# | Line 57 | Line 57 | namespace OpenMD { | |
---|---|---|
57 | storageLayout_ = sman_->getStorageLayout(); | |
58 | ff_ = info_->getForceField(); | |
59 | nLocal_ = snap_->getNumberOfAtoms(); | |
60 | < | |
60 | > | |
61 | nGroups_ = info_->getNLocalCutoffGroups(); | |
62 | – | cerr << "in dId, nGroups = " << nGroups_ << "\n"; |
62 | // gather the information for atomtype IDs (atids): | |
63 | idents = info_->getIdentArray(); | |
64 | AtomLocalToGlobal = info_->getGlobalAtomIndices(); | |
65 | cgLocalToGlobal = info_->getGlobalGroupIndices(); | |
66 | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); | |
67 | + | |
68 | massFactors = info_->getMassFactors(); | |
69 | – | PairList excludes = info_->getExcludedInteractions(); |
70 | – | PairList oneTwo = info_->getOneTwoInteractions(); |
71 | – | PairList oneThree = info_->getOneThreeInteractions(); |
72 | – | PairList oneFour = info_->getOneFourInteractions(); |
69 | ||
70 | + | PairList* excludes = info_->getExcludedInteractions(); |
71 | + | PairList* oneTwo = info_->getOneTwoInteractions(); |
72 | + | PairList* oneThree = info_->getOneThreeInteractions(); |
73 | + | PairList* oneFour = info_->getOneFourInteractions(); |
74 | + | |
75 | #ifdef IS_MPI | |
76 | ||
77 | AtomCommIntRow = new Communicator<Row,int>(nLocal_); | |
# | Line 111 | Line 112 | namespace OpenMD { | |
112 | AtomCommIntRow->gather(idents, identsRow); | |
113 | AtomCommIntColumn->gather(idents, identsCol); | |
114 | ||
115 | + | // allocate memory for the parallel objects |
116 | + | atypesRow.resize(nAtomsInRow_); |
117 | + | atypesCol.resize(nAtomsInCol_); |
118 | + | |
119 | + | for (int i = 0; i < nAtomsInRow_; i++) |
120 | + | atypesRow[i] = ff_->getAtomType(identsRow[i]); |
121 | + | for (int i = 0; i < nAtomsInCol_; i++) |
122 | + | atypesCol[i] = ff_->getAtomType(identsCol[i]); |
123 | + | |
124 | + | pot_row.resize(nAtomsInRow_); |
125 | + | pot_col.resize(nAtomsInCol_); |
126 | + | |
127 | + | AtomRowToGlobal.resize(nAtomsInRow_); |
128 | + | AtomColToGlobal.resize(nAtomsInCol_); |
129 | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | |
130 | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); | |
131 | ||
132 | + | cgRowToGlobal.resize(nGroupsInRow_); |
133 | + | cgColToGlobal.resize(nGroupsInCol_); |
134 | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); | |
135 | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); | |
136 | ||
137 | + | massFactorsRow.resize(nAtomsInRow_); |
138 | + | massFactorsCol.resize(nAtomsInCol_); |
139 | AtomCommRealRow->gather(massFactors, massFactorsRow); | |
140 | AtomCommRealColumn->gather(massFactors, massFactorsCol); | |
141 | ||
# | Line 142 | Line 161 | namespace OpenMD { | |
161 | } | |
162 | } | |
163 | ||
164 | < | skipsForAtom.clear(); |
165 | < | skipsForAtom.resize(nAtomsInRow_); |
164 | > | excludesForAtom.clear(); |
165 | > | excludesForAtom.resize(nAtomsInRow_); |
166 | toposForAtom.clear(); | |
167 | toposForAtom.resize(nAtomsInRow_); | |
168 | topoDist.clear(); | |
# | Line 154 | Line 173 | namespace OpenMD { | |
173 | for (int j = 0; j < nAtomsInCol_; j++) { | |
174 | int jglob = AtomColToGlobal[j]; | |
175 | ||
176 | < | if (excludes.hasPair(iglob, jglob)) |
177 | < | skipsForAtom[i].push_back(j); |
176 | > | if (excludes->hasPair(iglob, jglob)) |
177 | > | excludesForAtom[i].push_back(j); |
178 | ||
179 | < | if (oneTwo.hasPair(iglob, jglob)) { |
179 | > | if (oneTwo->hasPair(iglob, jglob)) { |
180 | toposForAtom[i].push_back(j); | |
181 | topoDist[i].push_back(1); | |
182 | } else { | |
183 | < | if (oneThree.hasPair(iglob, jglob)) { |
183 | > | if (oneThree->hasPair(iglob, jglob)) { |
184 | toposForAtom[i].push_back(j); | |
185 | topoDist[i].push_back(2); | |
186 | } else { | |
187 | < | if (oneFour.hasPair(iglob, jglob)) { |
187 | > | if (oneFour->hasPair(iglob, jglob)) { |
188 | toposForAtom[i].push_back(j); | |
189 | topoDist[i].push_back(3); | |
190 | } | |
# | Line 176 | Line 195 | namespace OpenMD { | |
195 | ||
196 | #endif | |
197 | ||
198 | + | // allocate memory for the parallel objects |
199 | + | atypesLocal.resize(nLocal_); |
200 | + | |
201 | + | for (int i = 0; i < nLocal_; i++) |
202 | + | atypesLocal[i] = ff_->getAtomType(idents[i]); |
203 | + | |
204 | groupList_.clear(); | |
205 | groupList_.resize(nGroups_); | |
206 | for (int i = 0; i < nGroups_; i++) { | |
# | Line 188 | Line 213 | namespace OpenMD { | |
213 | } | |
214 | } | |
215 | ||
216 | < | skipsForAtom.clear(); |
217 | < | skipsForAtom.resize(nLocal_); |
216 | > | excludesForAtom.clear(); |
217 | > | excludesForAtom.resize(nLocal_); |
218 | toposForAtom.clear(); | |
219 | toposForAtom.resize(nLocal_); | |
220 | topoDist.clear(); | |
# | Line 201 | Line 226 | namespace OpenMD { | |
226 | for (int j = 0; j < nLocal_; j++) { | |
227 | int jglob = AtomLocalToGlobal[j]; | |
228 | ||
229 | < | if (excludes.hasPair(iglob, jglob)) |
230 | < | skipsForAtom[i].push_back(j); |
229 | > | if (excludes->hasPair(iglob, jglob)) |
230 | > | excludesForAtom[i].push_back(j); |
231 | ||
232 | < | if (oneTwo.hasPair(iglob, jglob)) { |
232 | > | if (oneTwo->hasPair(iglob, jglob)) { |
233 | toposForAtom[i].push_back(j); | |
234 | topoDist[i].push_back(1); | |
235 | } else { | |
236 | < | if (oneThree.hasPair(iglob, jglob)) { |
236 | > | if (oneThree->hasPair(iglob, jglob)) { |
237 | toposForAtom[i].push_back(j); | |
238 | topoDist[i].push_back(2); | |
239 | } else { | |
240 | < | if (oneFour.hasPair(iglob, jglob)) { |
240 | > | if (oneFour->hasPair(iglob, jglob)) { |
241 | toposForAtom[i].push_back(j); | |
242 | topoDist[i].push_back(3); | |
243 | } | |
# | Line 222 | Line 247 | namespace OpenMD { | |
247 | } | |
248 | ||
249 | createGtypeCutoffMap(); | |
250 | + | |
251 | } | |
252 | ||
253 | void ForceMatrixDecomposition::createGtypeCutoffMap() { | |
254 | < | |
254 | > | |
255 | RealType tol = 1e-6; | |
256 | + | largestRcut_ = 0.0; |
257 | RealType rc; | |
258 | int atid; | |
259 | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); | |
260 | < | vector<RealType> atypeCutoff; |
261 | < | atypeCutoff.resize( atypes.size() ); |
260 | > | |
261 | > | map<int, RealType> atypeCutoff; |
262 | ||
263 | for (set<AtomType*>::iterator at = atypes.begin(); | |
264 | at != atypes.end(); ++at){ | |
265 | atid = (*at)->getIdent(); | |
266 | < | |
240 | < | if (userChoseCutoff_) |
266 | > | if (userChoseCutoff_) |
267 | atypeCutoff[atid] = userCutoff_; | |
268 | else | |
269 | atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); | |
270 | } | |
271 | < | |
271 | > | |
272 | vector<RealType> gTypeCutoffs; | |
247 | – | |
273 | // first we do a single loop over the cutoff groups to find the | |
274 | // largest cutoff for any atypes present in this group. | |
275 | #ifdef IS_MPI | |
# | Line 302 | Line 327 | namespace OpenMD { | |
327 | ||
328 | vector<RealType> groupCutoff(nGroups_, 0.0); | |
329 | groupToGtype.resize(nGroups_); | |
305 | – | |
306 | – | cerr << "nGroups = " << nGroups_ << "\n"; |
330 | for (int cg1 = 0; cg1 < nGroups_; cg1++) { | |
308 | – | |
331 | groupCutoff[cg1] = 0.0; | |
332 | vector<int> atomList = getAtomsInGroupRow(cg1); | |
311 | – | |
333 | for (vector<int>::iterator ia = atomList.begin(); | |
334 | ia != atomList.end(); ++ia) { | |
335 | int atom1 = (*ia); | |
336 | atid = idents[atom1]; | |
337 | < | if (atypeCutoff[atid] > groupCutoff[cg1]) { |
337 | > | if (atypeCutoff[atid] > groupCutoff[cg1]) |
338 | groupCutoff[cg1] = atypeCutoff[atid]; | |
318 | – | } |
339 | } | |
340 | < | |
340 | > | |
341 | bool gTypeFound = false; | |
342 | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { | |
343 | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { | |
# | Line 325 | Line 345 | namespace OpenMD { | |
345 | gTypeFound = true; | |
346 | } | |
347 | } | |
348 | < | if (!gTypeFound) { |
348 | > | if (!gTypeFound) { |
349 | gTypeCutoffs.push_back( groupCutoff[cg1] ); | |
350 | groupToGtype[cg1] = gTypeCutoffs.size() - 1; | |
351 | } | |
352 | } | |
353 | #endif | |
354 | ||
335 | – | cerr << "gTypeCutoffs.size() = " << gTypeCutoffs.size() << "\n"; |
355 | // Now we find the maximum group cutoff value present in the simulation | |
356 | ||
357 | < | RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); |
357 | > | RealType groupMax = *max_element(gTypeCutoffs.begin(), |
358 | > | gTypeCutoffs.end()); |
359 | ||
360 | #ifdef IS_MPI | |
361 | < | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); |
361 | > | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, |
362 | > | MPI::MAX); |
363 | #endif | |
364 | ||
365 | RealType tradRcut = groupMax; | |
# | Line 368 | Line 389 | namespace OpenMD { | |
389 | ||
390 | pair<int,int> key = make_pair(i,j); | |
391 | gTypeCutoffMap[key].first = thisRcut; | |
371 | – | |
392 | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; | |
373 | – | |
393 | gTypeCutoffMap[key].second = thisRcut*thisRcut; | |
375 | – | |
394 | gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); | |
377 | – | |
395 | // sanity check | |
396 | ||
397 | if (userChoseCutoff_) { | |
# | Line 434 | Line 451 | namespace OpenMD { | |
451 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
452 | ||
453 | if (storageLayout_ & DataStorage::dslParticlePot) { | |
454 | < | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); |
455 | < | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); |
454 | > | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
455 | > | 0.0); |
456 | > | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), |
457 | > | 0.0); |
458 | } | |
459 | ||
460 | if (storageLayout_ & DataStorage::dslDensity) { | |
# | Line 444 | Line 463 | namespace OpenMD { | |
463 | } | |
464 | ||
465 | if (storageLayout_ & DataStorage::dslFunctional) { | |
466 | < | fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); |
467 | < | fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); |
466 | > | fill(atomRowData.functional.begin(), atomRowData.functional.end(), |
467 | > | 0.0); |
468 | > | fill(atomColData.functional.begin(), atomColData.functional.end(), |
469 | > | 0.0); |
470 | } | |
471 | ||
472 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
# | Line 455 | Line 476 | namespace OpenMD { | |
476 | atomColData.functionalDerivative.end(), 0.0); | |
477 | } | |
478 | ||
479 | < | #else |
480 | < | |
479 | > | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
480 | > | fill(atomRowData.skippedCharge.begin(), |
481 | > | atomRowData.skippedCharge.end(), 0.0); |
482 | > | fill(atomColData.skippedCharge.begin(), |
483 | > | atomColData.skippedCharge.end(), 0.0); |
484 | > | } |
485 | > | |
486 | > | #endif |
487 | > | // even in parallel, we need to zero out the local arrays: |
488 | > | |
489 | if (storageLayout_ & DataStorage::dslParticlePot) { | |
490 | fill(snap_->atomData.particlePot.begin(), | |
491 | snap_->atomData.particlePot.end(), 0.0); | |
# | Line 474 | Line 503 | namespace OpenMD { | |
503 | fill(snap_->atomData.functionalDerivative.begin(), | |
504 | snap_->atomData.functionalDerivative.end(), 0.0); | |
505 | } | |
506 | < | #endif |
506 | > | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
507 | > | fill(snap_->atomData.skippedCharge.begin(), |
508 | > | snap_->atomData.skippedCharge.end(), 0.0); |
509 | > | } |
510 | ||
511 | } | |
512 | ||
# | Line 511 | Line 543 | namespace OpenMD { | |
543 | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, | |
544 | atomColData.electroFrame); | |
545 | } | |
546 | + | |
547 | #endif | |
548 | } | |
549 | ||
# | Line 577 | Line 610 | namespace OpenMD { | |
610 | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); | |
611 | for (int i = 0; i < n; i++) | |
612 | snap_->atomData.force[i] += frc_tmp[i]; | |
613 | < | |
581 | < | |
613 | > | |
614 | if (storageLayout_ & DataStorage::dslTorque) { | |
615 | ||
616 | < | int nt = snap_->atomData.force.size(); |
616 | > | int nt = snap_->atomData.torque.size(); |
617 | vector<Vector3d> trq_tmp(nt, V3Zero); | |
618 | ||
619 | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); | |
620 | < | for (int i = 0; i < n; i++) { |
620 | > | for (int i = 0; i < nt; i++) { |
621 | snap_->atomData.torque[i] += trq_tmp[i]; | |
622 | trq_tmp[i] = 0.0; | |
623 | } | |
624 | ||
625 | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); | |
626 | < | for (int i = 0; i < n; i++) |
626 | > | for (int i = 0; i < nt; i++) |
627 | snap_->atomData.torque[i] += trq_tmp[i]; | |
628 | + | } |
629 | + | |
630 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
631 | + | |
632 | + | int ns = snap_->atomData.skippedCharge.size(); |
633 | + | vector<RealType> skch_tmp(ns, 0.0); |
634 | + | |
635 | + | AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
636 | + | for (int i = 0; i < ns; i++) { |
637 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
638 | + | skch_tmp[i] = 0.0; |
639 | + | } |
640 | + | |
641 | + | AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
642 | + | for (int i = 0; i < ns; i++) |
643 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
644 | } | |
645 | ||
646 | nLocal_ = snap_->getNumberOfAtoms(); | |
# | Line 716 | Line 764 | namespace OpenMD { | |
764 | return d; | |
765 | } | |
766 | ||
767 | < | vector<int> ForceMatrixDecomposition::getSkipsForAtom(int atom1) { |
768 | < | return skipsForAtom[atom1]; |
767 | > | vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
768 | > | return excludesForAtom[atom1]; |
769 | } | |
770 | ||
771 | /** | |
772 | < | * There are a number of reasons to skip a pair or a |
725 | < | * particle. Mostly we do this to exclude atoms who are involved in |
726 | < | * short range interactions (bonds, bends, torsions), but we also |
727 | < | * need to exclude some overcounted interactions that result from |
772 | > | * We need to exclude some overcounted interactions that result from |
773 | * the parallel decomposition. | |
774 | */ | |
775 | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { | |
# | Line 744 | Line 789 | namespace OpenMD { | |
789 | } else { | |
790 | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | |
791 | } | |
792 | + | #endif |
793 | + | return false; |
794 | + | } |
795 | + | |
796 | + | /** |
797 | + | * We need to handle the interactions for atoms who are involved in |
798 | + | * the same rigid body as well as some short range interactions |
799 | + | * (bonds, bends, torsions) differently from other interactions. |
800 | + | * We'll still visit the pairwise routines, but with a flag that |
801 | + | * tells those routines to exclude the pair from direct long range |
802 | + | * interactions. Some indirect interactions (notably reaction |
803 | + | * field) must still be handled for these pairs. |
804 | + | */ |
805 | + | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
806 | + | int unique_id_2; |
807 | + | |
808 | + | #ifdef IS_MPI |
809 | + | // in MPI, we have to look up the unique IDs for the row atom. |
810 | + | unique_id_2 = AtomColToGlobal[atom2]; |
811 | #else | |
812 | // in the normal loop, the atom numbers are unique | |
749 | – | unique_id_1 = atom1; |
813 | unique_id_2 = atom2; | |
814 | #endif | |
815 | ||
816 | < | for (vector<int>::iterator i = skipsForAtom[atom1].begin(); |
817 | < | i != skipsForAtom[atom1].end(); ++i) { |
816 | > | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
817 | > | i != excludesForAtom[atom1].end(); ++i) { |
818 | if ( (*i) == unique_id_2 ) return true; | |
819 | } | |
820 | ||
# | Line 777 | Line 840 | namespace OpenMD { | |
840 | ||
841 | // filling interaction blocks with pointers | |
842 | void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, | |
843 | < | int atom1, int atom2) { |
843 | > | int atom1, int atom2) { |
844 | > | |
845 | > | idat.excluded = excludeAtomPair(atom1, atom2); |
846 | > | |
847 | #ifdef IS_MPI | |
848 | + | idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
849 | + | //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
850 | + | // ff_->getAtomType(identsCol[atom2]) ); |
851 | ||
783 | – | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
784 | – | ff_->getAtomType(identsCol[atom2]) ); |
785 | – | |
852 | if (storageLayout_ & DataStorage::dslAmat) { | |
853 | idat.A1 = &(atomRowData.aMat[atom1]); | |
854 | idat.A2 = &(atomColData.aMat[atom2]); | |
# | Line 818 | Line 884 | namespace OpenMD { | |
884 | idat.particlePot2 = &(atomColData.particlePot[atom2]); | |
885 | } | |
886 | ||
887 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
888 | + | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
889 | + | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
890 | + | } |
891 | + | |
892 | #else | |
893 | ||
894 | < | idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
895 | < | ff_->getAtomType(idents[atom2]) ); |
894 | > | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
895 | > | //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
896 | > | // ff_->getAtomType(idents[atom2]) ); |
897 | ||
898 | if (storageLayout_ & DataStorage::dslAmat) { | |
899 | idat.A1 = &(snap_->atomData.aMat[atom1]); | |
# | Line 858 | Line 930 | namespace OpenMD { | |
930 | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); | |
931 | } | |
932 | ||
933 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
934 | + | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
935 | + | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
936 | + | } |
937 | #endif | |
938 | } | |
939 | ||
# | Line 875 | Line 951 | namespace OpenMD { | |
951 | snap_->atomData.force[atom1] += *(idat.f1); | |
952 | snap_->atomData.force[atom2] -= *(idat.f1); | |
953 | #endif | |
954 | < | |
879 | < | } |
880 | < | |
881 | < | |
882 | < | void ForceMatrixDecomposition::fillSkipData(InteractionData &idat, |
883 | < | int atom1, int atom2) { |
884 | < | // Still Missing:: skippedCharge fill must be added to DataStorage |
885 | < | #ifdef IS_MPI |
886 | < | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
887 | < | ff_->getAtomType(identsCol[atom2]) ); |
888 | < | |
889 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { |
890 | < | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
891 | < | idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
892 | < | } |
893 | < | if (storageLayout_ & DataStorage::dslTorque) { |
894 | < | idat.t1 = &(atomRowData.torque[atom1]); |
895 | < | idat.t2 = &(atomColData.torque[atom2]); |
896 | < | } |
897 | < | #else |
898 | < | idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
899 | < | ff_->getAtomType(idents[atom2]) ); |
900 | < | |
901 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { |
902 | < | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
903 | < | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
904 | < | } |
905 | < | if (storageLayout_ & DataStorage::dslTorque) { |
906 | < | idat.t1 = &(snap_->atomData.torque[atom1]); |
907 | < | idat.t2 = &(snap_->atomData.torque[atom2]); |
908 | < | } |
909 | < | #endif |
954 | > | |
955 | } | |
956 | ||
912 | – | |
913 | – | void ForceMatrixDecomposition::unpackSkipData(InteractionData &idat, int atom1, int atom2) { |
914 | – | #ifdef IS_MPI |
915 | – | pot_row[atom1] += 0.5 * *(idat.pot); |
916 | – | pot_col[atom2] += 0.5 * *(idat.pot); |
917 | – | #else |
918 | – | pairwisePot += *(idat.pot); |
919 | – | #endif |
920 | – | |
921 | – | } |
922 | – | |
923 | – | |
957 | /* | |
958 | * buildNeighborList | |
959 | * | |
# | Line 931 | Line 964 | namespace OpenMD { | |
964 | ||
965 | vector<pair<int, int> > neighborList; | |
966 | groupCutoffs cuts; | |
967 | + | bool doAllPairs = false; |
968 | + | |
969 | #ifdef IS_MPI | |
970 | cellListRow_.clear(); | |
971 | cellListCol_.clear(); | |
# | Line 950 | Line 985 | namespace OpenMD { | |
985 | nCells_.y() = (int) ( Hy.length() )/ rList_; | |
986 | nCells_.z() = (int) ( Hz.length() )/ rList_; | |
987 | ||
988 | + | // handle small boxes where the cell offsets can end up repeating cells |
989 | + | |
990 | + | if (nCells_.x() < 3) doAllPairs = true; |
991 | + | if (nCells_.y() < 3) doAllPairs = true; |
992 | + | if (nCells_.z() < 3) doAllPairs = true; |
993 | + | |
994 | Mat3x3d invHmat = snap_->getInvHmat(); | |
995 | Vector3d rs, scaled, dr; | |
996 | Vector3i whichCell; | |
# | Line 963 | Line 1004 | namespace OpenMD { | |
1004 | cellList_.resize(nCtot); | |
1005 | #endif | |
1006 | ||
1007 | + | if (!doAllPairs) { |
1008 | #ifdef IS_MPI | |
967 | – | for (int i = 0; i < nGroupsInRow_; i++) { |
968 | – | rs = cgRowData.position[i]; |
1009 | ||
1010 | < | // scaled positions relative to the box vectors |
1011 | < | scaled = invHmat * rs; |
1012 | < | |
1013 | < | // wrap the vector back into the unit box by subtracting integer box |
1014 | < | // numbers |
1015 | < | for (int j = 0; j < 3; j++) { |
1016 | < | scaled[j] -= roundMe(scaled[j]); |
1017 | < | scaled[j] += 0.5; |
1010 | > | for (int i = 0; i < nGroupsInRow_; i++) { |
1011 | > | rs = cgRowData.position[i]; |
1012 | > | |
1013 | > | // scaled positions relative to the box vectors |
1014 | > | scaled = invHmat * rs; |
1015 | > | |
1016 | > | // wrap the vector back into the unit box by subtracting integer box |
1017 | > | // numbers |
1018 | > | for (int j = 0; j < 3; j++) { |
1019 | > | scaled[j] -= roundMe(scaled[j]); |
1020 | > | scaled[j] += 0.5; |
1021 | > | } |
1022 | > | |
1023 | > | // find xyz-indices of cell that cutoffGroup is in. |
1024 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1025 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1026 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1027 | > | |
1028 | > | // find single index of this cell: |
1029 | > | cellIndex = Vlinear(whichCell, nCells_); |
1030 | > | |
1031 | > | // add this cutoff group to the list of groups in this cell; |
1032 | > | cellListRow_[cellIndex].push_back(i); |
1033 | } | |
1034 | < | |
1035 | < | // find xyz-indices of cell that cutoffGroup is in. |
1036 | < | whichCell.x() = nCells_.x() * scaled.x(); |
1037 | < | whichCell.y() = nCells_.y() * scaled.y(); |
1038 | < | whichCell.z() = nCells_.z() * scaled.z(); |
1039 | < | |
1040 | < | // find single index of this cell: |
1041 | < | cellIndex = Vlinear(whichCell, nCells_); |
1042 | < | |
1043 | < | // add this cutoff group to the list of groups in this cell; |
1044 | < | cellListRow_[cellIndex].push_back(i); |
1045 | < | } |
1046 | < | |
1047 | < | for (int i = 0; i < nGroupsInCol_; i++) { |
1048 | < | rs = cgColData.position[i]; |
1049 | < | |
1050 | < | // scaled positions relative to the box vectors |
1051 | < | scaled = invHmat * rs; |
1052 | < | |
1053 | < | // wrap the vector back into the unit box by subtracting integer box |
1054 | < | // numbers |
1055 | < | for (int j = 0; j < 3; j++) { |
1056 | < | scaled[j] -= roundMe(scaled[j]); |
1057 | < | scaled[j] += 0.5; |
1034 | > | |
1035 | > | for (int i = 0; i < nGroupsInCol_; i++) { |
1036 | > | rs = cgColData.position[i]; |
1037 | > | |
1038 | > | // scaled positions relative to the box vectors |
1039 | > | scaled = invHmat * rs; |
1040 | > | |
1041 | > | // wrap the vector back into the unit box by subtracting integer box |
1042 | > | // numbers |
1043 | > | for (int j = 0; j < 3; j++) { |
1044 | > | scaled[j] -= roundMe(scaled[j]); |
1045 | > | scaled[j] += 0.5; |
1046 | > | } |
1047 | > | |
1048 | > | // find xyz-indices of cell that cutoffGroup is in. |
1049 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1050 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1051 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1052 | > | |
1053 | > | // find single index of this cell: |
1054 | > | cellIndex = Vlinear(whichCell, nCells_); |
1055 | > | |
1056 | > | // add this cutoff group to the list of groups in this cell; |
1057 | > | cellListCol_[cellIndex].push_back(i); |
1058 | } | |
1004 | – | |
1005 | – | // find xyz-indices of cell that cutoffGroup is in. |
1006 | – | whichCell.x() = nCells_.x() * scaled.x(); |
1007 | – | whichCell.y() = nCells_.y() * scaled.y(); |
1008 | – | whichCell.z() = nCells_.z() * scaled.z(); |
1009 | – | |
1010 | – | // find single index of this cell: |
1011 | – | cellIndex = Vlinear(whichCell, nCells_); |
1012 | – | |
1013 | – | // add this cutoff group to the list of groups in this cell; |
1014 | – | cellListCol_[cellIndex].push_back(i); |
1015 | – | } |
1059 | #else | |
1060 | < | for (int i = 0; i < nGroups_; i++) { |
1061 | < | rs = snap_->cgData.position[i]; |
1062 | < | |
1063 | < | // scaled positions relative to the box vectors |
1064 | < | scaled = invHmat * rs; |
1065 | < | |
1066 | < | // wrap the vector back into the unit box by subtracting integer box |
1067 | < | // numbers |
1068 | < | for (int j = 0; j < 3; j++) { |
1069 | < | scaled[j] -= roundMe(scaled[j]); |
1070 | < | scaled[j] += 0.5; |
1060 | > | for (int i = 0; i < nGroups_; i++) { |
1061 | > | rs = snap_->cgData.position[i]; |
1062 | > | |
1063 | > | // scaled positions relative to the box vectors |
1064 | > | scaled = invHmat * rs; |
1065 | > | |
1066 | > | // wrap the vector back into the unit box by subtracting integer box |
1067 | > | // numbers |
1068 | > | for (int j = 0; j < 3; j++) { |
1069 | > | scaled[j] -= roundMe(scaled[j]); |
1070 | > | scaled[j] += 0.5; |
1071 | > | } |
1072 | > | |
1073 | > | // find xyz-indices of cell that cutoffGroup is in. |
1074 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1075 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1076 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1077 | > | |
1078 | > | // find single index of this cell: |
1079 | > | cellIndex = Vlinear(whichCell, nCells_); |
1080 | > | |
1081 | > | // add this cutoff group to the list of groups in this cell; |
1082 | > | cellList_[cellIndex].push_back(i); |
1083 | } | |
1029 | – | |
1030 | – | // find xyz-indices of cell that cutoffGroup is in. |
1031 | – | whichCell.x() = nCells_.x() * scaled.x(); |
1032 | – | whichCell.y() = nCells_.y() * scaled.y(); |
1033 | – | whichCell.z() = nCells_.z() * scaled.z(); |
1034 | – | |
1035 | – | // find single index of this cell: |
1036 | – | cellIndex = Vlinear(whichCell, nCells_); |
1037 | – | |
1038 | – | // add this cutoff group to the list of groups in this cell; |
1039 | – | cellList_[cellIndex].push_back(i); |
1040 | – | } |
1084 | #endif | |
1085 | ||
1086 | < | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1087 | < | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1088 | < | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1089 | < | Vector3i m1v(m1x, m1y, m1z); |
1090 | < | int m1 = Vlinear(m1v, nCells_); |
1048 | < | |
1049 | < | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1050 | < | os != cellOffsets_.end(); ++os) { |
1086 | > | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1087 | > | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1088 | > | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1089 | > | Vector3i m1v(m1x, m1y, m1z); |
1090 | > | int m1 = Vlinear(m1v, nCells_); |
1091 | ||
1092 | < | Vector3i m2v = m1v + (*os); |
1093 | < | |
1094 | < | if (m2v.x() >= nCells_.x()) { |
1095 | < | m2v.x() = 0; |
1096 | < | } else if (m2v.x() < 0) { |
1097 | < | m2v.x() = nCells_.x() - 1; |
1098 | < | } |
1099 | < | |
1100 | < | if (m2v.y() >= nCells_.y()) { |
1101 | < | m2v.y() = 0; |
1102 | < | } else if (m2v.y() < 0) { |
1103 | < | m2v.y() = nCells_.y() - 1; |
1104 | < | } |
1105 | < | |
1106 | < | if (m2v.z() >= nCells_.z()) { |
1107 | < | m2v.z() = 0; |
1108 | < | } else if (m2v.z() < 0) { |
1109 | < | m2v.z() = nCells_.z() - 1; |
1110 | < | } |
1111 | < | |
1112 | < | int m2 = Vlinear (m2v, nCells_); |
1113 | < | |
1092 | > | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1093 | > | os != cellOffsets_.end(); ++os) { |
1094 | > | |
1095 | > | Vector3i m2v = m1v + (*os); |
1096 | > | |
1097 | > | if (m2v.x() >= nCells_.x()) { |
1098 | > | m2v.x() = 0; |
1099 | > | } else if (m2v.x() < 0) { |
1100 | > | m2v.x() = nCells_.x() - 1; |
1101 | > | } |
1102 | > | |
1103 | > | if (m2v.y() >= nCells_.y()) { |
1104 | > | m2v.y() = 0; |
1105 | > | } else if (m2v.y() < 0) { |
1106 | > | m2v.y() = nCells_.y() - 1; |
1107 | > | } |
1108 | > | |
1109 | > | if (m2v.z() >= nCells_.z()) { |
1110 | > | m2v.z() = 0; |
1111 | > | } else if (m2v.z() < 0) { |
1112 | > | m2v.z() = nCells_.z() - 1; |
1113 | > | } |
1114 | > | |
1115 | > | int m2 = Vlinear (m2v, nCells_); |
1116 | > | |
1117 | #ifdef IS_MPI | |
1118 | < | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1119 | < | j1 != cellListRow_[m1].end(); ++j1) { |
1120 | < | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1121 | < | j2 != cellListCol_[m2].end(); ++j2) { |
1122 | < | |
1123 | < | // Always do this if we're in different cells or if |
1124 | < | // we're in the same cell and the global index of the |
1125 | < | // j2 cutoff group is less than the j1 cutoff group |
1126 | < | |
1127 | < | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1128 | < | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1129 | < | snap_->wrapVector(dr); |
1130 | < | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1131 | < | if (dr.lengthSquare() < cuts.third) { |
1132 | < | neighborList.push_back(make_pair((*j1), (*j2))); |
1118 | > | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1119 | > | j1 != cellListRow_[m1].end(); ++j1) { |
1120 | > | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1121 | > | j2 != cellListCol_[m2].end(); ++j2) { |
1122 | > | |
1123 | > | // Always do this if we're in different cells or if |
1124 | > | // we're in the same cell and the global index of the |
1125 | > | // j2 cutoff group is less than the j1 cutoff group |
1126 | > | |
1127 | > | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1128 | > | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1129 | > | snap_->wrapVector(dr); |
1130 | > | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1131 | > | if (dr.lengthSquare() < cuts.third) { |
1132 | > | neighborList.push_back(make_pair((*j1), (*j2))); |
1133 | > | } |
1134 | } | |
1135 | } | |
1136 | } | |
1093 | – | } |
1137 | #else | |
1138 | < | |
1139 | < | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1140 | < | j1 != cellList_[m1].end(); ++j1) { |
1141 | < | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1142 | < | j2 != cellList_[m2].end(); ++j2) { |
1143 | < | |
1144 | < | // Always do this if we're in different cells or if |
1145 | < | // we're in the same cell and the global index of the |
1146 | < | // j2 cutoff group is less than the j1 cutoff group |
1147 | < | |
1148 | < | if (m2 != m1 || (*j2) < (*j1)) { |
1149 | < | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1150 | < | snap_->wrapVector(dr); |
1151 | < | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1152 | < | if (dr.lengthSquare() < cuts.third) { |
1153 | < | neighborList.push_back(make_pair((*j1), (*j2))); |
1138 | > | |
1139 | > | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1140 | > | j1 != cellList_[m1].end(); ++j1) { |
1141 | > | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1142 | > | j2 != cellList_[m2].end(); ++j2) { |
1143 | > | |
1144 | > | // Always do this if we're in different cells or if |
1145 | > | // we're in the same cell and the global index of the |
1146 | > | // j2 cutoff group is less than the j1 cutoff group |
1147 | > | |
1148 | > | if (m2 != m1 || (*j2) < (*j1)) { |
1149 | > | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1150 | > | snap_->wrapVector(dr); |
1151 | > | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1152 | > | if (dr.lengthSquare() < cuts.third) { |
1153 | > | neighborList.push_back(make_pair((*j1), (*j2))); |
1154 | > | } |
1155 | } | |
1156 | } | |
1157 | } | |
1114 | – | } |
1158 | #endif | |
1159 | + | } |
1160 | } | |
1161 | } | |
1162 | } | |
1163 | + | } else { |
1164 | + | // branch to do all cutoff group pairs |
1165 | + | #ifdef IS_MPI |
1166 | + | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1167 | + | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1168 | + | dr = cgColData.position[j2] - cgRowData.position[j1]; |
1169 | + | snap_->wrapVector(dr); |
1170 | + | cuts = getGroupCutoffs( j1, j2 ); |
1171 | + | if (dr.lengthSquare() < cuts.third) { |
1172 | + | neighborList.push_back(make_pair(j1, j2)); |
1173 | + | } |
1174 | + | } |
1175 | + | } |
1176 | + | #else |
1177 | + | for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1178 | + | for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1179 | + | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1180 | + | snap_->wrapVector(dr); |
1181 | + | cuts = getGroupCutoffs( j1, j2 ); |
1182 | + | if (dr.lengthSquare() < cuts.third) { |
1183 | + | neighborList.push_back(make_pair(j1, j2)); |
1184 | + | } |
1185 | + | } |
1186 | + | } |
1187 | + | #endif |
1188 | } | |
1189 | < | |
1189 | > | |
1190 | // save the local cutoff group positions for the check that is | |
1191 | // done on each loop: | |
1192 | saved_CG_positions_.clear(); | |
1193 | for (int i = 0; i < nGroups_; i++) | |
1194 | saved_CG_positions_.push_back(snap_->cgData.position[i]); | |
1195 | < | |
1195 | > | |
1196 | return neighborList; | |
1197 | } | |
1198 | } //end namespace OpenMD |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |