# | Line 36 | Line 36 | |
---|---|---|
36 | * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | |
37 | * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | |
38 | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | |
39 | < | * [4] Vardeman & Gezelter, in progress (2009). |
39 | > | * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 | > | * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 | */ | |
42 | #include "parallel/ForceMatrixDecomposition.hpp" | |
43 | #include "math/SquareMatrix3.hpp" | |
# | Line 47 | Line 48 | namespace OpenMD { | |
48 | using namespace std; | |
49 | namespace OpenMD { | |
50 | ||
51 | + | ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { |
52 | + | |
53 | + | // In a parallel computation, row and colum scans must visit all |
54 | + | // surrounding cells (not just the 14 upper triangular blocks that |
55 | + | // are used when the processor can see all pairs) |
56 | + | #ifdef IS_MPI |
57 | + | cellOffsets_.clear(); |
58 | + | cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
59 | + | cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
60 | + | cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
61 | + | cellOffsets_.push_back( Vector3i(-1, 0,-1) ); |
62 | + | cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
63 | + | cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
64 | + | cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
65 | + | cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
66 | + | cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
67 | + | cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
68 | + | cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
69 | + | cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
70 | + | cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
71 | + | cellOffsets_.push_back( Vector3i( 0, 0, 0) ); |
72 | + | cellOffsets_.push_back( Vector3i( 1, 0, 0) ); |
73 | + | cellOffsets_.push_back( Vector3i(-1, 1, 0) ); |
74 | + | cellOffsets_.push_back( Vector3i( 0, 1, 0) ); |
75 | + | cellOffsets_.push_back( Vector3i( 1, 1, 0) ); |
76 | + | cellOffsets_.push_back( Vector3i(-1,-1, 1) ); |
77 | + | cellOffsets_.push_back( Vector3i( 0,-1, 1) ); |
78 | + | cellOffsets_.push_back( Vector3i( 1,-1, 1) ); |
79 | + | cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
80 | + | cellOffsets_.push_back( Vector3i( 0, 0, 1) ); |
81 | + | cellOffsets_.push_back( Vector3i( 1, 0, 1) ); |
82 | + | cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
83 | + | cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
84 | + | cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
85 | + | #endif |
86 | + | } |
87 | + | |
88 | + | |
89 | /** | |
90 | * distributeInitialData is essentially a copy of the older fortran | |
91 | * SimulationSetup | |
92 | */ | |
54 | – | |
93 | void ForceMatrixDecomposition::distributeInitialData() { | |
94 | snap_ = sman_->getCurrentSnapshot(); | |
95 | storageLayout_ = sman_->getStorageLayout(); | |
96 | ff_ = info_->getForceField(); | |
97 | nLocal_ = snap_->getNumberOfAtoms(); | |
98 | < | |
98 | > | |
99 | nGroups_ = info_->getNLocalCutoffGroups(); | |
100 | // gather the information for atomtype IDs (atids): | |
101 | idents = info_->getIdentArray(); | |
# | Line 67 | Line 105 | namespace OpenMD { | |
105 | ||
106 | massFactors = info_->getMassFactors(); | |
107 | ||
108 | < | PairList excludes = info_->getExcludedInteractions(); |
109 | < | PairList oneTwo = info_->getOneTwoInteractions(); |
110 | < | PairList oneThree = info_->getOneThreeInteractions(); |
111 | < | PairList oneFour = info_->getOneFourInteractions(); |
108 | > | PairList* excludes = info_->getExcludedInteractions(); |
109 | > | PairList* oneTwo = info_->getOneTwoInteractions(); |
110 | > | PairList* oneThree = info_->getOneThreeInteractions(); |
111 | > | PairList* oneFour = info_->getOneFourInteractions(); |
112 | ||
113 | #ifdef IS_MPI | |
114 | ||
115 | < | AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
116 | < | AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
79 | < | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
80 | < | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
81 | < | AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
115 | > | MPI::Intracomm row = rowComm.getComm(); |
116 | > | MPI::Intracomm col = colComm.getComm(); |
117 | ||
118 | < | AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
119 | < | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
120 | < | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
121 | < | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
122 | < | AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
118 | > | AtomPlanIntRow = new Plan<int>(row, nLocal_); |
119 | > | AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
120 | > | AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); |
121 | > | AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); |
122 | > | AtomPlanPotRow = new Plan<potVec>(row, nLocal_); |
123 | ||
124 | < | cgCommIntRow = new Communicator<Row,int>(nGroups_); |
125 | < | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
126 | < | cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
127 | < | cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
124 | > | AtomPlanIntColumn = new Plan<int>(col, nLocal_); |
125 | > | AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); |
126 | > | AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); |
127 | > | AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); |
128 | > | AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); |
129 | ||
130 | < | nAtomsInRow_ = AtomCommIntRow->getSize(); |
131 | < | nAtomsInCol_ = AtomCommIntColumn->getSize(); |
132 | < | nGroupsInRow_ = cgCommIntRow->getSize(); |
133 | < | nGroupsInCol_ = cgCommIntColumn->getSize(); |
130 | > | cgPlanIntRow = new Plan<int>(row, nGroups_); |
131 | > | cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); |
132 | > | cgPlanIntColumn = new Plan<int>(col, nGroups_); |
133 | > | cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); |
134 | ||
135 | + | nAtomsInRow_ = AtomPlanIntRow->getSize(); |
136 | + | nAtomsInCol_ = AtomPlanIntColumn->getSize(); |
137 | + | nGroupsInRow_ = cgPlanIntRow->getSize(); |
138 | + | nGroupsInCol_ = cgPlanIntColumn->getSize(); |
139 | + | |
140 | // Modify the data storage objects with the correct layouts and sizes: | |
141 | atomRowData.resize(nAtomsInRow_); | |
142 | atomRowData.setStorageLayout(storageLayout_); | |
# | Line 109 | Line 150 | namespace OpenMD { | |
150 | identsRow.resize(nAtomsInRow_); | |
151 | identsCol.resize(nAtomsInCol_); | |
152 | ||
153 | < | AtomCommIntRow->gather(idents, identsRow); |
154 | < | AtomCommIntColumn->gather(idents, identsCol); |
153 | > | AtomPlanIntRow->gather(idents, identsRow); |
154 | > | AtomPlanIntColumn->gather(idents, identsCol); |
155 | ||
156 | < | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
157 | < | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
158 | < | |
118 | < | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
119 | < | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
156 | > | // allocate memory for the parallel objects |
157 | > | atypesRow.resize(nAtomsInRow_); |
158 | > | atypesCol.resize(nAtomsInCol_); |
159 | ||
160 | < | AtomCommRealRow->gather(massFactors, massFactorsRow); |
161 | < | AtomCommRealColumn->gather(massFactors, massFactorsCol); |
160 | > | for (int i = 0; i < nAtomsInRow_; i++) |
161 | > | atypesRow[i] = ff_->getAtomType(identsRow[i]); |
162 | > | for (int i = 0; i < nAtomsInCol_; i++) |
163 | > | atypesCol[i] = ff_->getAtomType(identsCol[i]); |
164 | ||
165 | + | pot_row.resize(nAtomsInRow_); |
166 | + | pot_col.resize(nAtomsInCol_); |
167 | + | |
168 | + | AtomRowToGlobal.resize(nAtomsInRow_); |
169 | + | AtomColToGlobal.resize(nAtomsInCol_); |
170 | + | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
171 | + | AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
172 | + | |
173 | + | cgRowToGlobal.resize(nGroupsInRow_); |
174 | + | cgColToGlobal.resize(nGroupsInCol_); |
175 | + | cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
176 | + | cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
177 | + | |
178 | + | massFactorsRow.resize(nAtomsInRow_); |
179 | + | massFactorsCol.resize(nAtomsInCol_); |
180 | + | AtomPlanRealRow->gather(massFactors, massFactorsRow); |
181 | + | AtomPlanRealColumn->gather(massFactors, massFactorsCol); |
182 | + | |
183 | groupListRow_.clear(); | |
184 | groupListRow_.resize(nGroupsInRow_); | |
185 | for (int i = 0; i < nGroupsInRow_; i++) { | |
# | Line 143 | Line 202 | namespace OpenMD { | |
202 | } | |
203 | } | |
204 | ||
205 | < | skipsForAtom.clear(); |
206 | < | skipsForAtom.resize(nAtomsInRow_); |
205 | > | excludesForAtom.clear(); |
206 | > | excludesForAtom.resize(nAtomsInRow_); |
207 | toposForAtom.clear(); | |
208 | toposForAtom.resize(nAtomsInRow_); | |
209 | topoDist.clear(); | |
# | Line 155 | Line 214 | namespace OpenMD { | |
214 | for (int j = 0; j < nAtomsInCol_; j++) { | |
215 | int jglob = AtomColToGlobal[j]; | |
216 | ||
217 | < | if (excludes.hasPair(iglob, jglob)) |
218 | < | skipsForAtom[i].push_back(j); |
217 | > | if (excludes->hasPair(iglob, jglob)) |
218 | > | excludesForAtom[i].push_back(j); |
219 | ||
220 | < | if (oneTwo.hasPair(iglob, jglob)) { |
220 | > | if (oneTwo->hasPair(iglob, jglob)) { |
221 | toposForAtom[i].push_back(j); | |
222 | topoDist[i].push_back(1); | |
223 | } else { | |
224 | < | if (oneThree.hasPair(iglob, jglob)) { |
224 | > | if (oneThree->hasPair(iglob, jglob)) { |
225 | toposForAtom[i].push_back(j); | |
226 | topoDist[i].push_back(2); | |
227 | } else { | |
228 | < | if (oneFour.hasPair(iglob, jglob)) { |
228 | > | if (oneFour->hasPair(iglob, jglob)) { |
229 | toposForAtom[i].push_back(j); | |
230 | topoDist[i].push_back(3); | |
231 | } | |
# | Line 175 | Line 234 | namespace OpenMD { | |
234 | } | |
235 | } | |
236 | ||
237 | < | #endif |
238 | < | |
239 | < | groupList_.clear(); |
181 | < | groupList_.resize(nGroups_); |
182 | < | for (int i = 0; i < nGroups_; i++) { |
183 | < | int gid = cgLocalToGlobal[i]; |
184 | < | for (int j = 0; j < nLocal_; j++) { |
185 | < | int aid = AtomLocalToGlobal[j]; |
186 | < | if (globalGroupMembership[aid] == gid) { |
187 | < | groupList_[i].push_back(j); |
188 | < | } |
189 | < | } |
190 | < | } |
191 | < | |
192 | < | skipsForAtom.clear(); |
193 | < | skipsForAtom.resize(nLocal_); |
237 | > | #else |
238 | > | excludesForAtom.clear(); |
239 | > | excludesForAtom.resize(nLocal_); |
240 | toposForAtom.clear(); | |
241 | toposForAtom.resize(nLocal_); | |
242 | topoDist.clear(); | |
# | Line 202 | Line 248 | namespace OpenMD { | |
248 | for (int j = 0; j < nLocal_; j++) { | |
249 | int jglob = AtomLocalToGlobal[j]; | |
250 | ||
251 | < | if (excludes.hasPair(iglob, jglob)) |
252 | < | skipsForAtom[i].push_back(j); |
251 | > | if (excludes->hasPair(iglob, jglob)) |
252 | > | excludesForAtom[i].push_back(j); |
253 | ||
254 | < | if (oneTwo.hasPair(iglob, jglob)) { |
254 | > | if (oneTwo->hasPair(iglob, jglob)) { |
255 | toposForAtom[i].push_back(j); | |
256 | topoDist[i].push_back(1); | |
257 | } else { | |
258 | < | if (oneThree.hasPair(iglob, jglob)) { |
258 | > | if (oneThree->hasPair(iglob, jglob)) { |
259 | toposForAtom[i].push_back(j); | |
260 | topoDist[i].push_back(2); | |
261 | } else { | |
262 | < | if (oneFour.hasPair(iglob, jglob)) { |
262 | > | if (oneFour->hasPair(iglob, jglob)) { |
263 | toposForAtom[i].push_back(j); | |
264 | topoDist[i].push_back(3); | |
265 | } | |
# | Line 221 | Line 267 | namespace OpenMD { | |
267 | } | |
268 | } | |
269 | } | |
270 | < | |
270 | > | #endif |
271 | > | |
272 | > | // allocate memory for the parallel objects |
273 | > | atypesLocal.resize(nLocal_); |
274 | > | |
275 | > | for (int i = 0; i < nLocal_; i++) |
276 | > | atypesLocal[i] = ff_->getAtomType(idents[i]); |
277 | > | |
278 | > | groupList_.clear(); |
279 | > | groupList_.resize(nGroups_); |
280 | > | for (int i = 0; i < nGroups_; i++) { |
281 | > | int gid = cgLocalToGlobal[i]; |
282 | > | for (int j = 0; j < nLocal_; j++) { |
283 | > | int aid = AtomLocalToGlobal[j]; |
284 | > | if (globalGroupMembership[aid] == gid) { |
285 | > | groupList_[i].push_back(j); |
286 | > | } |
287 | > | } |
288 | > | } |
289 | > | |
290 | > | |
291 | createGtypeCutoffMap(); | |
292 | + | |
293 | } | |
294 | ||
295 | void ForceMatrixDecomposition::createGtypeCutoffMap() { | |
296 | ||
297 | RealType tol = 1e-6; | |
298 | + | largestRcut_ = 0.0; |
299 | RealType rc; | |
300 | int atid; | |
301 | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); | |
302 | < | vector<RealType> atypeCutoff; |
303 | < | atypeCutoff.resize( atypes.size() ); |
302 | > | |
303 | > | map<int, RealType> atypeCutoff; |
304 | ||
305 | for (set<AtomType*>::iterator at = atypes.begin(); | |
306 | at != atypes.end(); ++at){ | |
307 | atid = (*at)->getIdent(); | |
308 | < | |
241 | < | if (userChoseCutoff_) |
308 | > | if (userChoseCutoff_) |
309 | atypeCutoff[atid] = userCutoff_; | |
310 | else | |
311 | atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); | |
312 | } | |
313 | < | |
313 | > | |
314 | vector<RealType> gTypeCutoffs; | |
248 | – | |
315 | // first we do a single loop over the cutoff groups to find the | |
316 | // largest cutoff for any atypes present in this group. | |
317 | #ifdef IS_MPI | |
# | Line 303 | Line 369 | namespace OpenMD { | |
369 | ||
370 | vector<RealType> groupCutoff(nGroups_, 0.0); | |
371 | groupToGtype.resize(nGroups_); | |
306 | – | |
372 | for (int cg1 = 0; cg1 < nGroups_; cg1++) { | |
308 | – | |
373 | groupCutoff[cg1] = 0.0; | |
374 | vector<int> atomList = getAtomsInGroupRow(cg1); | |
311 | – | |
375 | for (vector<int>::iterator ia = atomList.begin(); | |
376 | ia != atomList.end(); ++ia) { | |
377 | int atom1 = (*ia); | |
378 | atid = idents[atom1]; | |
379 | < | if (atypeCutoff[atid] > groupCutoff[cg1]) { |
379 | > | if (atypeCutoff[atid] > groupCutoff[cg1]) |
380 | groupCutoff[cg1] = atypeCutoff[atid]; | |
318 | – | } |
381 | } | |
382 | < | |
382 | > | |
383 | bool gTypeFound = false; | |
384 | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { | |
385 | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { | |
# | Line 325 | Line 387 | namespace OpenMD { | |
387 | gTypeFound = true; | |
388 | } | |
389 | } | |
390 | < | if (!gTypeFound) { |
390 | > | if (!gTypeFound) { |
391 | gTypeCutoffs.push_back( groupCutoff[cg1] ); | |
392 | groupToGtype[cg1] = gTypeCutoffs.size() - 1; | |
393 | } | |
# | Line 334 | Line 396 | namespace OpenMD { | |
396 | ||
397 | // Now we find the maximum group cutoff value present in the simulation | |
398 | ||
399 | < | RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); |
399 | > | RealType groupMax = *max_element(gTypeCutoffs.begin(), |
400 | > | gTypeCutoffs.end()); |
401 | ||
402 | #ifdef IS_MPI | |
403 | < | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); |
403 | > | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, |
404 | > | MPI::MAX); |
405 | #endif | |
406 | ||
407 | RealType tradRcut = groupMax; | |
# | Line 367 | Line 431 | namespace OpenMD { | |
431 | ||
432 | pair<int,int> key = make_pair(i,j); | |
433 | gTypeCutoffMap[key].first = thisRcut; | |
370 | – | |
434 | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; | |
372 | – | |
435 | gTypeCutoffMap[key].second = thisRcut*thisRcut; | |
374 | – | |
436 | gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); | |
376 | – | |
437 | // sanity check | |
438 | ||
439 | if (userChoseCutoff_) { | |
# | Line 433 | Line 493 | namespace OpenMD { | |
493 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
494 | ||
495 | if (storageLayout_ & DataStorage::dslParticlePot) { | |
496 | < | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); |
497 | < | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); |
496 | > | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
497 | > | 0.0); |
498 | > | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), |
499 | > | 0.0); |
500 | } | |
501 | ||
502 | if (storageLayout_ & DataStorage::dslDensity) { | |
# | Line 443 | Line 505 | namespace OpenMD { | |
505 | } | |
506 | ||
507 | if (storageLayout_ & DataStorage::dslFunctional) { | |
508 | < | fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); |
509 | < | fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); |
508 | > | fill(atomRowData.functional.begin(), atomRowData.functional.end(), |
509 | > | 0.0); |
510 | > | fill(atomColData.functional.begin(), atomColData.functional.end(), |
511 | > | 0.0); |
512 | } | |
513 | ||
514 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
# | Line 455 | Line 519 | namespace OpenMD { | |
519 | } | |
520 | ||
521 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | |
522 | < | fill(atomRowData.skippedCharge.begin(), atomRowData.skippedCharge.end(), 0.0); |
523 | < | fill(atomColData.skippedCharge.begin(), atomColData.skippedCharge.end(), 0.0); |
522 | > | fill(atomRowData.skippedCharge.begin(), |
523 | > | atomRowData.skippedCharge.end(), 0.0); |
524 | > | fill(atomColData.skippedCharge.begin(), |
525 | > | atomColData.skippedCharge.end(), 0.0); |
526 | } | |
527 | ||
528 | < | #else |
529 | < | |
528 | > | #endif |
529 | > | // even in parallel, we need to zero out the local arrays: |
530 | > | |
531 | if (storageLayout_ & DataStorage::dslParticlePot) { | |
532 | fill(snap_->atomData.particlePot.begin(), | |
533 | snap_->atomData.particlePot.end(), 0.0); | |
# | Line 470 | Line 537 | namespace OpenMD { | |
537 | fill(snap_->atomData.density.begin(), | |
538 | snap_->atomData.density.end(), 0.0); | |
539 | } | |
540 | + | |
541 | if (storageLayout_ & DataStorage::dslFunctional) { | |
542 | fill(snap_->atomData.functional.begin(), | |
543 | snap_->atomData.functional.end(), 0.0); | |
544 | } | |
545 | + | |
546 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
547 | fill(snap_->atomData.functionalDerivative.begin(), | |
548 | snap_->atomData.functionalDerivative.end(), 0.0); | |
549 | } | |
550 | + | |
551 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | |
552 | fill(snap_->atomData.skippedCharge.begin(), | |
553 | snap_->atomData.skippedCharge.end(), 0.0); | |
554 | } | |
485 | – | #endif |
486 | – | |
555 | } | |
556 | ||
557 | ||
# | Line 493 | Line 561 | namespace OpenMD { | |
561 | #ifdef IS_MPI | |
562 | ||
563 | // gather up the atomic positions | |
564 | < | AtomCommVectorRow->gather(snap_->atomData.position, |
564 | > | AtomPlanVectorRow->gather(snap_->atomData.position, |
565 | atomRowData.position); | |
566 | < | AtomCommVectorColumn->gather(snap_->atomData.position, |
566 | > | AtomPlanVectorColumn->gather(snap_->atomData.position, |
567 | atomColData.position); | |
568 | ||
569 | // gather up the cutoff group positions | |
570 | < | cgCommVectorRow->gather(snap_->cgData.position, |
570 | > | |
571 | > | cgPlanVectorRow->gather(snap_->cgData.position, |
572 | cgRowData.position); | |
573 | < | cgCommVectorColumn->gather(snap_->cgData.position, |
573 | > | |
574 | > | cgPlanVectorColumn->gather(snap_->cgData.position, |
575 | cgColData.position); | |
576 | + | |
577 | ||
578 | // if needed, gather the atomic rotation matrices | |
579 | if (storageLayout_ & DataStorage::dslAmat) { | |
580 | < | AtomCommMatrixRow->gather(snap_->atomData.aMat, |
580 | > | AtomPlanMatrixRow->gather(snap_->atomData.aMat, |
581 | atomRowData.aMat); | |
582 | < | AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
582 | > | AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
583 | atomColData.aMat); | |
584 | } | |
585 | ||
586 | // if needed, gather the atomic eletrostatic frames | |
587 | if (storageLayout_ & DataStorage::dslElectroFrame) { | |
588 | < | AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
588 | > | AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
589 | atomRowData.electroFrame); | |
590 | < | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
590 | > | AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
591 | atomColData.electroFrame); | |
592 | } | |
593 | + | |
594 | #endif | |
595 | } | |
596 | ||
# | Line 532 | Line 604 | namespace OpenMD { | |
604 | ||
605 | if (storageLayout_ & DataStorage::dslDensity) { | |
606 | ||
607 | < | AtomCommRealRow->scatter(atomRowData.density, |
607 | > | AtomPlanRealRow->scatter(atomRowData.density, |
608 | snap_->atomData.density); | |
609 | ||
610 | int n = snap_->atomData.density.size(); | |
611 | vector<RealType> rho_tmp(n, 0.0); | |
612 | < | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
612 | > | AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); |
613 | for (int i = 0; i < n; i++) | |
614 | snap_->atomData.density[i] += rho_tmp[i]; | |
615 | } | |
# | Line 553 | Line 625 | namespace OpenMD { | |
625 | storageLayout_ = sman_->getStorageLayout(); | |
626 | #ifdef IS_MPI | |
627 | if (storageLayout_ & DataStorage::dslFunctional) { | |
628 | < | AtomCommRealRow->gather(snap_->atomData.functional, |
628 | > | AtomPlanRealRow->gather(snap_->atomData.functional, |
629 | atomRowData.functional); | |
630 | < | AtomCommRealColumn->gather(snap_->atomData.functional, |
630 | > | AtomPlanRealColumn->gather(snap_->atomData.functional, |
631 | atomColData.functional); | |
632 | } | |
633 | ||
634 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
635 | < | AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
635 | > | AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, |
636 | atomRowData.functionalDerivative); | |
637 | < | AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
637 | > | AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, |
638 | atomColData.functionalDerivative); | |
639 | } | |
640 | #endif | |
# | Line 576 | Line 648 | namespace OpenMD { | |
648 | int n = snap_->atomData.force.size(); | |
649 | vector<Vector3d> frc_tmp(n, V3Zero); | |
650 | ||
651 | < | AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
651 | > | AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); |
652 | for (int i = 0; i < n; i++) { | |
653 | snap_->atomData.force[i] += frc_tmp[i]; | |
654 | frc_tmp[i] = 0.0; | |
655 | } | |
656 | ||
657 | < | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
658 | < | for (int i = 0; i < n; i++) |
657 | > | AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); |
658 | > | for (int i = 0; i < n; i++) { |
659 | snap_->atomData.force[i] += frc_tmp[i]; | |
660 | < | |
661 | < | |
660 | > | } |
661 | > | |
662 | if (storageLayout_ & DataStorage::dslTorque) { | |
663 | ||
664 | < | int nt = snap_->atomData.force.size(); |
664 | > | int nt = snap_->atomData.torque.size(); |
665 | vector<Vector3d> trq_tmp(nt, V3Zero); | |
666 | ||
667 | < | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
668 | < | for (int i = 0; i < n; i++) { |
667 | > | AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); |
668 | > | for (int i = 0; i < nt; i++) { |
669 | snap_->atomData.torque[i] += trq_tmp[i]; | |
670 | trq_tmp[i] = 0.0; | |
671 | } | |
672 | ||
673 | < | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
674 | < | for (int i = 0; i < n; i++) |
673 | > | AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); |
674 | > | for (int i = 0; i < nt; i++) |
675 | snap_->atomData.torque[i] += trq_tmp[i]; | |
676 | } | |
677 | + | |
678 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
679 | + | |
680 | + | int ns = snap_->atomData.skippedCharge.size(); |
681 | + | vector<RealType> skch_tmp(ns, 0.0); |
682 | + | |
683 | + | AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
684 | + | for (int i = 0; i < ns; i++) { |
685 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
686 | + | skch_tmp[i] = 0.0; |
687 | + | } |
688 | + | |
689 | + | AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
690 | + | for (int i = 0; i < ns; i++) |
691 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
692 | + | |
693 | + | } |
694 | ||
695 | nLocal_ = snap_->getNumberOfAtoms(); | |
696 | ||
# | Line 610 | Line 699 | namespace OpenMD { | |
699 | ||
700 | // scatter/gather pot_row into the members of my column | |
701 | ||
702 | < | AtomCommPotRow->scatter(pot_row, pot_temp); |
702 | > | AtomPlanPotRow->scatter(pot_row, pot_temp); |
703 | ||
704 | for (int ii = 0; ii < pot_temp.size(); ii++ ) | |
705 | pairwisePot += pot_temp[ii]; | |
# | Line 618 | Line 707 | namespace OpenMD { | |
707 | fill(pot_temp.begin(), pot_temp.end(), | |
708 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
709 | ||
710 | < | AtomCommPotColumn->scatter(pot_col, pot_temp); |
710 | > | AtomPlanPotColumn->scatter(pot_col, pot_temp); |
711 | ||
712 | for (int ii = 0; ii < pot_temp.size(); ii++ ) | |
713 | pairwisePot += pot_temp[ii]; | |
714 | + | |
715 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
716 | + | RealType ploc1 = pairwisePot[ii]; |
717 | + | RealType ploc2 = 0.0; |
718 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
719 | + | pairwisePot[ii] = ploc2; |
720 | + | } |
721 | + | |
722 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
723 | + | RealType ploc1 = embeddingPot[ii]; |
724 | + | RealType ploc2 = 0.0; |
725 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
726 | + | embeddingPot[ii] = ploc2; |
727 | + | } |
728 | + | |
729 | #endif | |
730 | ||
731 | } | |
# | Line 724 | Line 828 | namespace OpenMD { | |
828 | return d; | |
829 | } | |
830 | ||
831 | < | vector<int> ForceMatrixDecomposition::getSkipsForAtom(int atom1) { |
832 | < | return skipsForAtom[atom1]; |
831 | > | vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
832 | > | return excludesForAtom[atom1]; |
833 | } | |
834 | ||
835 | /** | |
836 | < | * There are a number of reasons to skip a pair or a |
733 | < | * particle. Mostly we do this to exclude atoms who are involved in |
734 | < | * short range interactions (bonds, bends, torsions), but we also |
735 | < | * need to exclude some overcounted interactions that result from |
836 | > | * We need to exclude some overcounted interactions that result from |
837 | * the parallel decomposition. | |
838 | */ | |
839 | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { | |
840 | int unique_id_1, unique_id_2; | |
841 | < | |
841 | > | |
842 | #ifdef IS_MPI | |
843 | // in MPI, we have to look up the unique IDs for each atom | |
844 | unique_id_1 = AtomRowToGlobal[atom1]; | |
845 | unique_id_2 = AtomColToGlobal[atom2]; | |
846 | + | #else |
847 | + | unique_id_1 = AtomLocalToGlobal[atom1]; |
848 | + | unique_id_2 = AtomLocalToGlobal[atom2]; |
849 | + | #endif |
850 | ||
746 | – | // this situation should only arise in MPI simulations |
851 | if (unique_id_1 == unique_id_2) return true; | |
852 | < | |
852 | > | |
853 | > | #ifdef IS_MPI |
854 | // this prevents us from doing the pair on multiple processors | |
855 | if (unique_id_1 < unique_id_2) { | |
856 | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; | |
857 | } else { | |
858 | < | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
858 | > | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
859 | } | |
755 | – | #else |
756 | – | // in the normal loop, the atom numbers are unique |
757 | – | unique_id_1 = atom1; |
758 | – | unique_id_2 = atom2; |
860 | #endif | |
861 | ||
862 | < | for (vector<int>::iterator i = skipsForAtom[atom1].begin(); |
863 | < | i != skipsForAtom[atom1].end(); ++i) { |
864 | < | if ( (*i) == unique_id_2 ) return true; |
862 | > | return false; |
863 | > | } |
864 | > | |
865 | > | /** |
866 | > | * We need to handle the interactions for atoms who are involved in |
867 | > | * the same rigid body as well as some short range interactions |
868 | > | * (bonds, bends, torsions) differently from other interactions. |
869 | > | * We'll still visit the pairwise routines, but with a flag that |
870 | > | * tells those routines to exclude the pair from direct long range |
871 | > | * interactions. Some indirect interactions (notably reaction |
872 | > | * field) must still be handled for these pairs. |
873 | > | */ |
874 | > | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
875 | > | |
876 | > | // excludesForAtom was constructed to use row/column indices in the MPI |
877 | > | // version, and to use local IDs in the non-MPI version: |
878 | > | |
879 | > | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
880 | > | i != excludesForAtom[atom1].end(); ++i) { |
881 | > | if ( (*i) == atom2 ) return true; |
882 | } | |
883 | ||
884 | return false; | |
# | Line 785 | Line 903 | namespace OpenMD { | |
903 | ||
904 | // filling interaction blocks with pointers | |
905 | void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, | |
906 | < | int atom1, int atom2) { |
906 | > | int atom1, int atom2) { |
907 | > | |
908 | > | idat.excluded = excludeAtomPair(atom1, atom2); |
909 | > | |
910 | #ifdef IS_MPI | |
911 | + | idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
912 | + | //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
913 | + | // ff_->getAtomType(identsCol[atom2]) ); |
914 | ||
791 | – | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
792 | – | ff_->getAtomType(identsCol[atom2]) ); |
793 | – | |
915 | if (storageLayout_ & DataStorage::dslAmat) { | |
916 | idat.A1 = &(atomRowData.aMat[atom1]); | |
917 | idat.A2 = &(atomColData.aMat[atom2]); | |
# | Line 826 | Line 947 | namespace OpenMD { | |
947 | idat.particlePot2 = &(atomColData.particlePot[atom2]); | |
948 | } | |
949 | ||
950 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
951 | + | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
952 | + | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
953 | + | } |
954 | + | |
955 | #else | |
956 | + | |
957 | ||
958 | < | idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
959 | < | ff_->getAtomType(idents[atom2]) ); |
958 | > | // cerr << "atoms = " << atom1 << " " << atom2 << "\n"; |
959 | > | // cerr << "pos1 = " << snap_->atomData.position[atom1] << "\n"; |
960 | > | // cerr << "pos2 = " << snap_->atomData.position[atom2] << "\n"; |
961 | ||
962 | + | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
963 | + | //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
964 | + | // ff_->getAtomType(idents[atom2]) ); |
965 | + | |
966 | if (storageLayout_ & DataStorage::dslAmat) { | |
967 | idat.A1 = &(snap_->atomData.aMat[atom1]); | |
968 | idat.A2 = &(snap_->atomData.aMat[atom2]); | |
# | Line 866 | Line 998 | namespace OpenMD { | |
998 | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); | |
999 | } | |
1000 | ||
1001 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
1002 | + | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
1003 | + | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
1004 | + | } |
1005 | #endif | |
1006 | } | |
1007 | ||
1008 | ||
1009 | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { | |
1010 | #ifdef IS_MPI | |
1011 | < | pot_row[atom1] += 0.5 * *(idat.pot); |
1012 | < | pot_col[atom2] += 0.5 * *(idat.pot); |
1011 | > | pot_row[atom1] += RealType(0.5) * *(idat.pot); |
1012 | > | pot_col[atom2] += RealType(0.5) * *(idat.pot); |
1013 | ||
1014 | atomRowData.force[atom1] += *(idat.f1); | |
1015 | atomColData.force[atom2] -= *(idat.f1); | |
# | Line 886 | Line 1022 | namespace OpenMD { | |
1022 | ||
1023 | } | |
1024 | ||
889 | – | |
890 | – | void ForceMatrixDecomposition::fillSkipData(InteractionData &idat, |
891 | – | int atom1, int atom2) { |
892 | – | #ifdef IS_MPI |
893 | – | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
894 | – | ff_->getAtomType(identsCol[atom2]) ); |
895 | – | |
896 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { |
897 | – | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
898 | – | idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
899 | – | } |
900 | – | |
901 | – | if (storageLayout_ & DataStorage::dslTorque) { |
902 | – | idat.t1 = &(atomRowData.torque[atom1]); |
903 | – | idat.t2 = &(atomColData.torque[atom2]); |
904 | – | } |
905 | – | |
906 | – | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
907 | – | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
908 | – | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
909 | – | } |
910 | – | #else |
911 | – | idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
912 | – | ff_->getAtomType(idents[atom2]) ); |
913 | – | |
914 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { |
915 | – | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
916 | – | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
917 | – | } |
918 | – | |
919 | – | if (storageLayout_ & DataStorage::dslTorque) { |
920 | – | idat.t1 = &(snap_->atomData.torque[atom1]); |
921 | – | idat.t2 = &(snap_->atomData.torque[atom2]); |
922 | – | } |
923 | – | |
924 | – | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
925 | – | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
926 | – | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
927 | – | } |
928 | – | #endif |
929 | – | } |
930 | – | |
931 | – | |
932 | – | void ForceMatrixDecomposition::unpackSkipData(InteractionData &idat, int atom1, int atom2) { |
933 | – | #ifdef IS_MPI |
934 | – | pot_row[atom1] += 0.5 * *(idat.pot); |
935 | – | pot_col[atom2] += 0.5 * *(idat.pot); |
936 | – | #else |
937 | – | pairwisePot += *(idat.pot); |
938 | – | #endif |
939 | – | |
940 | – | } |
941 | – | |
942 | – | |
1025 | /* | |
1026 | * buildNeighborList | |
1027 | * | |
# | Line 950 | Line 1032 | namespace OpenMD { | |
1032 | ||
1033 | vector<pair<int, int> > neighborList; | |
1034 | groupCutoffs cuts; | |
1035 | + | bool doAllPairs = false; |
1036 | + | |
1037 | #ifdef IS_MPI | |
1038 | cellListRow_.clear(); | |
1039 | cellListCol_.clear(); | |
# | Line 969 | Line 1053 | namespace OpenMD { | |
1053 | nCells_.y() = (int) ( Hy.length() )/ rList_; | |
1054 | nCells_.z() = (int) ( Hz.length() )/ rList_; | |
1055 | ||
1056 | + | // handle small boxes where the cell offsets can end up repeating cells |
1057 | + | |
1058 | + | if (nCells_.x() < 3) doAllPairs = true; |
1059 | + | if (nCells_.y() < 3) doAllPairs = true; |
1060 | + | if (nCells_.z() < 3) doAllPairs = true; |
1061 | + | |
1062 | Mat3x3d invHmat = snap_->getInvHmat(); | |
1063 | Vector3d rs, scaled, dr; | |
1064 | Vector3i whichCell; | |
# | Line 982 | Line 1072 | namespace OpenMD { | |
1072 | cellList_.resize(nCtot); | |
1073 | #endif | |
1074 | ||
1075 | + | if (!doAllPairs) { |
1076 | #ifdef IS_MPI | |
986 | – | for (int i = 0; i < nGroupsInRow_; i++) { |
987 | – | rs = cgRowData.position[i]; |
1077 | ||
1078 | < | // scaled positions relative to the box vectors |
1079 | < | scaled = invHmat * rs; |
1080 | < | |
1081 | < | // wrap the vector back into the unit box by subtracting integer box |
1082 | < | // numbers |
1083 | < | for (int j = 0; j < 3; j++) { |
1084 | < | scaled[j] -= roundMe(scaled[j]); |
1085 | < | scaled[j] += 0.5; |
1078 | > | for (int i = 0; i < nGroupsInRow_; i++) { |
1079 | > | rs = cgRowData.position[i]; |
1080 | > | |
1081 | > | // scaled positions relative to the box vectors |
1082 | > | scaled = invHmat * rs; |
1083 | > | |
1084 | > | // wrap the vector back into the unit box by subtracting integer box |
1085 | > | // numbers |
1086 | > | for (int j = 0; j < 3; j++) { |
1087 | > | scaled[j] -= roundMe(scaled[j]); |
1088 | > | scaled[j] += 0.5; |
1089 | > | } |
1090 | > | |
1091 | > | // find xyz-indices of cell that cutoffGroup is in. |
1092 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1093 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1094 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1095 | > | |
1096 | > | // find single index of this cell: |
1097 | > | cellIndex = Vlinear(whichCell, nCells_); |
1098 | > | |
1099 | > | // add this cutoff group to the list of groups in this cell; |
1100 | > | cellListRow_[cellIndex].push_back(i); |
1101 | } | |
1102 | < | |
1103 | < | // find xyz-indices of cell that cutoffGroup is in. |
1104 | < | whichCell.x() = nCells_.x() * scaled.x(); |
1105 | < | whichCell.y() = nCells_.y() * scaled.y(); |
1106 | < | whichCell.z() = nCells_.z() * scaled.z(); |
1107 | < | |
1108 | < | // find single index of this cell: |
1109 | < | cellIndex = Vlinear(whichCell, nCells_); |
1110 | < | |
1111 | < | // add this cutoff group to the list of groups in this cell; |
1112 | < | cellListRow_[cellIndex].push_back(i); |
1113 | < | } |
1114 | < | |
1115 | < | for (int i = 0; i < nGroupsInCol_; i++) { |
1116 | < | rs = cgColData.position[i]; |
1117 | < | |
1118 | < | // scaled positions relative to the box vectors |
1119 | < | scaled = invHmat * rs; |
1120 | < | |
1121 | < | // wrap the vector back into the unit box by subtracting integer box |
1122 | < | // numbers |
1123 | < | for (int j = 0; j < 3; j++) { |
1124 | < | scaled[j] -= roundMe(scaled[j]); |
1021 | < | scaled[j] += 0.5; |
1102 | > | for (int i = 0; i < nGroupsInCol_; i++) { |
1103 | > | rs = cgColData.position[i]; |
1104 | > | |
1105 | > | // scaled positions relative to the box vectors |
1106 | > | scaled = invHmat * rs; |
1107 | > | |
1108 | > | // wrap the vector back into the unit box by subtracting integer box |
1109 | > | // numbers |
1110 | > | for (int j = 0; j < 3; j++) { |
1111 | > | scaled[j] -= roundMe(scaled[j]); |
1112 | > | scaled[j] += 0.5; |
1113 | > | } |
1114 | > | |
1115 | > | // find xyz-indices of cell that cutoffGroup is in. |
1116 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1117 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1118 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1119 | > | |
1120 | > | // find single index of this cell: |
1121 | > | cellIndex = Vlinear(whichCell, nCells_); |
1122 | > | |
1123 | > | // add this cutoff group to the list of groups in this cell; |
1124 | > | cellListCol_[cellIndex].push_back(i); |
1125 | } | |
1126 | < | |
1024 | < | // find xyz-indices of cell that cutoffGroup is in. |
1025 | < | whichCell.x() = nCells_.x() * scaled.x(); |
1026 | < | whichCell.y() = nCells_.y() * scaled.y(); |
1027 | < | whichCell.z() = nCells_.z() * scaled.z(); |
1028 | < | |
1029 | < | // find single index of this cell: |
1030 | < | cellIndex = Vlinear(whichCell, nCells_); |
1031 | < | |
1032 | < | // add this cutoff group to the list of groups in this cell; |
1033 | < | cellListCol_[cellIndex].push_back(i); |
1034 | < | } |
1126 | > | |
1127 | #else | |
1128 | < | for (int i = 0; i < nGroups_; i++) { |
1129 | < | rs = snap_->cgData.position[i]; |
1130 | < | |
1131 | < | // scaled positions relative to the box vectors |
1132 | < | scaled = invHmat * rs; |
1133 | < | |
1134 | < | // wrap the vector back into the unit box by subtracting integer box |
1135 | < | // numbers |
1136 | < | for (int j = 0; j < 3; j++) { |
1137 | < | scaled[j] -= roundMe(scaled[j]); |
1138 | < | scaled[j] += 0.5; |
1128 | > | for (int i = 0; i < nGroups_; i++) { |
1129 | > | rs = snap_->cgData.position[i]; |
1130 | > | |
1131 | > | // scaled positions relative to the box vectors |
1132 | > | scaled = invHmat * rs; |
1133 | > | |
1134 | > | // wrap the vector back into the unit box by subtracting integer box |
1135 | > | // numbers |
1136 | > | for (int j = 0; j < 3; j++) { |
1137 | > | scaled[j] -= roundMe(scaled[j]); |
1138 | > | scaled[j] += 0.5; |
1139 | > | } |
1140 | > | |
1141 | > | // find xyz-indices of cell that cutoffGroup is in. |
1142 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1143 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1144 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1145 | > | |
1146 | > | // find single index of this cell: |
1147 | > | cellIndex = Vlinear(whichCell, nCells_); |
1148 | > | |
1149 | > | // add this cutoff group to the list of groups in this cell; |
1150 | > | cellList_[cellIndex].push_back(i); |
1151 | } | |
1152 | ||
1049 | – | // find xyz-indices of cell that cutoffGroup is in. |
1050 | – | whichCell.x() = nCells_.x() * scaled.x(); |
1051 | – | whichCell.y() = nCells_.y() * scaled.y(); |
1052 | – | whichCell.z() = nCells_.z() * scaled.z(); |
1053 | – | |
1054 | – | // find single index of this cell: |
1055 | – | cellIndex = Vlinear(whichCell, nCells_); |
1056 | – | |
1057 | – | // add this cutoff group to the list of groups in this cell; |
1058 | – | cellList_[cellIndex].push_back(i); |
1059 | – | } |
1153 | #endif | |
1154 | ||
1155 | < | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1156 | < | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1157 | < | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1158 | < | Vector3i m1v(m1x, m1y, m1z); |
1159 | < | int m1 = Vlinear(m1v, nCells_); |
1067 | < | |
1068 | < | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1069 | < | os != cellOffsets_.end(); ++os) { |
1155 | > | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1156 | > | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1157 | > | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1158 | > | Vector3i m1v(m1x, m1y, m1z); |
1159 | > | int m1 = Vlinear(m1v, nCells_); |
1160 | ||
1161 | < | Vector3i m2v = m1v + (*os); |
1162 | < | |
1163 | < | if (m2v.x() >= nCells_.x()) { |
1164 | < | m2v.x() = 0; |
1165 | < | } else if (m2v.x() < 0) { |
1076 | < | m2v.x() = nCells_.x() - 1; |
1077 | < | } |
1078 | < | |
1079 | < | if (m2v.y() >= nCells_.y()) { |
1080 | < | m2v.y() = 0; |
1081 | < | } else if (m2v.y() < 0) { |
1082 | < | m2v.y() = nCells_.y() - 1; |
1083 | < | } |
1084 | < | |
1085 | < | if (m2v.z() >= nCells_.z()) { |
1086 | < | m2v.z() = 0; |
1087 | < | } else if (m2v.z() < 0) { |
1088 | < | m2v.z() = nCells_.z() - 1; |
1089 | < | } |
1090 | < | |
1091 | < | int m2 = Vlinear (m2v, nCells_); |
1161 | > | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1162 | > | os != cellOffsets_.end(); ++os) { |
1163 | > | |
1164 | > | Vector3i m2v = m1v + (*os); |
1165 | > | |
1166 | ||
1167 | < | #ifdef IS_MPI |
1168 | < | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1169 | < | j1 != cellListRow_[m1].end(); ++j1) { |
1170 | < | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1171 | < | j2 != cellListCol_[m2].end(); ++j2) { |
1172 | < | |
1173 | < | // Always do this if we're in different cells or if |
1174 | < | // we're in the same cell and the global index of the |
1175 | < | // j2 cutoff group is less than the j1 cutoff group |
1167 | > | if (m2v.x() >= nCells_.x()) { |
1168 | > | m2v.x() = 0; |
1169 | > | } else if (m2v.x() < 0) { |
1170 | > | m2v.x() = nCells_.x() - 1; |
1171 | > | } |
1172 | > | |
1173 | > | if (m2v.y() >= nCells_.y()) { |
1174 | > | m2v.y() = 0; |
1175 | > | } else if (m2v.y() < 0) { |
1176 | > | m2v.y() = nCells_.y() - 1; |
1177 | > | } |
1178 | > | |
1179 | > | if (m2v.z() >= nCells_.z()) { |
1180 | > | m2v.z() = 0; |
1181 | > | } else if (m2v.z() < 0) { |
1182 | > | m2v.z() = nCells_.z() - 1; |
1183 | > | } |
1184 | ||
1185 | < | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1185 | > | int m2 = Vlinear (m2v, nCells_); |
1186 | > | |
1187 | > | #ifdef IS_MPI |
1188 | > | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1189 | > | j1 != cellListRow_[m1].end(); ++j1) { |
1190 | > | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1191 | > | j2 != cellListCol_[m2].end(); ++j2) { |
1192 | > | |
1193 | > | // In parallel, we need to visit *all* pairs of row |
1194 | > | // & column indicies and will divide labor in the |
1195 | > | // force evaluation later. |
1196 | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | |
1197 | snap_->wrapVector(dr); | |
1198 | cuts = getGroupCutoffs( (*j1), (*j2) ); | |
1199 | if (dr.lengthSquare() < cuts.third) { | |
1200 | neighborList.push_back(make_pair((*j1), (*j2))); | |
1201 | < | } |
1201 | > | } |
1202 | } | |
1203 | } | |
1112 | – | } |
1204 | #else | |
1205 | + | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1206 | + | j1 != cellList_[m1].end(); ++j1) { |
1207 | + | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1208 | + | j2 != cellList_[m2].end(); ++j2) { |
1209 | + | |
1210 | + | // Always do this if we're in different cells or if |
1211 | + | // we're in the same cell and the global index of |
1212 | + | // the j2 cutoff group is greater than or equal to |
1213 | + | // the j1 cutoff group. Note that Rappaport's code |
1214 | + | // has a "less than" conditional here, but that |
1215 | + | // deals with atom-by-atom computation. OpenMD |
1216 | + | // allows atoms within a single cutoff group to |
1217 | + | // interact with each other. |
1218 | ||
1115 | – | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1116 | – | j1 != cellList_[m1].end(); ++j1) { |
1117 | – | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1118 | – | j2 != cellList_[m2].end(); ++j2) { |
1219 | ||
1120 | – | // Always do this if we're in different cells or if |
1121 | – | // we're in the same cell and the global index of the |
1122 | – | // j2 cutoff group is less than the j1 cutoff group |
1220 | ||
1221 | < | if (m2 != m1 || (*j2) < (*j1)) { |
1222 | < | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1223 | < | snap_->wrapVector(dr); |
1224 | < | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1225 | < | if (dr.lengthSquare() < cuts.third) { |
1226 | < | neighborList.push_back(make_pair((*j1), (*j2))); |
1221 | > | if (m2 != m1 || (*j2) >= (*j1) ) { |
1222 | > | |
1223 | > | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1224 | > | snap_->wrapVector(dr); |
1225 | > | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1226 | > | if (dr.lengthSquare() < cuts.third) { |
1227 | > | neighborList.push_back(make_pair((*j1), (*j2))); |
1228 | > | } |
1229 | } | |
1230 | } | |
1231 | } | |
1133 | – | } |
1232 | #endif | |
1233 | + | } |
1234 | } | |
1235 | } | |
1236 | } | |
1237 | + | } else { |
1238 | + | // branch to do all cutoff group pairs |
1239 | + | #ifdef IS_MPI |
1240 | + | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1241 | + | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1242 | + | dr = cgColData.position[j2] - cgRowData.position[j1]; |
1243 | + | snap_->wrapVector(dr); |
1244 | + | cuts = getGroupCutoffs( j1, j2 ); |
1245 | + | if (dr.lengthSquare() < cuts.third) { |
1246 | + | neighborList.push_back(make_pair(j1, j2)); |
1247 | + | } |
1248 | + | } |
1249 | + | } |
1250 | + | #else |
1251 | + | // include all groups here. |
1252 | + | for (int j1 = 0; j1 < nGroups_; j1++) { |
1253 | + | // include self group interactions j2 == j1 |
1254 | + | for (int j2 = j1; j2 < nGroups_; j2++) { |
1255 | + | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1256 | + | snap_->wrapVector(dr); |
1257 | + | cuts = getGroupCutoffs( j1, j2 ); |
1258 | + | if (dr.lengthSquare() < cuts.third) { |
1259 | + | neighborList.push_back(make_pair(j1, j2)); |
1260 | + | } |
1261 | + | } |
1262 | + | } |
1263 | + | #endif |
1264 | } | |
1265 | < | |
1265 | > | |
1266 | // save the local cutoff group positions for the check that is | |
1267 | // done on each loop: | |
1268 | saved_CG_positions_.clear(); | |
1269 | for (int i = 0; i < nGroups_; i++) | |
1270 | saved_CG_positions_.push_back(snap_->cgData.position[i]); | |
1271 | < | |
1271 | > | |
1272 | return neighborList; | |
1273 | } | |
1274 | } //end namespace OpenMD |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |