |
91 | * SimulationSetup | |
92 | */ | |
54 | – | |
93 | void ForceMatrixDecomposition::distributeInitialData() { | |
94 | snap_ = sman_->getCurrentSnapshot(); | |
95 | storageLayout_ = sman_->getStorageLayout(); | |
96 | ff_ = info_->getForceField(); | |
97 | nLocal_ = snap_->getNumberOfAtoms(); | |
98 | < | |
98 | > | |
99 | nGroups_ = info_->getNLocalCutoffGroups(); | |
62 | – | cerr << "in dId, nGroups = " << nGroups_ << "\n"; |
100 | // gather the information for atomtype IDs (atids): | |
101 | < | identsLocal = info_->getIdentArray(); |
101 | > | idents = info_->getIdentArray(); |
102 | AtomLocalToGlobal = info_->getGlobalAtomIndices(); | |
103 | cgLocalToGlobal = info_->getGlobalGroupIndices(); | |
104 | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); | |
105 | + | |
106 | massFactors = info_->getMassFactors(); | |
69 | – | PairList excludes = info_->getExcludedInteractions(); |
70 | – | PairList oneTwo = info_->getOneTwoInteractions(); |
71 | – | PairList oneThree = info_->getOneThreeInteractions(); |
72 | – | PairList oneFour = info_->getOneFourInteractions(); |
107 | ||
108 | + | PairList* excludes = info_->getExcludedInteractions(); |
109 | + | PairList* oneTwo = info_->getOneTwoInteractions(); |
110 | + | PairList* oneThree = info_->getOneThreeInteractions(); |
111 | + | PairList* oneFour = info_->getOneFourInteractions(); |
112 | + | |
113 | #ifdef IS_MPI | |
114 | ||
115 | < | AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
116 | < | AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
78 | < | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
79 | < | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
80 | < | AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
115 | > | MPI::Intracomm row = rowComm.getComm(); |
116 | > | MPI::Intracomm col = colComm.getComm(); |
117 | ||
118 | < | AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
119 | < | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
120 | < | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
121 | < | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
122 | < | AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
118 | > | AtomPlanIntRow = new Plan<int>(row, nLocal_); |
119 | > | AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
120 | > | AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); |
121 | > | AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); |
122 | > | AtomPlanPotRow = new Plan<potVec>(row, nLocal_); |
123 | ||
124 | < | cgCommIntRow = new Communicator<Row,int>(nGroups_); |
125 | < | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
126 | < | cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
127 | < | cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
124 | > | AtomPlanIntColumn = new Plan<int>(col, nLocal_); |
125 | > | AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); |
126 | > | AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); |
127 | > | AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); |
128 | > | AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); |
129 | ||
130 | < | nAtomsInRow_ = AtomCommIntRow->getSize(); |
131 | < | nAtomsInCol_ = AtomCommIntColumn->getSize(); |
132 | < | nGroupsInRow_ = cgCommIntRow->getSize(); |
133 | < | nGroupsInCol_ = cgCommIntColumn->getSize(); |
130 | > | cgPlanIntRow = new Plan<int>(row, nGroups_); |
131 | > | cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); |
132 | > | cgPlanIntColumn = new Plan<int>(col, nGroups_); |
133 | > | cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); |
134 | ||
135 | + | nAtomsInRow_ = AtomPlanIntRow->getSize(); |
136 | + | nAtomsInCol_ = AtomPlanIntColumn->getSize(); |
137 | + | nGroupsInRow_ = cgPlanIntRow->getSize(); |
138 | + | nGroupsInCol_ = cgPlanIntColumn->getSize(); |
139 | + | |
140 | // Modify the data storage objects with the correct layouts and sizes: | |
141 | atomRowData.resize(nAtomsInRow_); | |
142 | atomRowData.setStorageLayout(storageLayout_); | |
# | Line 108 | Line 150 | namespace OpenMD { | |
150 | identsRow.resize(nAtomsInRow_); | |
151 | identsCol.resize(nAtomsInCol_); | |
152 | ||
153 | < | AtomCommIntRow->gather(identsLocal, identsRow); |
154 | < | AtomCommIntColumn->gather(identsLocal, identsCol); |
153 | > | AtomPlanIntRow->gather(idents, identsRow); |
154 | > | AtomPlanIntColumn->gather(idents, identsCol); |
155 | ||
156 | < | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
157 | < | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
158 | < | |
117 | < | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
118 | < | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
156 | > | // allocate memory for the parallel objects |
157 | > | atypesRow.resize(nAtomsInRow_); |
158 | > | atypesCol.resize(nAtomsInCol_); |
159 | ||
160 | < | AtomCommRealRow->gather(massFactors, massFactorsRow); |
161 | < | AtomCommRealColumn->gather(massFactors, massFactorsCol); |
160 | > | for (int i = 0; i < nAtomsInRow_; i++) |
161 | > | atypesRow[i] = ff_->getAtomType(identsRow[i]); |
162 | > | for (int i = 0; i < nAtomsInCol_; i++) |
163 | > | atypesCol[i] = ff_->getAtomType(identsCol[i]); |
164 | > | |
165 | > | pot_row.resize(nAtomsInRow_); |
166 | > | pot_col.resize(nAtomsInCol_); |
167 | > | |
168 | > | AtomRowToGlobal.resize(nAtomsInRow_); |
169 | > | AtomColToGlobal.resize(nAtomsInCol_); |
170 | > | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
171 | > | AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
172 | > | |
173 | > | cgRowToGlobal.resize(nGroupsInRow_); |
174 | > | cgColToGlobal.resize(nGroupsInCol_); |
175 | > | cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
176 | > | cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
177 | ||
178 | + | massFactorsRow.resize(nAtomsInRow_); |
179 | + | massFactorsCol.resize(nAtomsInCol_); |
180 | + | AtomPlanRealRow->gather(massFactors, massFactorsRow); |
181 | + | AtomPlanRealColumn->gather(massFactors, massFactorsCol); |
182 | + | |
183 | groupListRow_.clear(); | |
184 | groupListRow_.resize(nGroupsInRow_); | |
185 | for (int i = 0; i < nGroupsInRow_; i++) { | |
# | Line 142 | Line 202 | namespace OpenMD { | |
202 | } | |
203 | } | |
204 | ||
205 | < | skipsForAtom.clear(); |
206 | < | skipsForAtom.resize(nAtomsInRow_); |
205 | > | excludesForAtom.clear(); |
206 | > | excludesForAtom.resize(nAtomsInRow_); |
207 | toposForAtom.clear(); | |
208 | toposForAtom.resize(nAtomsInRow_); | |
209 | topoDist.clear(); | |
# | Line 154 | Line 214 | namespace OpenMD { | |
214 | for (int j = 0; j < nAtomsInCol_; j++) { | |
215 | int jglob = AtomColToGlobal[j]; | |
216 | ||
217 | < | if (excludes.hasPair(iglob, jglob)) |
218 | < | skipsForAtom[i].push_back(j); |
217 | > | if (excludes->hasPair(iglob, jglob)) |
218 | > | excludesForAtom[i].push_back(j); |
219 | ||
220 | < | if (oneTwo.hasPair(iglob, jglob)) { |
220 | > | if (oneTwo->hasPair(iglob, jglob)) { |
221 | toposForAtom[i].push_back(j); | |
222 | topoDist[i].push_back(1); | |
223 | } else { | |
224 | < | if (oneThree.hasPair(iglob, jglob)) { |
224 | > | if (oneThree->hasPair(iglob, jglob)) { |
225 | toposForAtom[i].push_back(j); | |
226 | topoDist[i].push_back(2); | |
227 | } else { | |
228 | < | if (oneFour.hasPair(iglob, jglob)) { |
228 | > | if (oneFour->hasPair(iglob, jglob)) { |
229 | toposForAtom[i].push_back(j); | |
230 | topoDist[i].push_back(3); | |
231 | } | |
# | Line 174 | Line 234 | namespace OpenMD { | |
234 | } | |
235 | } | |
236 | ||
237 | < | #endif |
238 | < | |
239 | < | groupList_.clear(); |
180 | < | groupList_.resize(nGroups_); |
181 | < | for (int i = 0; i < nGroups_; i++) { |
182 | < | int gid = cgLocalToGlobal[i]; |
183 | < | for (int j = 0; j < nLocal_; j++) { |
184 | < | int aid = AtomLocalToGlobal[j]; |
185 | < | if (globalGroupMembership[aid] == gid) { |
186 | < | groupList_[i].push_back(j); |
187 | < | } |
188 | < | } |
189 | < | } |
190 | < | |
191 | < | skipsForAtom.clear(); |
192 | < | skipsForAtom.resize(nLocal_); |
237 | > | #else |
238 | > | excludesForAtom.clear(); |
239 | > | excludesForAtom.resize(nLocal_); |
240 | toposForAtom.clear(); | |
241 | toposForAtom.resize(nLocal_); | |
242 | topoDist.clear(); | |
# | Line 201 | Line 248 | namespace OpenMD { | |
248 | for (int j = 0; j < nLocal_; j++) { | |
249 | int jglob = AtomLocalToGlobal[j]; | |
250 | ||
251 | < | if (excludes.hasPair(iglob, jglob)) |
252 | < | skipsForAtom[i].push_back(j); |
251 | > | if (excludes->hasPair(iglob, jglob)) |
252 | > | excludesForAtom[i].push_back(j); |
253 | ||
254 | < | if (oneTwo.hasPair(iglob, jglob)) { |
254 | > | if (oneTwo->hasPair(iglob, jglob)) { |
255 | toposForAtom[i].push_back(j); | |
256 | topoDist[i].push_back(1); | |
257 | } else { | |
258 | < | if (oneThree.hasPair(iglob, jglob)) { |
258 | > | if (oneThree->hasPair(iglob, jglob)) { |
259 | toposForAtom[i].push_back(j); | |
260 | topoDist[i].push_back(2); | |
261 | } else { | |
262 | < | if (oneFour.hasPair(iglob, jglob)) { |
262 | > | if (oneFour->hasPair(iglob, jglob)) { |
263 | toposForAtom[i].push_back(j); | |
264 | topoDist[i].push_back(3); | |
265 | } | |
# | Line 220 | Line 267 | namespace OpenMD { | |
267 | } | |
268 | } | |
269 | } | |
270 | < | |
270 | > | #endif |
271 | > | |
272 | > | // allocate memory for the parallel objects |
273 | > | atypesLocal.resize(nLocal_); |
274 | > | |
275 | > | for (int i = 0; i < nLocal_; i++) |
276 | > | atypesLocal[i] = ff_->getAtomType(idents[i]); |
277 | > | |
278 | > | groupList_.clear(); |
279 | > | groupList_.resize(nGroups_); |
280 | > | for (int i = 0; i < nGroups_; i++) { |
281 | > | int gid = cgLocalToGlobal[i]; |
282 | > | for (int j = 0; j < nLocal_; j++) { |
283 | > | int aid = AtomLocalToGlobal[j]; |
284 | > | if (globalGroupMembership[aid] == gid) { |
285 | > | groupList_[i].push_back(j); |
286 | > | } |
287 | > | } |
288 | > | } |
289 | > | |
290 | > | |
291 | createGtypeCutoffMap(); | |
292 | + | |
293 | } | |
294 | ||
295 | void ForceMatrixDecomposition::createGtypeCutoffMap() { | |
296 | < | |
296 | > | |
297 | RealType tol = 1e-6; | |
298 | + | largestRcut_ = 0.0; |
299 | RealType rc; | |
300 | int atid; | |
301 | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); | |
302 | < | vector<RealType> atypeCutoff; |
303 | < | atypeCutoff.resize( atypes.size() ); |
304 | < | |
302 | > | |
303 | > | map<int, RealType> atypeCutoff; |
304 | > | |
305 | for (set<AtomType*>::iterator at = atypes.begin(); | |
306 | at != atypes.end(); ++at){ | |
238 | – | rc = interactionMan_->getSuggestedCutoffRadius(*at); |
307 | atid = (*at)->getIdent(); | |
308 | < | atypeCutoff[atid] = rc; |
308 | > | if (userChoseCutoff_) |
309 | > | atypeCutoff[atid] = userCutoff_; |
310 | > | else |
311 | > | atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
312 | } | |
313 | < | |
313 | > | |
314 | vector<RealType> gTypeCutoffs; | |
244 | – | |
315 | // first we do a single loop over the cutoff groups to find the | |
316 | // largest cutoff for any atypes present in this group. | |
317 | #ifdef IS_MPI | |
# | Line 299 | Line 369 | namespace OpenMD { | |
369 | ||
370 | vector<RealType> groupCutoff(nGroups_, 0.0); | |
371 | groupToGtype.resize(nGroups_); | |
302 | – | |
303 | – | cerr << "nGroups = " << nGroups_ << "\n"; |
372 | for (int cg1 = 0; cg1 < nGroups_; cg1++) { | |
305 | – | |
373 | groupCutoff[cg1] = 0.0; | |
374 | vector<int> atomList = getAtomsInGroupRow(cg1); | |
308 | – | |
375 | for (vector<int>::iterator ia = atomList.begin(); | |
376 | ia != atomList.end(); ++ia) { | |
377 | int atom1 = (*ia); | |
378 | < | atid = identsLocal[atom1]; |
379 | < | if (atypeCutoff[atid] > groupCutoff[cg1]) { |
378 | > | atid = idents[atom1]; |
379 | > | if (atypeCutoff[atid] > groupCutoff[cg1]) |
380 | groupCutoff[cg1] = atypeCutoff[atid]; | |
315 | – | } |
381 | } | |
382 | < | |
382 | > | |
383 | bool gTypeFound = false; | |
384 | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { | |
385 | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { | |
# | Line 322 | Line 387 | namespace OpenMD { | |
387 | gTypeFound = true; | |
388 | } | |
389 | } | |
390 | < | if (!gTypeFound) { |
390 | > | if (!gTypeFound) { |
391 | gTypeCutoffs.push_back( groupCutoff[cg1] ); | |
392 | groupToGtype[cg1] = gTypeCutoffs.size() - 1; | |
393 | } | |
394 | } | |
395 | #endif | |
396 | ||
332 | – | cerr << "gTypeCutoffs.size() = " << gTypeCutoffs.size() << "\n"; |
397 | // Now we find the maximum group cutoff value present in the simulation | |
398 | ||
399 | < | RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); |
399 | > | RealType groupMax = *max_element(gTypeCutoffs.begin(), |
400 | > | gTypeCutoffs.end()); |
401 | ||
402 | #ifdef IS_MPI | |
403 | < | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); |
403 | > | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, |
404 | > | MPI::MAX); |
405 | #endif | |
406 | ||
407 | RealType tradRcut = groupMax; | |
# | Line 365 | Line 431 | namespace OpenMD { | |
431 | ||
432 | pair<int,int> key = make_pair(i,j); | |
433 | gTypeCutoffMap[key].first = thisRcut; | |
368 | – | |
434 | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; | |
370 | – | |
435 | gTypeCutoffMap[key].second = thisRcut*thisRcut; | |
372 | – | |
436 | gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); | |
374 | – | |
437 | // sanity check | |
438 | ||
439 | if (userChoseCutoff_) { | |
440 | if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { | |
441 | sprintf(painCave.errMsg, | |
442 | "ForceMatrixDecomposition::createGtypeCutoffMap " | |
443 | < | "user-specified rCut does not match computed group Cutoff\n"); |
443 | > | "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
444 | painCave.severity = OPENMD_ERROR; | |
445 | painCave.isFatal = 1; | |
446 | simError(); | |
# | Line 410 | Line 472 | namespace OpenMD { | |
472 | } | |
473 | ||
474 | void ForceMatrixDecomposition::zeroWorkArrays() { | |
475 | + | pairwisePot = 0.0; |
476 | + | embeddingPot = 0.0; |
477 | ||
414 | – | for (int j = 0; j < N_INTERACTION_FAMILIES; j++) { |
415 | – | longRangePot_[j] = 0.0; |
416 | – | } |
417 | – | |
478 | #ifdef IS_MPI | |
479 | if (storageLayout_ & DataStorage::dslForce) { | |
480 | fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); | |
# | Line 430 | Line 490 | namespace OpenMD { | |
490 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
491 | ||
492 | fill(pot_col.begin(), pot_col.end(), | |
493 | < | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
434 | < | |
435 | < | pot_local = Vector<RealType, N_INTERACTION_FAMILIES>(0.0); |
493 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
494 | ||
495 | if (storageLayout_ & DataStorage::dslParticlePot) { | |
496 | < | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); |
497 | < | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); |
496 | > | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
497 | > | 0.0); |
498 | > | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), |
499 | > | 0.0); |
500 | } | |
501 | ||
502 | if (storageLayout_ & DataStorage::dslDensity) { | |
# | Line 445 | Line 505 | namespace OpenMD { | |
505 | } | |
506 | ||
507 | if (storageLayout_ & DataStorage::dslFunctional) { | |
508 | < | fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); |
509 | < | fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); |
508 | > | fill(atomRowData.functional.begin(), atomRowData.functional.end(), |
509 | > | 0.0); |
510 | > | fill(atomColData.functional.begin(), atomColData.functional.end(), |
511 | > | 0.0); |
512 | } | |
513 | ||
514 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
# | Line 456 | Line 518 | namespace OpenMD { | |
518 | atomColData.functionalDerivative.end(), 0.0); | |
519 | } | |
520 | ||
521 | < | #else |
522 | < | |
521 | > | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
522 | > | fill(atomRowData.skippedCharge.begin(), |
523 | > | atomRowData.skippedCharge.end(), 0.0); |
524 | > | fill(atomColData.skippedCharge.begin(), |
525 | > | atomColData.skippedCharge.end(), 0.0); |
526 | > | } |
527 | > | |
528 | > | if (storageLayout_ & DataStorage::dslElectricField) { |
529 | > | fill(atomRowData.electricField.begin(), |
530 | > | atomRowData.electricField.end(), V3Zero); |
531 | > | fill(atomColData.electricField.begin(), |
532 | > | atomColData.electricField.end(), V3Zero); |
533 | > | } |
534 | > | if (storageLayout_ & DataStorage::dslFlucQForce) { |
535 | > | fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), |
536 | > | 0.0); |
537 | > | fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), |
538 | > | 0.0); |
539 | > | } |
540 | > | |
541 | > | #endif |
542 | > | // even in parallel, we need to zero out the local arrays: |
543 | > | |
544 | if (storageLayout_ & DataStorage::dslParticlePot) { | |
545 | fill(snap_->atomData.particlePot.begin(), | |
546 | snap_->atomData.particlePot.end(), 0.0); | |
# | Line 467 | Line 550 | namespace OpenMD { | |
550 | fill(snap_->atomData.density.begin(), | |
551 | snap_->atomData.density.end(), 0.0); | |
552 | } | |
553 | + | |
554 | if (storageLayout_ & DataStorage::dslFunctional) { | |
555 | fill(snap_->atomData.functional.begin(), | |
556 | snap_->atomData.functional.end(), 0.0); | |
557 | } | |
558 | + | |
559 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
560 | fill(snap_->atomData.functionalDerivative.begin(), | |
561 | snap_->atomData.functionalDerivative.end(), 0.0); | |
562 | } | |
563 | < | #endif |
564 | < | |
563 | > | |
564 | > | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
565 | > | fill(snap_->atomData.skippedCharge.begin(), |
566 | > | snap_->atomData.skippedCharge.end(), 0.0); |
567 | > | } |
568 | > | |
569 | > | if (storageLayout_ & DataStorage::dslElectricField) { |
570 | > | fill(snap_->atomData.electricField.begin(), |
571 | > | snap_->atomData.electricField.end(), V3Zero); |
572 | > | } |
573 | } | |
574 | ||
575 | ||
# | Line 486 | Line 579 | namespace OpenMD { | |
579 | #ifdef IS_MPI | |
580 | ||
581 | // gather up the atomic positions | |
582 | < | AtomCommVectorRow->gather(snap_->atomData.position, |
582 | > | AtomPlanVectorRow->gather(snap_->atomData.position, |
583 | atomRowData.position); | |
584 | < | AtomCommVectorColumn->gather(snap_->atomData.position, |
584 | > | AtomPlanVectorColumn->gather(snap_->atomData.position, |
585 | atomColData.position); | |
586 | ||
587 | // gather up the cutoff group positions | |
588 | < | cgCommVectorRow->gather(snap_->cgData.position, |
588 | > | |
589 | > | cgPlanVectorRow->gather(snap_->cgData.position, |
590 | cgRowData.position); | |
591 | < | cgCommVectorColumn->gather(snap_->cgData.position, |
591 | > | |
592 | > | cgPlanVectorColumn->gather(snap_->cgData.position, |
593 | cgColData.position); | |
594 | + | |
595 | ||
596 | // if needed, gather the atomic rotation matrices | |
597 | if (storageLayout_ & DataStorage::dslAmat) { | |
598 | < | AtomCommMatrixRow->gather(snap_->atomData.aMat, |
598 | > | AtomPlanMatrixRow->gather(snap_->atomData.aMat, |
599 | atomRowData.aMat); | |
600 | < | AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
600 | > | AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
601 | atomColData.aMat); | |
602 | } | |
603 | ||
604 | // if needed, gather the atomic eletrostatic frames | |
605 | if (storageLayout_ & DataStorage::dslElectroFrame) { | |
606 | < | AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
606 | > | AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
607 | atomRowData.electroFrame); | |
608 | < | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
608 | > | AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
609 | atomColData.electroFrame); | |
610 | } | |
611 | + | |
612 | + | // if needed, gather the atomic fluctuating charge values |
613 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
614 | + | AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
615 | + | atomRowData.flucQPos); |
616 | + | AtomPlanRealColumn->gather(snap_->atomData.flucQPos, |
617 | + | atomColData.flucQPos); |
618 | + | } |
619 | + | |
620 | #endif | |
621 | } | |
622 | ||
# | Line 525 | Line 630 | namespace OpenMD { | |
630 | ||
631 | if (storageLayout_ & DataStorage::dslDensity) { | |
632 | ||
633 | < | AtomCommRealRow->scatter(atomRowData.density, |
633 | > | AtomPlanRealRow->scatter(atomRowData.density, |
634 | snap_->atomData.density); | |
635 | ||
636 | int n = snap_->atomData.density.size(); | |
637 | vector<RealType> rho_tmp(n, 0.0); | |
638 | < | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
638 | > | AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); |
639 | for (int i = 0; i < n; i++) | |
640 | snap_->atomData.density[i] += rho_tmp[i]; | |
641 | + | } |
642 | + | |
643 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
644 | + | |
645 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, |
646 | + | snap_->atomData.electricField); |
647 | + | |
648 | + | int n = snap_->atomData.electricField.size(); |
649 | + | vector<Vector3d> field_tmp(n, V3Zero); |
650 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); |
651 | + | for (int i = 0; i < n; i++) |
652 | + | snap_->atomData.electricField[i] += field_tmp[i]; |
653 | } | |
654 | #endif | |
655 | } | |
# | Line 546 | Line 663 | namespace OpenMD { | |
663 | storageLayout_ = sman_->getStorageLayout(); | |
664 | #ifdef IS_MPI | |
665 | if (storageLayout_ & DataStorage::dslFunctional) { | |
666 | < | AtomCommRealRow->gather(snap_->atomData.functional, |
666 | > | AtomPlanRealRow->gather(snap_->atomData.functional, |
667 | atomRowData.functional); | |
668 | < | AtomCommRealColumn->gather(snap_->atomData.functional, |
668 | > | AtomPlanRealColumn->gather(snap_->atomData.functional, |
669 | atomColData.functional); | |
670 | } | |
671 | ||
672 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
673 | < | AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
673 | > | AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, |
674 | atomRowData.functionalDerivative); | |
675 | < | AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
675 | > | AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, |
676 | atomColData.functionalDerivative); | |
677 | } | |
678 | #endif | |
# | Line 569 | Line 686 | namespace OpenMD { | |
686 | int n = snap_->atomData.force.size(); | |
687 | vector<Vector3d> frc_tmp(n, V3Zero); | |
688 | ||
689 | < | AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
689 | > | AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); |
690 | for (int i = 0; i < n; i++) { | |
691 | snap_->atomData.force[i] += frc_tmp[i]; | |
692 | frc_tmp[i] = 0.0; | |
693 | } | |
694 | ||
695 | < | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
696 | < | for (int i = 0; i < n; i++) |
695 | > | AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); |
696 | > | for (int i = 0; i < n; i++) { |
697 | snap_->atomData.force[i] += frc_tmp[i]; | |
698 | < | |
699 | < | |
698 | > | } |
699 | > | |
700 | if (storageLayout_ & DataStorage::dslTorque) { | |
701 | ||
702 | < | int nt = snap_->atomData.force.size(); |
702 | > | int nt = snap_->atomData.torque.size(); |
703 | vector<Vector3d> trq_tmp(nt, V3Zero); | |
704 | ||
705 | < | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
706 | < | for (int i = 0; i < n; i++) { |
705 | > | AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); |
706 | > | for (int i = 0; i < nt; i++) { |
707 | snap_->atomData.torque[i] += trq_tmp[i]; | |
708 | trq_tmp[i] = 0.0; | |
709 | } | |
710 | ||
711 | < | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
712 | < | for (int i = 0; i < n; i++) |
711 | > | AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); |
712 | > | for (int i = 0; i < nt; i++) |
713 | snap_->atomData.torque[i] += trq_tmp[i]; | |
714 | } | |
715 | + | |
716 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
717 | + | |
718 | + | int ns = snap_->atomData.skippedCharge.size(); |
719 | + | vector<RealType> skch_tmp(ns, 0.0); |
720 | + | |
721 | + | AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
722 | + | for (int i = 0; i < ns; i++) { |
723 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
724 | + | skch_tmp[i] = 0.0; |
725 | + | } |
726 | + | |
727 | + | AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
728 | + | for (int i = 0; i < ns; i++) |
729 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
730 | + | |
731 | + | } |
732 | ||
733 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
734 | + | |
735 | + | int nq = snap_->atomData.flucQFrc.size(); |
736 | + | vector<RealType> fqfrc_tmp(nq, 0.0); |
737 | + | |
738 | + | AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); |
739 | + | for (int i = 0; i < nq; i++) { |
740 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
741 | + | fqfrc_tmp[i] = 0.0; |
742 | + | } |
743 | + | |
744 | + | AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); |
745 | + | for (int i = 0; i < nq; i++) |
746 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
747 | + | |
748 | + | } |
749 | + | |
750 | nLocal_ = snap_->getNumberOfAtoms(); | |
751 | ||
752 | vector<potVec> pot_temp(nLocal_, | |
# | Line 603 | Line 754 | namespace OpenMD { | |
754 | ||
755 | // scatter/gather pot_row into the members of my column | |
756 | ||
757 | < | AtomCommPotRow->scatter(pot_row, pot_temp); |
757 | > | AtomPlanPotRow->scatter(pot_row, pot_temp); |
758 | ||
759 | for (int ii = 0; ii < pot_temp.size(); ii++ ) | |
760 | < | pot_local += pot_temp[ii]; |
760 | > | pairwisePot += pot_temp[ii]; |
761 | ||
762 | fill(pot_temp.begin(), pot_temp.end(), | |
763 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
764 | ||
765 | < | AtomCommPotColumn->scatter(pot_col, pot_temp); |
765 | > | AtomPlanPotColumn->scatter(pot_col, pot_temp); |
766 | ||
767 | for (int ii = 0; ii < pot_temp.size(); ii++ ) | |
768 | < | pot_local += pot_temp[ii]; |
768 | > | pairwisePot += pot_temp[ii]; |
769 | ||
770 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
771 | + | RealType ploc1 = pairwisePot[ii]; |
772 | + | RealType ploc2 = 0.0; |
773 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
774 | + | pairwisePot[ii] = ploc2; |
775 | + | } |
776 | + | |
777 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
778 | + | RealType ploc1 = embeddingPot[ii]; |
779 | + | RealType ploc2 = 0.0; |
780 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
781 | + | embeddingPot[ii] = ploc2; |
782 | + | } |
783 | + | |
784 | #endif | |
785 | + | |
786 | } | |
787 | ||
788 | int ForceMatrixDecomposition::getNAtomsInRow() { | |
# | Line 717 | Line 883 | namespace OpenMD { | |
883 | return d; | |
884 | } | |
885 | ||
886 | < | vector<int> ForceMatrixDecomposition::getSkipsForAtom(int atom1) { |
887 | < | return skipsForAtom[atom1]; |
886 | > | vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
887 | > | return excludesForAtom[atom1]; |
888 | } | |
889 | ||
890 | /** | |
891 | < | * There are a number of reasons to skip a pair or a |
726 | < | * particle. Mostly we do this to exclude atoms who are involved in |
727 | < | * short range interactions (bonds, bends, torsions), but we also |
728 | < | * need to exclude some overcounted interactions that result from |
891 | > | * We need to exclude some overcounted interactions that result from |
892 | * the parallel decomposition. | |
893 | */ | |
894 | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { | |
895 | int unique_id_1, unique_id_2; | |
896 | < | |
896 | > | |
897 | #ifdef IS_MPI | |
898 | // in MPI, we have to look up the unique IDs for each atom | |
899 | unique_id_1 = AtomRowToGlobal[atom1]; | |
900 | unique_id_2 = AtomColToGlobal[atom2]; | |
901 | + | #else |
902 | + | unique_id_1 = AtomLocalToGlobal[atom1]; |
903 | + | unique_id_2 = AtomLocalToGlobal[atom2]; |
904 | + | #endif |
905 | ||
739 | – | // this situation should only arise in MPI simulations |
906 | if (unique_id_1 == unique_id_2) return true; | |
907 | < | |
907 | > | |
908 | > | #ifdef IS_MPI |
909 | // this prevents us from doing the pair on multiple processors | |
910 | if (unique_id_1 < unique_id_2) { | |
911 | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; | |
912 | } else { | |
913 | < | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
913 | > | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
914 | } | |
748 | – | #else |
749 | – | // in the normal loop, the atom numbers are unique |
750 | – | unique_id_1 = atom1; |
751 | – | unique_id_2 = atom2; |
915 | #endif | |
916 | ||
917 | < | for (vector<int>::iterator i = skipsForAtom[atom1].begin(); |
918 | < | i != skipsForAtom[atom1].end(); ++i) { |
756 | < | if ( (*i) == unique_id_2 ) return true; |
757 | < | } |
917 | > | return false; |
918 | > | } |
919 | ||
920 | + | /** |
921 | + | * We need to handle the interactions for atoms who are involved in |
922 | + | * the same rigid body as well as some short range interactions |
923 | + | * (bonds, bends, torsions) differently from other interactions. |
924 | + | * We'll still visit the pairwise routines, but with a flag that |
925 | + | * tells those routines to exclude the pair from direct long range |
926 | + | * interactions. Some indirect interactions (notably reaction |
927 | + | * field) must still be handled for these pairs. |
928 | + | */ |
929 | + | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
930 | + | |
931 | + | // excludesForAtom was constructed to use row/column indices in the MPI |
932 | + | // version, and to use local IDs in the non-MPI version: |
933 | + | |
934 | + | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
935 | + | i != excludesForAtom[atom1].end(); ++i) { |
936 | + | if ( (*i) == atom2 ) return true; |
937 | + | } |
938 | + | |
939 | + | return false; |
940 | } | |
941 | ||
942 | ||
# | Line 776 | Line 957 | namespace OpenMD { | |
957 | } | |
958 | ||
959 | // filling interaction blocks with pointers | |
960 | < | void ForceMatrixDecomposition::fillInteractionData(InteractionData idat, |
961 | < | int atom1, int atom2) { |
960 | > | void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
961 | > | int atom1, int atom2) { |
962 | > | |
963 | > | idat.excluded = excludeAtomPair(atom1, atom2); |
964 | > | |
965 | #ifdef IS_MPI | |
966 | + | idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
967 | + | //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
968 | + | // ff_->getAtomType(identsCol[atom2]) ); |
969 | ||
783 | – | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
784 | – | ff_->getAtomType(identsCol[atom2]) ); |
785 | – | |
970 | if (storageLayout_ & DataStorage::dslAmat) { | |
971 | idat.A1 = &(atomRowData.aMat[atom1]); | |
972 | idat.A2 = &(atomColData.aMat[atom2]); | |
# | Line 818 | Line 1002 | namespace OpenMD { | |
1002 | idat.particlePot2 = &(atomColData.particlePot[atom2]); | |
1003 | } | |
1004 | ||
1005 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
1006 | + | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
1007 | + | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
1008 | + | } |
1009 | + | |
1010 | #else | |
1011 | + | |
1012 | ||
1013 | < | idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), |
1014 | < | ff_->getAtomType(identsLocal[atom2]) ); |
1013 | > | // cerr << "atoms = " << atom1 << " " << atom2 << "\n"; |
1014 | > | // cerr << "pos1 = " << snap_->atomData.position[atom1] << "\n"; |
1015 | > | // cerr << "pos2 = " << snap_->atomData.position[atom2] << "\n"; |
1016 | ||
1017 | + | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
1018 | + | //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
1019 | + | // ff_->getAtomType(idents[atom2]) ); |
1020 | + | |
1021 | if (storageLayout_ & DataStorage::dslAmat) { | |
1022 | idat.A1 = &(snap_->atomData.aMat[atom1]); | |
1023 | idat.A2 = &(snap_->atomData.aMat[atom2]); | |
# | Line 838 | Line 1033 | namespace OpenMD { | |
1033 | idat.t2 = &(snap_->atomData.torque[atom2]); | |
1034 | } | |
1035 | ||
1036 | < | if (storageLayout_ & DataStorage::dslDensity) { |
1036 | > | if (storageLayout_ & DataStorage::dslDensity) { |
1037 | idat.rho1 = &(snap_->atomData.density[atom1]); | |
1038 | idat.rho2 = &(snap_->atomData.density[atom2]); | |
1039 | } | |
# | Line 858 | Line 1053 | namespace OpenMD { | |
1053 | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); | |
1054 | } | |
1055 | ||
1056 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
1057 | + | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
1058 | + | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
1059 | + | } |
1060 | #endif | |
1061 | } | |
1062 | ||
1063 | ||
1064 | < | void ForceMatrixDecomposition::unpackInteractionData(InteractionData idat, int atom1, int atom2) { |
1064 | > | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
1065 | #ifdef IS_MPI | |
1066 | < | pot_row[atom1] += 0.5 * *(idat.pot); |
1067 | < | pot_col[atom2] += 0.5 * *(idat.pot); |
1066 | > | pot_row[atom1] += RealType(0.5) * *(idat.pot); |
1067 | > | pot_col[atom2] += RealType(0.5) * *(idat.pot); |
1068 | ||
1069 | atomRowData.force[atom1] += *(idat.f1); | |
1070 | atomColData.force[atom2] -= *(idat.f1); | |
1071 | + | |
1072 | + | // should particle pot be done here also? |
1073 | #else | |
1074 | < | longRangePot_ += *(idat.pot); |
1075 | < | |
1074 | > | pairwisePot += *(idat.pot); |
1075 | > | |
1076 | snap_->atomData.force[atom1] += *(idat.f1); | |
1077 | snap_->atomData.force[atom2] -= *(idat.f1); | |
877 | – | #endif |
1078 | ||
1079 | < | } |
1080 | < | |
1081 | < | |
882 | < | void ForceMatrixDecomposition::fillSkipData(InteractionData idat, |
883 | < | int atom1, int atom2) { |
884 | < | #ifdef IS_MPI |
885 | < | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
886 | < | ff_->getAtomType(identsCol[atom2]) ); |
887 | < | |
888 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { |
889 | < | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
890 | < | idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
1079 | > | if (idat.doParticlePot) { |
1080 | > | snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); |
1081 | > | snap_->atomData.particlePot[atom2] -= *(idat.vpair) * *(idat.sw); |
1082 | } | |
1083 | < | if (storageLayout_ & DataStorage::dslTorque) { |
1084 | < | idat.t1 = &(atomRowData.torque[atom1]); |
1085 | < | idat.t2 = &(atomColData.torque[atom2]); |
895 | < | } |
896 | < | #else |
897 | < | idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), |
898 | < | ff_->getAtomType(identsLocal[atom2]) ); |
899 | < | |
900 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { |
901 | < | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
902 | < | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
903 | < | } |
904 | < | if (storageLayout_ & DataStorage::dslTorque) { |
905 | < | idat.t1 = &(snap_->atomData.torque[atom1]); |
906 | < | idat.t2 = &(snap_->atomData.torque[atom2]); |
907 | < | } |
908 | < | #endif |
1083 | > | |
1084 | > | #endif |
1085 | > | |
1086 | } | |
1087 | ||
1088 | /* | |
# | Line 918 | Line 1095 | namespace OpenMD { | |
1095 | ||
1096 | vector<pair<int, int> > neighborList; | |
1097 | groupCutoffs cuts; | |
1098 | + | bool doAllPairs = false; |
1099 | + | |
1100 | #ifdef IS_MPI | |
1101 | cellListRow_.clear(); | |
1102 | cellListCol_.clear(); | |
# | Line 937 | Line 1116 | namespace OpenMD { | |
1116 | nCells_.y() = (int) ( Hy.length() )/ rList_; | |
1117 | nCells_.z() = (int) ( Hz.length() )/ rList_; | |
1118 | ||
1119 | + | // handle small boxes where the cell offsets can end up repeating cells |
1120 | + | |
1121 | + | if (nCells_.x() < 3) doAllPairs = true; |
1122 | + | if (nCells_.y() < 3) doAllPairs = true; |
1123 | + | if (nCells_.z() < 3) doAllPairs = true; |
1124 | + | |
1125 | Mat3x3d invHmat = snap_->getInvHmat(); | |
1126 | Vector3d rs, scaled, dr; | |
1127 | Vector3i whichCell; | |
1128 | int cellIndex; | |
1129 | int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); | |
1130 | ||
946 | – | cerr << "flag1\n"; |
1131 | #ifdef IS_MPI | |
1132 | cellListRow_.resize(nCtot); | |
1133 | cellListCol_.resize(nCtot); | |
1134 | #else | |
1135 | cellList_.resize(nCtot); | |
1136 | #endif | |
1137 | < | cerr << "flag2\n"; |
1137 | > | |
1138 | > | if (!doAllPairs) { |
1139 | #ifdef IS_MPI | |
955 | – | for (int i = 0; i < nGroupsInRow_; i++) { |
956 | – | rs = cgRowData.position[i]; |
1140 | ||
1141 | < | // scaled positions relative to the box vectors |
1142 | < | scaled = invHmat * rs; |
1143 | < | |
1144 | < | // wrap the vector back into the unit box by subtracting integer box |
1145 | < | // numbers |
1146 | < | for (int j = 0; j < 3; j++) { |
1147 | < | scaled[j] -= roundMe(scaled[j]); |
1148 | < | scaled[j] += 0.5; |
1141 | > | for (int i = 0; i < nGroupsInRow_; i++) { |
1142 | > | rs = cgRowData.position[i]; |
1143 | > | |
1144 | > | // scaled positions relative to the box vectors |
1145 | > | scaled = invHmat * rs; |
1146 | > | |
1147 | > | // wrap the vector back into the unit box by subtracting integer box |
1148 | > | // numbers |
1149 | > | for (int j = 0; j < 3; j++) { |
1150 | > | scaled[j] -= roundMe(scaled[j]); |
1151 | > | scaled[j] += 0.5; |
1152 | > | } |
1153 | > | |
1154 | > | // find xyz-indices of cell that cutoffGroup is in. |
1155 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1156 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1157 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1158 | > | |
1159 | > | // find single index of this cell: |
1160 | > | cellIndex = Vlinear(whichCell, nCells_); |
1161 | > | |
1162 | > | // add this cutoff group to the list of groups in this cell; |
1163 | > | cellListRow_[cellIndex].push_back(i); |
1164 | } | |
1165 | < | |
1166 | < | // find xyz-indices of cell that cutoffGroup is in. |
1167 | < | whichCell.x() = nCells_.x() * scaled.x(); |
1168 | < | whichCell.y() = nCells_.y() * scaled.y(); |
1169 | < | whichCell.z() = nCells_.z() * scaled.z(); |
1170 | < | |
1171 | < | // find single index of this cell: |
1172 | < | cellIndex = Vlinear(whichCell, nCells_); |
1173 | < | |
1174 | < | // add this cutoff group to the list of groups in this cell; |
1175 | < | cellListRow_[cellIndex].push_back(i); |
1176 | < | } |
1177 | < | |
1178 | < | for (int i = 0; i < nGroupsInCol_; i++) { |
1179 | < | rs = cgColData.position[i]; |
1180 | < | |
1181 | < | // scaled positions relative to the box vectors |
1182 | < | scaled = invHmat * rs; |
1183 | < | |
1184 | < | // wrap the vector back into the unit box by subtracting integer box |
1185 | < | // numbers |
1186 | < | for (int j = 0; j < 3; j++) { |
1187 | < | scaled[j] -= roundMe(scaled[j]); |
1188 | < | scaled[j] += 0.5; |
1189 | < | } |
992 | < | |
993 | < | // find xyz-indices of cell that cutoffGroup is in. |
994 | < | whichCell.x() = nCells_.x() * scaled.x(); |
995 | < | whichCell.y() = nCells_.y() * scaled.y(); |
996 | < | whichCell.z() = nCells_.z() * scaled.z(); |
997 | < | |
998 | < | // find single index of this cell: |
999 | < | cellIndex = Vlinear(whichCell, nCells_); |
1000 | < | |
1001 | < | // add this cutoff group to the list of groups in this cell; |
1002 | < | cellListCol_[cellIndex].push_back(i); |
1003 | < | } |
1165 | > | for (int i = 0; i < nGroupsInCol_; i++) { |
1166 | > | rs = cgColData.position[i]; |
1167 | > | |
1168 | > | // scaled positions relative to the box vectors |
1169 | > | scaled = invHmat * rs; |
1170 | > | |
1171 | > | // wrap the vector back into the unit box by subtracting integer box |
1172 | > | // numbers |
1173 | > | for (int j = 0; j < 3; j++) { |
1174 | > | scaled[j] -= roundMe(scaled[j]); |
1175 | > | scaled[j] += 0.5; |
1176 | > | } |
1177 | > | |
1178 | > | // find xyz-indices of cell that cutoffGroup is in. |
1179 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1180 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1181 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1182 | > | |
1183 | > | // find single index of this cell: |
1184 | > | cellIndex = Vlinear(whichCell, nCells_); |
1185 | > | |
1186 | > | // add this cutoff group to the list of groups in this cell; |
1187 | > | cellListCol_[cellIndex].push_back(i); |
1188 | > | } |
1189 | > | |
1190 | #else | |
1191 | < | for (int i = 0; i < nGroups_; i++) { |
1192 | < | rs = snap_->cgData.position[i]; |
1193 | < | |
1194 | < | // scaled positions relative to the box vectors |
1195 | < | scaled = invHmat * rs; |
1196 | < | |
1197 | < | // wrap the vector back into the unit box by subtracting integer box |
1198 | < | // numbers |
1199 | < | for (int j = 0; j < 3; j++) { |
1200 | < | scaled[j] -= roundMe(scaled[j]); |
1201 | < | scaled[j] += 0.5; |
1191 | > | for (int i = 0; i < nGroups_; i++) { |
1192 | > | rs = snap_->cgData.position[i]; |
1193 | > | |
1194 | > | // scaled positions relative to the box vectors |
1195 | > | scaled = invHmat * rs; |
1196 | > | |
1197 | > | // wrap the vector back into the unit box by subtracting integer box |
1198 | > | // numbers |
1199 | > | for (int j = 0; j < 3; j++) { |
1200 | > | scaled[j] -= roundMe(scaled[j]); |
1201 | > | scaled[j] += 0.5; |
1202 | > | } |
1203 | > | |
1204 | > | // find xyz-indices of cell that cutoffGroup is in. |
1205 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1206 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1207 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1208 | > | |
1209 | > | // find single index of this cell: |
1210 | > | cellIndex = Vlinear(whichCell, nCells_); |
1211 | > | |
1212 | > | // add this cutoff group to the list of groups in this cell; |
1213 | > | cellList_[cellIndex].push_back(i); |
1214 | } | |
1215 | ||
1018 | – | // find xyz-indices of cell that cutoffGroup is in. |
1019 | – | whichCell.x() = nCells_.x() * scaled.x(); |
1020 | – | whichCell.y() = nCells_.y() * scaled.y(); |
1021 | – | whichCell.z() = nCells_.z() * scaled.z(); |
1022 | – | |
1023 | – | // find single index of this cell: |
1024 | – | cellIndex = Vlinear(whichCell, nCells_); |
1025 | – | |
1026 | – | // add this cutoff group to the list of groups in this cell; |
1027 | – | cellList_[cellIndex].push_back(i); |
1028 | – | } |
1216 | #endif | |
1217 | ||
1218 | < | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1219 | < | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1220 | < | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1221 | < | Vector3i m1v(m1x, m1y, m1z); |
1222 | < | int m1 = Vlinear(m1v, nCells_); |
1036 | < | |
1037 | < | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1038 | < | os != cellOffsets_.end(); ++os) { |
1218 | > | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1219 | > | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1220 | > | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1221 | > | Vector3i m1v(m1x, m1y, m1z); |
1222 | > | int m1 = Vlinear(m1v, nCells_); |
1223 | ||
1224 | < | Vector3i m2v = m1v + (*os); |
1225 | < | |
1226 | < | if (m2v.x() >= nCells_.x()) { |
1227 | < | m2v.x() = 0; |
1228 | < | } else if (m2v.x() < 0) { |
1045 | < | m2v.x() = nCells_.x() - 1; |
1046 | < | } |
1047 | < | |
1048 | < | if (m2v.y() >= nCells_.y()) { |
1049 | < | m2v.y() = 0; |
1050 | < | } else if (m2v.y() < 0) { |
1051 | < | m2v.y() = nCells_.y() - 1; |
1052 | < | } |
1053 | < | |
1054 | < | if (m2v.z() >= nCells_.z()) { |
1055 | < | m2v.z() = 0; |
1056 | < | } else if (m2v.z() < 0) { |
1057 | < | m2v.z() = nCells_.z() - 1; |
1058 | < | } |
1059 | < | |
1060 | < | int m2 = Vlinear (m2v, nCells_); |
1224 | > | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1225 | > | os != cellOffsets_.end(); ++os) { |
1226 | > | |
1227 | > | Vector3i m2v = m1v + (*os); |
1228 | > | |
1229 | ||
1230 | < | #ifdef IS_MPI |
1231 | < | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1232 | < | j1 != cellListRow_[m1].end(); ++j1) { |
1233 | < | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1234 | < | j2 != cellListCol_[m2].end(); ++j2) { |
1235 | < | |
1236 | < | // Always do this if we're in different cells or if |
1237 | < | // we're in the same cell and the global index of the |
1238 | < | // j2 cutoff group is less than the j1 cutoff group |
1230 | > | if (m2v.x() >= nCells_.x()) { |
1231 | > | m2v.x() = 0; |
1232 | > | } else if (m2v.x() < 0) { |
1233 | > | m2v.x() = nCells_.x() - 1; |
1234 | > | } |
1235 | > | |
1236 | > | if (m2v.y() >= nCells_.y()) { |
1237 | > | m2v.y() = 0; |
1238 | > | } else if (m2v.y() < 0) { |
1239 | > | m2v.y() = nCells_.y() - 1; |
1240 | > | } |
1241 | > | |
1242 | > | if (m2v.z() >= nCells_.z()) { |
1243 | > | m2v.z() = 0; |
1244 | > | } else if (m2v.z() < 0) { |
1245 | > | m2v.z() = nCells_.z() - 1; |
1246 | > | } |
1247 | ||
1248 | < | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1248 | > | int m2 = Vlinear (m2v, nCells_); |
1249 | > | |
1250 | > | #ifdef IS_MPI |
1251 | > | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1252 | > | j1 != cellListRow_[m1].end(); ++j1) { |
1253 | > | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1254 | > | j2 != cellListCol_[m2].end(); ++j2) { |
1255 | > | |
1256 | > | // In parallel, we need to visit *all* pairs of row |
1257 | > | // & column indicies and will divide labor in the |
1258 | > | // force evaluation later. |
1259 | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | |
1260 | snap_->wrapVector(dr); | |
1261 | cuts = getGroupCutoffs( (*j1), (*j2) ); | |
1262 | if (dr.lengthSquare() < cuts.third) { | |
1263 | neighborList.push_back(make_pair((*j1), (*j2))); | |
1264 | < | } |
1264 | > | } |
1265 | } | |
1266 | } | |
1081 | – | } |
1267 | #else | |
1268 | + | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1269 | + | j1 != cellList_[m1].end(); ++j1) { |
1270 | + | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1271 | + | j2 != cellList_[m2].end(); ++j2) { |
1272 | + | |
1273 | + | // Always do this if we're in different cells or if |
1274 | + | // we're in the same cell and the global index of |
1275 | + | // the j2 cutoff group is greater than or equal to |
1276 | + | // the j1 cutoff group. Note that Rappaport's code |
1277 | + | // has a "less than" conditional here, but that |
1278 | + | // deals with atom-by-atom computation. OpenMD |
1279 | + | // allows atoms within a single cutoff group to |
1280 | + | // interact with each other. |
1281 | ||
1084 | – | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1085 | – | j1 != cellList_[m1].end(); ++j1) { |
1086 | – | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1087 | – | j2 != cellList_[m2].end(); ++j2) { |
1282 | ||
1089 | – | // Always do this if we're in different cells or if |
1090 | – | // we're in the same cell and the global index of the |
1091 | – | // j2 cutoff group is less than the j1 cutoff group |
1283 | ||
1284 | < | if (m2 != m1 || (*j2) < (*j1)) { |
1285 | < | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1286 | < | snap_->wrapVector(dr); |
1287 | < | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1288 | < | if (dr.lengthSquare() < cuts.third) { |
1289 | < | neighborList.push_back(make_pair((*j1), (*j2))); |
1284 | > | if (m2 != m1 || (*j2) >= (*j1) ) { |
1285 | > | |
1286 | > | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1287 | > | snap_->wrapVector(dr); |
1288 | > | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1289 | > | if (dr.lengthSquare() < cuts.third) { |
1290 | > | neighborList.push_back(make_pair((*j1), (*j2))); |
1291 | > | } |
1292 | } | |
1293 | } | |
1294 | } | |
1102 | – | } |
1295 | #endif | |
1296 | + | } |
1297 | } | |
1298 | } | |
1299 | } | |
1300 | + | } else { |
1301 | + | // branch to do all cutoff group pairs |
1302 | + | #ifdef IS_MPI |
1303 | + | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1304 | + | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1305 | + | dr = cgColData.position[j2] - cgRowData.position[j1]; |
1306 | + | snap_->wrapVector(dr); |
1307 | + | cuts = getGroupCutoffs( j1, j2 ); |
1308 | + | if (dr.lengthSquare() < cuts.third) { |
1309 | + | neighborList.push_back(make_pair(j1, j2)); |
1310 | + | } |
1311 | + | } |
1312 | + | } |
1313 | + | #else |
1314 | + | // include all groups here. |
1315 | + | for (int j1 = 0; j1 < nGroups_; j1++) { |
1316 | + | // include self group interactions j2 == j1 |
1317 | + | for (int j2 = j1; j2 < nGroups_; j2++) { |
1318 | + | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1319 | + | snap_->wrapVector(dr); |
1320 | + | cuts = getGroupCutoffs( j1, j2 ); |
1321 | + | if (dr.lengthSquare() < cuts.third) { |
1322 | + | neighborList.push_back(make_pair(j1, j2)); |
1323 | + | } |
1324 | + | } |
1325 | + | } |
1326 | + | #endif |
1327 | } | |
1328 | < | |
1328 | > | |
1329 | // save the local cutoff group positions for the check that is | |
1330 | // done on each loop: | |
1331 | saved_CG_positions_.clear(); |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |