# | Line 36 | Line 36 | |
---|---|---|
36 | * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | |
37 | * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | |
38 | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | |
39 | < | * [4] Vardeman & Gezelter, in progress (2009). |
39 | > | * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 | > | * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 | */ | |
42 | #include "parallel/ForceMatrixDecomposition.hpp" | |
43 | #include "math/SquareMatrix3.hpp" | |
# | Line 47 | Line 48 | namespace OpenMD { | |
48 | using namespace std; | |
49 | namespace OpenMD { | |
50 | ||
51 | + | ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { |
52 | + | |
53 | + | // In a parallel computation, row and colum scans must visit all |
54 | + | // surrounding cells (not just the 14 upper triangular blocks that |
55 | + | // are used when the processor can see all pairs) |
56 | + | #ifdef IS_MPI |
57 | + | cellOffsets_.clear(); |
58 | + | cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
59 | + | cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
60 | + | cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
61 | + | cellOffsets_.push_back( Vector3i(-1, 0,-1) ); |
62 | + | cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
63 | + | cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
64 | + | cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
65 | + | cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
66 | + | cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
67 | + | cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
68 | + | cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
69 | + | cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
70 | + | cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
71 | + | cellOffsets_.push_back( Vector3i( 0, 0, 0) ); |
72 | + | cellOffsets_.push_back( Vector3i( 1, 0, 0) ); |
73 | + | cellOffsets_.push_back( Vector3i(-1, 1, 0) ); |
74 | + | cellOffsets_.push_back( Vector3i( 0, 1, 0) ); |
75 | + | cellOffsets_.push_back( Vector3i( 1, 1, 0) ); |
76 | + | cellOffsets_.push_back( Vector3i(-1,-1, 1) ); |
77 | + | cellOffsets_.push_back( Vector3i( 0,-1, 1) ); |
78 | + | cellOffsets_.push_back( Vector3i( 1,-1, 1) ); |
79 | + | cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
80 | + | cellOffsets_.push_back( Vector3i( 0, 0, 1) ); |
81 | + | cellOffsets_.push_back( Vector3i( 1, 0, 1) ); |
82 | + | cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
83 | + | cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
84 | + | cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
85 | + | #endif |
86 | + | } |
87 | + | |
88 | + | |
89 | /** | |
90 | * distributeInitialData is essentially a copy of the older fortran | |
91 | * SimulationSetup | |
92 | */ | |
54 | – | |
93 | void ForceMatrixDecomposition::distributeInitialData() { | |
94 | snap_ = sman_->getCurrentSnapshot(); | |
95 | storageLayout_ = sman_->getStorageLayout(); | |
96 | ff_ = info_->getForceField(); | |
97 | nLocal_ = snap_->getNumberOfAtoms(); | |
98 | < | |
98 | > | |
99 | nGroups_ = info_->getNLocalCutoffGroups(); | |
100 | // gather the information for atomtype IDs (atids): | |
101 | idents = info_->getIdentArray(); | |
# | Line 71 | Line 109 | namespace OpenMD { | |
109 | PairList* oneTwo = info_->getOneTwoInteractions(); | |
110 | PairList* oneThree = info_->getOneThreeInteractions(); | |
111 | PairList* oneFour = info_->getOneFourInteractions(); | |
112 | < | |
112 | > | |
113 | > | if (needVelocities_) |
114 | > | snap_->cgData.setStorageLayout(DataStorage::dslPosition | |
115 | > | DataStorage::dslVelocity); |
116 | > | else |
117 | > | snap_->cgData.setStorageLayout(DataStorage::dslPosition); |
118 | > | |
119 | #ifdef IS_MPI | |
120 | ||
121 | < | AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
122 | < | AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
79 | < | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
80 | < | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
81 | < | AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
121 | > | MPI::Intracomm row = rowComm.getComm(); |
122 | > | MPI::Intracomm col = colComm.getComm(); |
123 | ||
124 | < | AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
125 | < | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
126 | < | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
127 | < | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
128 | < | AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
124 | > | AtomPlanIntRow = new Plan<int>(row, nLocal_); |
125 | > | AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
126 | > | AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); |
127 | > | AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); |
128 | > | AtomPlanPotRow = new Plan<potVec>(row, nLocal_); |
129 | ||
130 | < | cgCommIntRow = new Communicator<Row,int>(nGroups_); |
131 | < | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
132 | < | cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
133 | < | cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
130 | > | AtomPlanIntColumn = new Plan<int>(col, nLocal_); |
131 | > | AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); |
132 | > | AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); |
133 | > | AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); |
134 | > | AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); |
135 | ||
136 | < | nAtomsInRow_ = AtomCommIntRow->getSize(); |
137 | < | nAtomsInCol_ = AtomCommIntColumn->getSize(); |
138 | < | nGroupsInRow_ = cgCommIntRow->getSize(); |
139 | < | nGroupsInCol_ = cgCommIntColumn->getSize(); |
136 | > | cgPlanIntRow = new Plan<int>(row, nGroups_); |
137 | > | cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); |
138 | > | cgPlanIntColumn = new Plan<int>(col, nGroups_); |
139 | > | cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); |
140 | ||
141 | + | nAtomsInRow_ = AtomPlanIntRow->getSize(); |
142 | + | nAtomsInCol_ = AtomPlanIntColumn->getSize(); |
143 | + | nGroupsInRow_ = cgPlanIntRow->getSize(); |
144 | + | nGroupsInCol_ = cgPlanIntColumn->getSize(); |
145 | + | |
146 | // Modify the data storage objects with the correct layouts and sizes: | |
147 | atomRowData.resize(nAtomsInRow_); | |
148 | atomRowData.setStorageLayout(storageLayout_); | |
# | Line 104 | Line 151 | namespace OpenMD { | |
151 | cgRowData.resize(nGroupsInRow_); | |
152 | cgRowData.setStorageLayout(DataStorage::dslPosition); | |
153 | cgColData.resize(nGroupsInCol_); | |
154 | < | cgColData.setStorageLayout(DataStorage::dslPosition); |
155 | < | |
154 | > | if (needVelocities_) |
155 | > | // we only need column velocities if we need them. |
156 | > | cgColData.setStorageLayout(DataStorage::dslPosition | |
157 | > | DataStorage::dslVelocity); |
158 | > | else |
159 | > | cgColData.setStorageLayout(DataStorage::dslPosition); |
160 | > | |
161 | identsRow.resize(nAtomsInRow_); | |
162 | identsCol.resize(nAtomsInCol_); | |
163 | ||
164 | < | AtomCommIntRow->gather(idents, identsRow); |
165 | < | AtomCommIntColumn->gather(idents, identsCol); |
164 | > | AtomPlanIntRow->gather(idents, identsRow); |
165 | > | AtomPlanIntColumn->gather(idents, identsCol); |
166 | ||
167 | // allocate memory for the parallel objects | |
168 | atypesRow.resize(nAtomsInRow_); | |
# | Line 124 | Line 176 | namespace OpenMD { | |
176 | pot_row.resize(nAtomsInRow_); | |
177 | pot_col.resize(nAtomsInCol_); | |
178 | ||
179 | + | expot_row.resize(nAtomsInRow_); |
180 | + | expot_col.resize(nAtomsInCol_); |
181 | + | |
182 | AtomRowToGlobal.resize(nAtomsInRow_); | |
183 | AtomColToGlobal.resize(nAtomsInCol_); | |
184 | < | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
185 | < | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
186 | < | |
184 | > | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
185 | > | AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
186 | > | |
187 | cgRowToGlobal.resize(nGroupsInRow_); | |
188 | cgColToGlobal.resize(nGroupsInCol_); | |
189 | < | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
190 | < | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
189 | > | cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
190 | > | cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
191 | ||
192 | massFactorsRow.resize(nAtomsInRow_); | |
193 | massFactorsCol.resize(nAtomsInCol_); | |
194 | < | AtomCommRealRow->gather(massFactors, massFactorsRow); |
195 | < | AtomCommRealColumn->gather(massFactors, massFactorsCol); |
194 | > | AtomPlanRealRow->gather(massFactors, massFactorsRow); |
195 | > | AtomPlanRealColumn->gather(massFactors, massFactorsCol); |
196 | ||
197 | groupListRow_.clear(); | |
198 | groupListRow_.resize(nGroupsInRow_); | |
# | Line 193 | Line 248 | namespace OpenMD { | |
248 | } | |
249 | } | |
250 | ||
251 | < | #endif |
197 | < | |
198 | < | // allocate memory for the parallel objects |
199 | < | atypesLocal.resize(nLocal_); |
200 | < | |
201 | < | for (int i = 0; i < nLocal_; i++) |
202 | < | atypesLocal[i] = ff_->getAtomType(idents[i]); |
203 | < | |
204 | < | groupList_.clear(); |
205 | < | groupList_.resize(nGroups_); |
206 | < | for (int i = 0; i < nGroups_; i++) { |
207 | < | int gid = cgLocalToGlobal[i]; |
208 | < | for (int j = 0; j < nLocal_; j++) { |
209 | < | int aid = AtomLocalToGlobal[j]; |
210 | < | if (globalGroupMembership[aid] == gid) { |
211 | < | groupList_[i].push_back(j); |
212 | < | } |
213 | < | } |
214 | < | } |
215 | < | |
251 | > | #else |
252 | excludesForAtom.clear(); | |
253 | excludesForAtom.resize(nLocal_); | |
254 | toposForAtom.clear(); | |
# | Line 245 | Line 281 | namespace OpenMD { | |
281 | } | |
282 | } | |
283 | } | |
284 | < | |
284 | > | #endif |
285 | > | |
286 | > | // allocate memory for the parallel objects |
287 | > | atypesLocal.resize(nLocal_); |
288 | > | |
289 | > | for (int i = 0; i < nLocal_; i++) |
290 | > | atypesLocal[i] = ff_->getAtomType(idents[i]); |
291 | > | |
292 | > | groupList_.clear(); |
293 | > | groupList_.resize(nGroups_); |
294 | > | for (int i = 0; i < nGroups_; i++) { |
295 | > | int gid = cgLocalToGlobal[i]; |
296 | > | for (int j = 0; j < nLocal_; j++) { |
297 | > | int aid = AtomLocalToGlobal[j]; |
298 | > | if (globalGroupMembership[aid] == gid) { |
299 | > | groupList_[i].push_back(j); |
300 | > | } |
301 | > | } |
302 | > | } |
303 | > | |
304 | > | |
305 | createGtypeCutoffMap(); | |
306 | ||
307 | } | |
# | Line 254 | Line 310 | namespace OpenMD { | |
310 | ||
311 | RealType tol = 1e-6; | |
312 | largestRcut_ = 0.0; | |
257 | – | RealType rc; |
313 | int atid; | |
314 | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); | |
315 | ||
# | Line 339 | Line 394 | namespace OpenMD { | |
394 | } | |
395 | ||
396 | bool gTypeFound = false; | |
397 | < | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
397 | > | for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
398 | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { | |
399 | groupToGtype[cg1] = gt; | |
400 | gTypeFound = true; | |
# | Line 364 | Line 419 | namespace OpenMD { | |
419 | ||
420 | RealType tradRcut = groupMax; | |
421 | ||
422 | < | for (int i = 0; i < gTypeCutoffs.size(); i++) { |
423 | < | for (int j = 0; j < gTypeCutoffs.size(); j++) { |
422 | > | for (unsigned int i = 0; i < gTypeCutoffs.size(); i++) { |
423 | > | for (unsigned int j = 0; j < gTypeCutoffs.size(); j++) { |
424 | RealType thisRcut; | |
425 | switch(cutoffPolicy_) { | |
426 | case TRADITIONAL: | |
# | Line 408 | Line 463 | namespace OpenMD { | |
463 | } | |
464 | } | |
465 | ||
411 | – | |
466 | groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { | |
467 | int i, j; | |
468 | #ifdef IS_MPI | |
# | Line 422 | Line 476 | namespace OpenMD { | |
476 | } | |
477 | ||
478 | int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { | |
479 | < | for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
479 | > | for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) { |
480 | if (toposForAtom[atom1][j] == atom2) | |
481 | return topoDist[atom1][j]; | |
482 | } | |
# | Line 432 | Line 486 | namespace OpenMD { | |
486 | void ForceMatrixDecomposition::zeroWorkArrays() { | |
487 | pairwisePot = 0.0; | |
488 | embeddingPot = 0.0; | |
489 | + | excludedPot = 0.0; |
490 | + | excludedSelfPot = 0.0; |
491 | ||
492 | #ifdef IS_MPI | |
493 | if (storageLayout_ & DataStorage::dslForce) { | |
# | Line 450 | Line 506 | namespace OpenMD { | |
506 | fill(pot_col.begin(), pot_col.end(), | |
507 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
508 | ||
509 | + | fill(expot_row.begin(), expot_row.end(), |
510 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
511 | + | |
512 | + | fill(expot_col.begin(), expot_col.end(), |
513 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
514 | + | |
515 | if (storageLayout_ & DataStorage::dslParticlePot) { | |
516 | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), | |
517 | 0.0); | |
# | Line 483 | Line 545 | namespace OpenMD { | |
545 | atomColData.skippedCharge.end(), 0.0); | |
546 | } | |
547 | ||
548 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
549 | + | fill(atomRowData.flucQFrc.begin(), |
550 | + | atomRowData.flucQFrc.end(), 0.0); |
551 | + | fill(atomColData.flucQFrc.begin(), |
552 | + | atomColData.flucQFrc.end(), 0.0); |
553 | + | } |
554 | + | |
555 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
556 | + | fill(atomRowData.electricField.begin(), |
557 | + | atomRowData.electricField.end(), V3Zero); |
558 | + | fill(atomColData.electricField.begin(), |
559 | + | atomColData.electricField.end(), V3Zero); |
560 | + | } |
561 | + | |
562 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
563 | + | fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), |
564 | + | 0.0); |
565 | + | fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), |
566 | + | 0.0); |
567 | + | } |
568 | + | |
569 | #endif | |
570 | // even in parallel, we need to zero out the local arrays: | |
571 | ||
# | Line 495 | Line 578 | namespace OpenMD { | |
578 | fill(snap_->atomData.density.begin(), | |
579 | snap_->atomData.density.end(), 0.0); | |
580 | } | |
581 | + | |
582 | if (storageLayout_ & DataStorage::dslFunctional) { | |
583 | fill(snap_->atomData.functional.begin(), | |
584 | snap_->atomData.functional.end(), 0.0); | |
585 | } | |
586 | + | |
587 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
588 | fill(snap_->atomData.functionalDerivative.begin(), | |
589 | snap_->atomData.functionalDerivative.end(), 0.0); | |
590 | } | |
591 | + | |
592 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | |
593 | fill(snap_->atomData.skippedCharge.begin(), | |
594 | snap_->atomData.skippedCharge.end(), 0.0); | |
595 | } | |
596 | < | |
596 | > | |
597 | > | if (storageLayout_ & DataStorage::dslElectricField) { |
598 | > | fill(snap_->atomData.electricField.begin(), |
599 | > | snap_->atomData.electricField.end(), V3Zero); |
600 | > | } |
601 | } | |
602 | ||
603 | ||
# | Line 517 | Line 607 | namespace OpenMD { | |
607 | #ifdef IS_MPI | |
608 | ||
609 | // gather up the atomic positions | |
610 | < | AtomCommVectorRow->gather(snap_->atomData.position, |
610 | > | AtomPlanVectorRow->gather(snap_->atomData.position, |
611 | atomRowData.position); | |
612 | < | AtomCommVectorColumn->gather(snap_->atomData.position, |
612 | > | AtomPlanVectorColumn->gather(snap_->atomData.position, |
613 | atomColData.position); | |
614 | ||
615 | // gather up the cutoff group positions | |
616 | < | cgCommVectorRow->gather(snap_->cgData.position, |
616 | > | |
617 | > | cgPlanVectorRow->gather(snap_->cgData.position, |
618 | cgRowData.position); | |
619 | < | cgCommVectorColumn->gather(snap_->cgData.position, |
619 | > | |
620 | > | cgPlanVectorColumn->gather(snap_->cgData.position, |
621 | cgColData.position); | |
622 | + | |
623 | + | |
624 | + | |
625 | + | if (needVelocities_) { |
626 | + | // gather up the atomic velocities |
627 | + | AtomPlanVectorColumn->gather(snap_->atomData.velocity, |
628 | + | atomColData.velocity); |
629 | + | |
630 | + | cgPlanVectorColumn->gather(snap_->cgData.velocity, |
631 | + | cgColData.velocity); |
632 | + | } |
633 | + | |
634 | ||
635 | // if needed, gather the atomic rotation matrices | |
636 | if (storageLayout_ & DataStorage::dslAmat) { | |
637 | < | AtomCommMatrixRow->gather(snap_->atomData.aMat, |
637 | > | AtomPlanMatrixRow->gather(snap_->atomData.aMat, |
638 | atomRowData.aMat); | |
639 | < | AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
639 | > | AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
640 | atomColData.aMat); | |
641 | } | |
642 | ||
643 | // if needed, gather the atomic eletrostatic frames | |
644 | if (storageLayout_ & DataStorage::dslElectroFrame) { | |
645 | < | AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
645 | > | AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
646 | atomRowData.electroFrame); | |
647 | < | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
647 | > | AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
648 | atomColData.electroFrame); | |
649 | } | |
650 | ||
651 | + | // if needed, gather the atomic fluctuating charge values |
652 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
653 | + | AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
654 | + | atomRowData.flucQPos); |
655 | + | AtomPlanRealColumn->gather(snap_->atomData.flucQPos, |
656 | + | atomColData.flucQPos); |
657 | + | } |
658 | + | |
659 | #endif | |
660 | } | |
661 | ||
# | Line 557 | Line 669 | namespace OpenMD { | |
669 | ||
670 | if (storageLayout_ & DataStorage::dslDensity) { | |
671 | ||
672 | < | AtomCommRealRow->scatter(atomRowData.density, |
672 | > | AtomPlanRealRow->scatter(atomRowData.density, |
673 | snap_->atomData.density); | |
674 | ||
675 | int n = snap_->atomData.density.size(); | |
676 | vector<RealType> rho_tmp(n, 0.0); | |
677 | < | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
677 | > | AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); |
678 | for (int i = 0; i < n; i++) | |
679 | snap_->atomData.density[i] += rho_tmp[i]; | |
680 | } | |
681 | + | |
682 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
683 | + | |
684 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, |
685 | + | snap_->atomData.electricField); |
686 | + | |
687 | + | int n = snap_->atomData.electricField.size(); |
688 | + | vector<Vector3d> field_tmp(n, V3Zero); |
689 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); |
690 | + | for (int i = 0; i < n; i++) |
691 | + | snap_->atomData.electricField[i] += field_tmp[i]; |
692 | + | } |
693 | #endif | |
694 | } | |
695 | ||
# | Line 578 | Line 702 | namespace OpenMD { | |
702 | storageLayout_ = sman_->getStorageLayout(); | |
703 | #ifdef IS_MPI | |
704 | if (storageLayout_ & DataStorage::dslFunctional) { | |
705 | < | AtomCommRealRow->gather(snap_->atomData.functional, |
705 | > | AtomPlanRealRow->gather(snap_->atomData.functional, |
706 | atomRowData.functional); | |
707 | < | AtomCommRealColumn->gather(snap_->atomData.functional, |
707 | > | AtomPlanRealColumn->gather(snap_->atomData.functional, |
708 | atomColData.functional); | |
709 | } | |
710 | ||
711 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
712 | < | AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
712 | > | AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, |
713 | atomRowData.functionalDerivative); | |
714 | < | AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
714 | > | AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, |
715 | atomColData.functionalDerivative); | |
716 | } | |
717 | #endif | |
# | Line 601 | Line 725 | namespace OpenMD { | |
725 | int n = snap_->atomData.force.size(); | |
726 | vector<Vector3d> frc_tmp(n, V3Zero); | |
727 | ||
728 | < | AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
728 | > | AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); |
729 | for (int i = 0; i < n; i++) { | |
730 | snap_->atomData.force[i] += frc_tmp[i]; | |
731 | frc_tmp[i] = 0.0; | |
732 | } | |
733 | ||
734 | < | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
735 | < | for (int i = 0; i < n; i++) |
734 | > | AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); |
735 | > | for (int i = 0; i < n; i++) { |
736 | snap_->atomData.force[i] += frc_tmp[i]; | |
737 | + | } |
738 | ||
739 | if (storageLayout_ & DataStorage::dslTorque) { | |
740 | ||
741 | int nt = snap_->atomData.torque.size(); | |
742 | vector<Vector3d> trq_tmp(nt, V3Zero); | |
743 | ||
744 | < | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
744 | > | AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); |
745 | for (int i = 0; i < nt; i++) { | |
746 | snap_->atomData.torque[i] += trq_tmp[i]; | |
747 | trq_tmp[i] = 0.0; | |
748 | } | |
749 | ||
750 | < | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
750 | > | AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); |
751 | for (int i = 0; i < nt; i++) | |
752 | snap_->atomData.torque[i] += trq_tmp[i]; | |
753 | } | |
# | Line 632 | Line 757 | namespace OpenMD { | |
757 | int ns = snap_->atomData.skippedCharge.size(); | |
758 | vector<RealType> skch_tmp(ns, 0.0); | |
759 | ||
760 | < | AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
760 | > | AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
761 | for (int i = 0; i < ns; i++) { | |
762 | snap_->atomData.skippedCharge[i] += skch_tmp[i]; | |
763 | skch_tmp[i] = 0.0; | |
764 | } | |
765 | ||
766 | < | AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
767 | < | for (int i = 0; i < ns; i++) |
766 | > | AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
767 | > | for (int i = 0; i < ns; i++) |
768 | snap_->atomData.skippedCharge[i] += skch_tmp[i]; | |
769 | + | |
770 | } | |
771 | ||
772 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
773 | + | |
774 | + | int nq = snap_->atomData.flucQFrc.size(); |
775 | + | vector<RealType> fqfrc_tmp(nq, 0.0); |
776 | + | |
777 | + | AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); |
778 | + | for (int i = 0; i < nq; i++) { |
779 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
780 | + | fqfrc_tmp[i] = 0.0; |
781 | + | } |
782 | + | |
783 | + | AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); |
784 | + | for (int i = 0; i < nq; i++) |
785 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
786 | + | |
787 | + | } |
788 | + | |
789 | nLocal_ = snap_->getNumberOfAtoms(); | |
790 | ||
791 | vector<potVec> pot_temp(nLocal_, | |
792 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
793 | + | vector<potVec> expot_temp(nLocal_, |
794 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
795 | ||
796 | // scatter/gather pot_row into the members of my column | |
797 | ||
798 | < | AtomCommPotRow->scatter(pot_row, pot_temp); |
798 | > | AtomPlanPotRow->scatter(pot_row, pot_temp); |
799 | > | AtomPlanPotRow->scatter(expot_row, expot_temp); |
800 | ||
801 | < | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
801 | > | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
802 | pairwisePot += pot_temp[ii]; | |
803 | < | |
803 | > | |
804 | > | for (int ii = 0; ii < expot_temp.size(); ii++ ) |
805 | > | excludedPot += expot_temp[ii]; |
806 | > | |
807 | > | if (storageLayout_ & DataStorage::dslParticlePot) { |
808 | > | // This is the pairwise contribution to the particle pot. The |
809 | > | // embedding contribution is added in each of the low level |
810 | > | // non-bonded routines. In single processor, this is done in |
811 | > | // unpackInteractionData, not in collectData. |
812 | > | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
813 | > | for (int i = 0; i < nLocal_; i++) { |
814 | > | // factor of two is because the total potential terms are divided |
815 | > | // by 2 in parallel due to row/ column scatter |
816 | > | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
817 | > | } |
818 | > | } |
819 | > | } |
820 | > | |
821 | fill(pot_temp.begin(), pot_temp.end(), | |
822 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
823 | + | fill(expot_temp.begin(), expot_temp.end(), |
824 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
825 | ||
826 | < | AtomCommPotColumn->scatter(pot_col, pot_temp); |
826 | > | AtomPlanPotColumn->scatter(pot_col, pot_temp); |
827 | > | AtomPlanPotColumn->scatter(expot_col, expot_temp); |
828 | ||
829 | for (int ii = 0; ii < pot_temp.size(); ii++ ) | |
830 | pairwisePot += pot_temp[ii]; | |
831 | + | |
832 | + | for (int ii = 0; ii < expot_temp.size(); ii++ ) |
833 | + | excludedPot += expot_temp[ii]; |
834 | + | |
835 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
836 | + | // This is the pairwise contribution to the particle pot. The |
837 | + | // embedding contribution is added in each of the low level |
838 | + | // non-bonded routines. In single processor, this is done in |
839 | + | // unpackInteractionData, not in collectData. |
840 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
841 | + | for (int i = 0; i < nLocal_; i++) { |
842 | + | // factor of two is because the total potential terms are divided |
843 | + | // by 2 in parallel due to row/ column scatter |
844 | + | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
845 | + | } |
846 | + | } |
847 | + | } |
848 | + | |
849 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
850 | + | int npp = snap_->atomData.particlePot.size(); |
851 | + | vector<RealType> ppot_temp(npp, 0.0); |
852 | + | |
853 | + | // This is the direct or embedding contribution to the particle |
854 | + | // pot. |
855 | + | |
856 | + | AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); |
857 | + | for (int i = 0; i < npp; i++) { |
858 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; |
859 | + | } |
860 | + | |
861 | + | fill(ppot_temp.begin(), ppot_temp.end(), 0.0); |
862 | + | |
863 | + | AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); |
864 | + | for (int i = 0; i < npp; i++) { |
865 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; |
866 | + | } |
867 | + | } |
868 | + | |
869 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
870 | + | RealType ploc1 = pairwisePot[ii]; |
871 | + | RealType ploc2 = 0.0; |
872 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
873 | + | pairwisePot[ii] = ploc2; |
874 | + | } |
875 | + | |
876 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
877 | + | RealType ploc1 = excludedPot[ii]; |
878 | + | RealType ploc2 = 0.0; |
879 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
880 | + | excludedPot[ii] = ploc2; |
881 | + | } |
882 | + | |
883 | + | // Here be dragons. |
884 | + | MPI::Intracomm col = colComm.getComm(); |
885 | + | |
886 | + | col.Allreduce(MPI::IN_PLACE, |
887 | + | &snap_->frameData.conductiveHeatFlux[0], 3, |
888 | + | MPI::REALTYPE, MPI::SUM); |
889 | + | |
890 | + | |
891 | #endif | |
892 | ||
893 | } | |
894 | ||
895 | + | /** |
896 | + | * Collects information obtained during the post-pair (and embedding |
897 | + | * functional) loops onto local data structures. |
898 | + | */ |
899 | + | void ForceMatrixDecomposition::collectSelfData() { |
900 | + | snap_ = sman_->getCurrentSnapshot(); |
901 | + | storageLayout_ = sman_->getStorageLayout(); |
902 | + | |
903 | + | #ifdef IS_MPI |
904 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
905 | + | RealType ploc1 = embeddingPot[ii]; |
906 | + | RealType ploc2 = 0.0; |
907 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
908 | + | embeddingPot[ii] = ploc2; |
909 | + | } |
910 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
911 | + | RealType ploc1 = excludedSelfPot[ii]; |
912 | + | RealType ploc2 = 0.0; |
913 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
914 | + | excludedSelfPot[ii] = ploc2; |
915 | + | } |
916 | + | #endif |
917 | + | |
918 | + | } |
919 | + | |
920 | + | |
921 | + | |
922 | int ForceMatrixDecomposition::getNAtomsInRow() { | |
923 | #ifdef IS_MPI | |
924 | return nAtomsInRow_; | |
# | Line 706 | Line 959 | namespace OpenMD { | |
959 | return d; | |
960 | } | |
961 | ||
962 | + | Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ |
963 | + | #ifdef IS_MPI |
964 | + | return cgColData.velocity[cg2]; |
965 | + | #else |
966 | + | return snap_->cgData.velocity[cg2]; |
967 | + | #endif |
968 | + | } |
969 | ||
970 | + | Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ |
971 | + | #ifdef IS_MPI |
972 | + | return atomColData.velocity[atom2]; |
973 | + | #else |
974 | + | return snap_->atomData.velocity[atom2]; |
975 | + | #endif |
976 | + | } |
977 | + | |
978 | + | |
979 | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ | |
980 | ||
981 | Vector3d d; | |
# | Line 772 | Line 1041 | namespace OpenMD { | |
1041 | * We need to exclude some overcounted interactions that result from | |
1042 | * the parallel decomposition. | |
1043 | */ | |
1044 | < | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
1044 | > | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { |
1045 | int unique_id_1, unique_id_2; | |
1046 | < | |
1046 | > | |
1047 | #ifdef IS_MPI | |
1048 | // in MPI, we have to look up the unique IDs for each atom | |
1049 | unique_id_1 = AtomRowToGlobal[atom1]; | |
1050 | unique_id_2 = AtomColToGlobal[atom2]; | |
1051 | + | // group1 = cgRowToGlobal[cg1]; |
1052 | + | // group2 = cgColToGlobal[cg2]; |
1053 | + | #else |
1054 | + | unique_id_1 = AtomLocalToGlobal[atom1]; |
1055 | + | unique_id_2 = AtomLocalToGlobal[atom2]; |
1056 | + | int group1 = cgLocalToGlobal[cg1]; |
1057 | + | int group2 = cgLocalToGlobal[cg2]; |
1058 | + | #endif |
1059 | ||
783 | – | // this situation should only arise in MPI simulations |
1060 | if (unique_id_1 == unique_id_2) return true; | |
1061 | < | |
1061 | > | |
1062 | > | #ifdef IS_MPI |
1063 | // this prevents us from doing the pair on multiple processors | |
1064 | if (unique_id_1 < unique_id_2) { | |
1065 | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; | |
1066 | } else { | |
1067 | < | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
1067 | > | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
1068 | } | |
1069 | + | #endif |
1070 | + | |
1071 | + | #ifndef IS_MPI |
1072 | + | if (group1 == group2) { |
1073 | + | if (unique_id_1 < unique_id_2) return true; |
1074 | + | } |
1075 | #endif | |
1076 | + | |
1077 | return false; | |
1078 | } | |
1079 | ||
# | Line 803 | Line 1087 | namespace OpenMD { | |
1087 | * field) must still be handled for these pairs. | |
1088 | */ | |
1089 | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { | |
1090 | < | int unique_id_2; |
1090 | > | |
1091 | > | // excludesForAtom was constructed to use row/column indices in the MPI |
1092 | > | // version, and to use local IDs in the non-MPI version: |
1093 | ||
808 | – | #ifdef IS_MPI |
809 | – | // in MPI, we have to look up the unique IDs for the row atom. |
810 | – | unique_id_2 = AtomColToGlobal[atom2]; |
811 | – | #else |
812 | – | // in the normal loop, the atom numbers are unique |
813 | – | unique_id_2 = atom2; |
814 | – | #endif |
815 | – | |
1094 | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); | |
1095 | i != excludesForAtom[atom1].end(); ++i) { | |
1096 | < | if ( (*i) == unique_id_2 ) return true; |
1096 | > | if ( (*i) == atom2 ) return true; |
1097 | } | |
1098 | ||
1099 | return false; | |
# | Line 889 | Line 1167 | namespace OpenMD { | |
1167 | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); | |
1168 | } | |
1169 | ||
1170 | < | #else |
1170 | > | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1171 | > | idat.flucQ1 = &(atomRowData.flucQPos[atom1]); |
1172 | > | idat.flucQ2 = &(atomColData.flucQPos[atom2]); |
1173 | > | } |
1174 | ||
1175 | + | #else |
1176 | + | |
1177 | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); | |
895 | – | //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
896 | – | // ff_->getAtomType(idents[atom2]) ); |
1178 | ||
1179 | if (storageLayout_ & DataStorage::dslAmat) { | |
1180 | idat.A1 = &(snap_->atomData.aMat[atom1]); | |
# | Line 934 | Line 1215 | namespace OpenMD { | |
1215 | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); | |
1216 | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); | |
1217 | } | |
1218 | + | |
1219 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1220 | + | idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); |
1221 | + | idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); |
1222 | + | } |
1223 | + | |
1224 | #endif | |
1225 | } | |
1226 | ||
1227 | ||
1228 | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { | |
1229 | #ifdef IS_MPI | |
1230 | < | pot_row[atom1] += 0.5 * *(idat.pot); |
1231 | < | pot_col[atom2] += 0.5 * *(idat.pot); |
1230 | > | pot_row[atom1] += RealType(0.5) * *(idat.pot); |
1231 | > | pot_col[atom2] += RealType(0.5) * *(idat.pot); |
1232 | > | expot_row[atom1] += RealType(0.5) * *(idat.excludedPot); |
1233 | > | expot_col[atom2] += RealType(0.5) * *(idat.excludedPot); |
1234 | ||
1235 | atomRowData.force[atom1] += *(idat.f1); | |
1236 | atomColData.force[atom2] -= *(idat.f1); | |
1237 | + | |
1238 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
1239 | + | atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1240 | + | atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1241 | + | } |
1242 | + | |
1243 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
1244 | + | atomRowData.electricField[atom1] += *(idat.eField1); |
1245 | + | atomColData.electricField[atom2] += *(idat.eField2); |
1246 | + | } |
1247 | + | |
1248 | #else | |
1249 | pairwisePot += *(idat.pot); | |
1250 | + | excludedPot += *(idat.excludedPot); |
1251 | ||
1252 | snap_->atomData.force[atom1] += *(idat.f1); | |
1253 | snap_->atomData.force[atom2] -= *(idat.f1); | |
1254 | + | |
1255 | + | if (idat.doParticlePot) { |
1256 | + | // This is the pairwise contribution to the particle pot. The |
1257 | + | // embedding contribution is added in each of the low level |
1258 | + | // non-bonded routines. In parallel, this calculation is done |
1259 | + | // in collectData, not in unpackInteractionData. |
1260 | + | snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); |
1261 | + | snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); |
1262 | + | } |
1263 | + | |
1264 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
1265 | + | snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1266 | + | snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1267 | + | } |
1268 | + | |
1269 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
1270 | + | snap_->atomData.electricField[atom1] += *(idat.eField1); |
1271 | + | snap_->atomData.electricField[atom2] += *(idat.eField2); |
1272 | + | } |
1273 | + | |
1274 | #endif | |
1275 | ||
1276 | } | |
# | Line 974 | Line 1295 | namespace OpenMD { | |
1295 | #endif | |
1296 | ||
1297 | RealType rList_ = (largestRcut_ + skinThickness_); | |
977 | – | RealType rl2 = rList_ * rList_; |
1298 | Snapshot* snap_ = sman_->getCurrentSnapshot(); | |
1299 | Mat3x3d Hmat = snap_->getHmat(); | |
1300 | Vector3d Hx = Hmat.getColumn(0); | |
# | Line 1018 | Line 1338 | namespace OpenMD { | |
1338 | for (int j = 0; j < 3; j++) { | |
1339 | scaled[j] -= roundMe(scaled[j]); | |
1340 | scaled[j] += 0.5; | |
1341 | + | // Handle the special case when an object is exactly on the |
1342 | + | // boundary (a scaled coordinate of 1.0 is the same as |
1343 | + | // scaled coordinate of 0.0) |
1344 | + | if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1345 | } | |
1346 | ||
1347 | // find xyz-indices of cell that cutoffGroup is in. | |
# | Line 1031 | Line 1355 | namespace OpenMD { | |
1355 | // add this cutoff group to the list of groups in this cell; | |
1356 | cellListRow_[cellIndex].push_back(i); | |
1357 | } | |
1034 | – | |
1358 | for (int i = 0; i < nGroupsInCol_; i++) { | |
1359 | rs = cgColData.position[i]; | |
1360 | ||
# | Line 1043 | Line 1366 | namespace OpenMD { | |
1366 | for (int j = 0; j < 3; j++) { | |
1367 | scaled[j] -= roundMe(scaled[j]); | |
1368 | scaled[j] += 0.5; | |
1369 | + | // Handle the special case when an object is exactly on the |
1370 | + | // boundary (a scaled coordinate of 1.0 is the same as |
1371 | + | // scaled coordinate of 0.0) |
1372 | + | if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1373 | } | |
1374 | ||
1375 | // find xyz-indices of cell that cutoffGroup is in. | |
# | Line 1056 | Line 1383 | namespace OpenMD { | |
1383 | // add this cutoff group to the list of groups in this cell; | |
1384 | cellListCol_[cellIndex].push_back(i); | |
1385 | } | |
1386 | + | |
1387 | #else | |
1388 | for (int i = 0; i < nGroups_; i++) { | |
1389 | rs = snap_->cgData.position[i]; | |
# | Line 1068 | Line 1396 | namespace OpenMD { | |
1396 | for (int j = 0; j < 3; j++) { | |
1397 | scaled[j] -= roundMe(scaled[j]); | |
1398 | scaled[j] += 0.5; | |
1399 | + | // Handle the special case when an object is exactly on the |
1400 | + | // boundary (a scaled coordinate of 1.0 is the same as |
1401 | + | // scaled coordinate of 0.0) |
1402 | + | if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1403 | } | |
1404 | ||
1405 | // find xyz-indices of cell that cutoffGroup is in. | |
# | Line 1076 | Line 1408 | namespace OpenMD { | |
1408 | whichCell.z() = nCells_.z() * scaled.z(); | |
1409 | ||
1410 | // find single index of this cell: | |
1411 | < | cellIndex = Vlinear(whichCell, nCells_); |
1411 | > | cellIndex = Vlinear(whichCell, nCells_); |
1412 | ||
1413 | // add this cutoff group to the list of groups in this cell; | |
1414 | cellList_[cellIndex].push_back(i); | |
1415 | } | |
1416 | + | |
1417 | #endif | |
1418 | ||
1419 | for (int m1z = 0; m1z < nCells_.z(); m1z++) { | |
# | Line 1093 | Line 1426 | namespace OpenMD { | |
1426 | os != cellOffsets_.end(); ++os) { | |
1427 | ||
1428 | Vector3i m2v = m1v + (*os); | |
1429 | < | |
1429 | > | |
1430 | > | |
1431 | if (m2v.x() >= nCells_.x()) { | |
1432 | m2v.x() = 0; | |
1433 | } else if (m2v.x() < 0) { | |
# | Line 1111 | Line 1445 | namespace OpenMD { | |
1445 | } else if (m2v.z() < 0) { | |
1446 | m2v.z() = nCells_.z() - 1; | |
1447 | } | |
1448 | < | |
1448 | > | |
1449 | int m2 = Vlinear (m2v, nCells_); | |
1450 | ||
1451 | #ifdef IS_MPI | |
# | Line 1120 | Line 1454 | namespace OpenMD { | |
1454 | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); | |
1455 | j2 != cellListCol_[m2].end(); ++j2) { | |
1456 | ||
1457 | < | // Always do this if we're in different cells or if |
1458 | < | // we're in the same cell and the global index of the |
1459 | < | // j2 cutoff group is less than the j1 cutoff group |
1460 | < | |
1461 | < | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1462 | < | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1463 | < | snap_->wrapVector(dr); |
1464 | < | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1465 | < | if (dr.lengthSquare() < cuts.third) { |
1132 | < | neighborList.push_back(make_pair((*j1), (*j2))); |
1133 | < | } |
1134 | < | } |
1457 | > | // In parallel, we need to visit *all* pairs of row |
1458 | > | // & column indicies and will divide labor in the |
1459 | > | // force evaluation later. |
1460 | > | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1461 | > | snap_->wrapVector(dr); |
1462 | > | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1463 | > | if (dr.lengthSquare() < cuts.third) { |
1464 | > | neighborList.push_back(make_pair((*j1), (*j2))); |
1465 | > | } |
1466 | } | |
1467 | } | |
1468 | #else | |
1138 | – | |
1469 | for (vector<int>::iterator j1 = cellList_[m1].begin(); | |
1470 | j1 != cellList_[m1].end(); ++j1) { | |
1471 | for (vector<int>::iterator j2 = cellList_[m2].begin(); | |
1472 | j2 != cellList_[m2].end(); ++j2) { | |
1473 | < | |
1473 | > | |
1474 | // Always do this if we're in different cells or if | |
1475 | < | // we're in the same cell and the global index of the |
1476 | < | // j2 cutoff group is less than the j1 cutoff group |
1477 | < | |
1478 | < | if (m2 != m1 || (*j2) < (*j1)) { |
1475 | > | // we're in the same cell and the global index of |
1476 | > | // the j2 cutoff group is greater than or equal to |
1477 | > | // the j1 cutoff group. Note that Rappaport's code |
1478 | > | // has a "less than" conditional here, but that |
1479 | > | // deals with atom-by-atom computation. OpenMD |
1480 | > | // allows atoms within a single cutoff group to |
1481 | > | // interact with each other. |
1482 | > | |
1483 | > | |
1484 | > | |
1485 | > | if (m2 != m1 || (*j2) >= (*j1) ) { |
1486 | > | |
1487 | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | |
1488 | snap_->wrapVector(dr); | |
1489 | cuts = getGroupCutoffs( (*j1), (*j2) ); | |
# | Line 1164 | Line 1502 | namespace OpenMD { | |
1502 | // branch to do all cutoff group pairs | |
1503 | #ifdef IS_MPI | |
1504 | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { | |
1505 | < | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1505 | > | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1506 | dr = cgColData.position[j2] - cgRowData.position[j1]; | |
1507 | snap_->wrapVector(dr); | |
1508 | cuts = getGroupCutoffs( j1, j2 ); | |
# | Line 1172 | Line 1510 | namespace OpenMD { | |
1510 | neighborList.push_back(make_pair(j1, j2)); | |
1511 | } | |
1512 | } | |
1513 | < | } |
1513 | > | } |
1514 | #else | |
1515 | < | for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1516 | < | for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1515 | > | // include all groups here. |
1516 | > | for (int j1 = 0; j1 < nGroups_; j1++) { |
1517 | > | // include self group interactions j2 == j1 |
1518 | > | for (int j2 = j1; j2 < nGroups_; j2++) { |
1519 | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; | |
1520 | snap_->wrapVector(dr); | |
1521 | cuts = getGroupCutoffs( j1, j2 ); | |
1522 | if (dr.lengthSquare() < cuts.third) { | |
1523 | neighborList.push_back(make_pair(j1, j2)); | |
1524 | } | |
1525 | < | } |
1526 | < | } |
1525 | > | } |
1526 | > | } |
1527 | #endif | |
1528 | } | |
1529 |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |