# | Line 47 | Line 47 | namespace OpenMD { | |
---|---|---|
47 | using namespace std; | |
48 | namespace OpenMD { | |
49 | ||
50 | + | ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { |
51 | + | |
52 | + | // In a parallel computation, row and colum scans must visit all |
53 | + | // surrounding cells (not just the 14 upper triangular blocks that |
54 | + | // are used when the processor can see all pairs) |
55 | + | #ifdef IS_MPI |
56 | + | cellOffsets_.clear(); |
57 | + | cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
58 | + | cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
59 | + | cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
60 | + | cellOffsets_.push_back( Vector3i(-1, 0,-1) ); |
61 | + | cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
62 | + | cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
63 | + | cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
64 | + | cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
65 | + | cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
66 | + | cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
67 | + | cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
68 | + | cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
69 | + | cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
70 | + | cellOffsets_.push_back( Vector3i( 0, 0, 0) ); |
71 | + | cellOffsets_.push_back( Vector3i( 1, 0, 0) ); |
72 | + | cellOffsets_.push_back( Vector3i(-1, 1, 0) ); |
73 | + | cellOffsets_.push_back( Vector3i( 0, 1, 0) ); |
74 | + | cellOffsets_.push_back( Vector3i( 1, 1, 0) ); |
75 | + | cellOffsets_.push_back( Vector3i(-1,-1, 1) ); |
76 | + | cellOffsets_.push_back( Vector3i( 0,-1, 1) ); |
77 | + | cellOffsets_.push_back( Vector3i( 1,-1, 1) ); |
78 | + | cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
79 | + | cellOffsets_.push_back( Vector3i( 0, 0, 1) ); |
80 | + | cellOffsets_.push_back( Vector3i( 1, 0, 1) ); |
81 | + | cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
82 | + | cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
83 | + | cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
84 | + | #endif |
85 | + | } |
86 | + | |
87 | + | |
88 | /** | |
89 | * distributeInitialData is essentially a copy of the older fortran | |
90 | * SimulationSetup | |
91 | */ | |
54 | – | |
92 | void ForceMatrixDecomposition::distributeInitialData() { | |
93 | snap_ = sman_->getCurrentSnapshot(); | |
94 | storageLayout_ = sman_->getStorageLayout(); | |
95 | ff_ = info_->getForceField(); | |
96 | nLocal_ = snap_->getNumberOfAtoms(); | |
97 | < | |
97 | > | |
98 | nGroups_ = info_->getNLocalCutoffGroups(); | |
99 | // gather the information for atomtype IDs (atids): | |
100 | idents = info_->getIdentArray(); | |
# | Line 67 | Line 104 | namespace OpenMD { | |
104 | ||
105 | massFactors = info_->getMassFactors(); | |
106 | ||
107 | < | PairList excludes = info_->getExcludedInteractions(); |
108 | < | PairList oneTwo = info_->getOneTwoInteractions(); |
109 | < | PairList oneThree = info_->getOneThreeInteractions(); |
110 | < | PairList oneFour = info_->getOneFourInteractions(); |
107 | > | PairList* excludes = info_->getExcludedInteractions(); |
108 | > | PairList* oneTwo = info_->getOneTwoInteractions(); |
109 | > | PairList* oneThree = info_->getOneThreeInteractions(); |
110 | > | PairList* oneFour = info_->getOneFourInteractions(); |
111 | ||
112 | #ifdef IS_MPI | |
113 | ||
114 | < | AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
115 | < | AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
79 | < | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
80 | < | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
81 | < | AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
114 | > | MPI::Intracomm row = rowComm.getComm(); |
115 | > | MPI::Intracomm col = colComm.getComm(); |
116 | ||
117 | < | AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
118 | < | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
119 | < | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
120 | < | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
121 | < | AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
117 | > | AtomPlanIntRow = new Plan<int>(row, nLocal_); |
118 | > | AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
119 | > | AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); |
120 | > | AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); |
121 | > | AtomPlanPotRow = new Plan<potVec>(row, nLocal_); |
122 | ||
123 | < | cgCommIntRow = new Communicator<Row,int>(nGroups_); |
124 | < | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
125 | < | cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
126 | < | cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
123 | > | AtomPlanIntColumn = new Plan<int>(col, nLocal_); |
124 | > | AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); |
125 | > | AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); |
126 | > | AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); |
127 | > | AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); |
128 | ||
129 | < | nAtomsInRow_ = AtomCommIntRow->getSize(); |
130 | < | nAtomsInCol_ = AtomCommIntColumn->getSize(); |
131 | < | nGroupsInRow_ = cgCommIntRow->getSize(); |
132 | < | nGroupsInCol_ = cgCommIntColumn->getSize(); |
129 | > | cgPlanIntRow = new Plan<int>(row, nGroups_); |
130 | > | cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); |
131 | > | cgPlanIntColumn = new Plan<int>(col, nGroups_); |
132 | > | cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); |
133 | ||
134 | + | nAtomsInRow_ = AtomPlanIntRow->getSize(); |
135 | + | nAtomsInCol_ = AtomPlanIntColumn->getSize(); |
136 | + | nGroupsInRow_ = cgPlanIntRow->getSize(); |
137 | + | nGroupsInCol_ = cgPlanIntColumn->getSize(); |
138 | + | |
139 | // Modify the data storage objects with the correct layouts and sizes: | |
140 | atomRowData.resize(nAtomsInRow_); | |
141 | atomRowData.setStorageLayout(storageLayout_); | |
# | Line 109 | Line 149 | namespace OpenMD { | |
149 | identsRow.resize(nAtomsInRow_); | |
150 | identsCol.resize(nAtomsInCol_); | |
151 | ||
152 | < | AtomCommIntRow->gather(idents, identsRow); |
153 | < | AtomCommIntColumn->gather(idents, identsCol); |
152 | > | AtomPlanIntRow->gather(idents, identsRow); |
153 | > | AtomPlanIntColumn->gather(idents, identsCol); |
154 | ||
155 | < | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
156 | < | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
157 | < | |
118 | < | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
119 | < | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
155 | > | // allocate memory for the parallel objects |
156 | > | atypesRow.resize(nAtomsInRow_); |
157 | > | atypesCol.resize(nAtomsInCol_); |
158 | ||
159 | < | AtomCommRealRow->gather(massFactors, massFactorsRow); |
160 | < | AtomCommRealColumn->gather(massFactors, massFactorsCol); |
159 | > | for (int i = 0; i < nAtomsInRow_; i++) |
160 | > | atypesRow[i] = ff_->getAtomType(identsRow[i]); |
161 | > | for (int i = 0; i < nAtomsInCol_; i++) |
162 | > | atypesCol[i] = ff_->getAtomType(identsCol[i]); |
163 | ||
164 | + | pot_row.resize(nAtomsInRow_); |
165 | + | pot_col.resize(nAtomsInCol_); |
166 | + | |
167 | + | AtomRowToGlobal.resize(nAtomsInRow_); |
168 | + | AtomColToGlobal.resize(nAtomsInCol_); |
169 | + | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
170 | + | AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
171 | + | |
172 | + | cgRowToGlobal.resize(nGroupsInRow_); |
173 | + | cgColToGlobal.resize(nGroupsInCol_); |
174 | + | cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
175 | + | cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
176 | + | |
177 | + | massFactorsRow.resize(nAtomsInRow_); |
178 | + | massFactorsCol.resize(nAtomsInCol_); |
179 | + | AtomPlanRealRow->gather(massFactors, massFactorsRow); |
180 | + | AtomPlanRealColumn->gather(massFactors, massFactorsCol); |
181 | + | |
182 | groupListRow_.clear(); | |
183 | groupListRow_.resize(nGroupsInRow_); | |
184 | for (int i = 0; i < nGroupsInRow_; i++) { | |
# | Line 143 | Line 201 | namespace OpenMD { | |
201 | } | |
202 | } | |
203 | ||
204 | < | skipsForAtom.clear(); |
205 | < | skipsForAtom.resize(nAtomsInRow_); |
204 | > | excludesForAtom.clear(); |
205 | > | excludesForAtom.resize(nAtomsInRow_); |
206 | toposForAtom.clear(); | |
207 | toposForAtom.resize(nAtomsInRow_); | |
208 | topoDist.clear(); | |
# | Line 155 | Line 213 | namespace OpenMD { | |
213 | for (int j = 0; j < nAtomsInCol_; j++) { | |
214 | int jglob = AtomColToGlobal[j]; | |
215 | ||
216 | < | if (excludes.hasPair(iglob, jglob)) |
217 | < | skipsForAtom[i].push_back(j); |
216 | > | if (excludes->hasPair(iglob, jglob)) |
217 | > | excludesForAtom[i].push_back(j); |
218 | ||
219 | < | if (oneTwo.hasPair(iglob, jglob)) { |
219 | > | if (oneTwo->hasPair(iglob, jglob)) { |
220 | toposForAtom[i].push_back(j); | |
221 | topoDist[i].push_back(1); | |
222 | } else { | |
223 | < | if (oneThree.hasPair(iglob, jglob)) { |
223 | > | if (oneThree->hasPair(iglob, jglob)) { |
224 | toposForAtom[i].push_back(j); | |
225 | topoDist[i].push_back(2); | |
226 | } else { | |
227 | < | if (oneFour.hasPair(iglob, jglob)) { |
227 | > | if (oneFour->hasPair(iglob, jglob)) { |
228 | toposForAtom[i].push_back(j); | |
229 | topoDist[i].push_back(3); | |
230 | } | |
# | Line 177 | Line 235 | namespace OpenMD { | |
235 | ||
236 | #endif | |
237 | ||
238 | + | // allocate memory for the parallel objects |
239 | + | atypesLocal.resize(nLocal_); |
240 | + | |
241 | + | for (int i = 0; i < nLocal_; i++) |
242 | + | atypesLocal[i] = ff_->getAtomType(idents[i]); |
243 | + | |
244 | groupList_.clear(); | |
245 | groupList_.resize(nGroups_); | |
246 | for (int i = 0; i < nGroups_; i++) { | |
# | Line 189 | Line 253 | namespace OpenMD { | |
253 | } | |
254 | } | |
255 | ||
256 | < | skipsForAtom.clear(); |
257 | < | skipsForAtom.resize(nLocal_); |
256 | > | excludesForAtom.clear(); |
257 | > | excludesForAtom.resize(nLocal_); |
258 | toposForAtom.clear(); | |
259 | toposForAtom.resize(nLocal_); | |
260 | topoDist.clear(); | |
# | Line 202 | Line 266 | namespace OpenMD { | |
266 | for (int j = 0; j < nLocal_; j++) { | |
267 | int jglob = AtomLocalToGlobal[j]; | |
268 | ||
269 | < | if (excludes.hasPair(iglob, jglob)) |
270 | < | skipsForAtom[i].push_back(j); |
269 | > | if (excludes->hasPair(iglob, jglob)) |
270 | > | excludesForAtom[i].push_back(j); |
271 | ||
272 | < | if (oneTwo.hasPair(iglob, jglob)) { |
272 | > | if (oneTwo->hasPair(iglob, jglob)) { |
273 | toposForAtom[i].push_back(j); | |
274 | topoDist[i].push_back(1); | |
275 | } else { | |
276 | < | if (oneThree.hasPair(iglob, jglob)) { |
276 | > | if (oneThree->hasPair(iglob, jglob)) { |
277 | toposForAtom[i].push_back(j); | |
278 | topoDist[i].push_back(2); | |
279 | } else { | |
280 | < | if (oneFour.hasPair(iglob, jglob)) { |
280 | > | if (oneFour->hasPair(iglob, jglob)) { |
281 | toposForAtom[i].push_back(j); | |
282 | topoDist[i].push_back(3); | |
283 | } | |
# | Line 223 | Line 287 | namespace OpenMD { | |
287 | } | |
288 | ||
289 | createGtypeCutoffMap(); | |
290 | + | |
291 | } | |
292 | ||
293 | void ForceMatrixDecomposition::createGtypeCutoffMap() { | |
294 | ||
295 | RealType tol = 1e-6; | |
296 | + | largestRcut_ = 0.0; |
297 | RealType rc; | |
298 | int atid; | |
299 | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); | |
300 | < | vector<RealType> atypeCutoff; |
301 | < | atypeCutoff.resize( atypes.size() ); |
300 | > | |
301 | > | map<int, RealType> atypeCutoff; |
302 | ||
303 | for (set<AtomType*>::iterator at = atypes.begin(); | |
304 | at != atypes.end(); ++at){ | |
305 | atid = (*at)->getIdent(); | |
306 | < | |
241 | < | if (userChoseCutoff_) |
306 | > | if (userChoseCutoff_) |
307 | atypeCutoff[atid] = userCutoff_; | |
308 | else | |
309 | atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); | |
310 | } | |
311 | < | |
311 | > | |
312 | vector<RealType> gTypeCutoffs; | |
248 | – | |
313 | // first we do a single loop over the cutoff groups to find the | |
314 | // largest cutoff for any atypes present in this group. | |
315 | #ifdef IS_MPI | |
# | Line 303 | Line 367 | namespace OpenMD { | |
367 | ||
368 | vector<RealType> groupCutoff(nGroups_, 0.0); | |
369 | groupToGtype.resize(nGroups_); | |
306 | – | |
370 | for (int cg1 = 0; cg1 < nGroups_; cg1++) { | |
308 | – | |
371 | groupCutoff[cg1] = 0.0; | |
372 | vector<int> atomList = getAtomsInGroupRow(cg1); | |
311 | – | |
373 | for (vector<int>::iterator ia = atomList.begin(); | |
374 | ia != atomList.end(); ++ia) { | |
375 | int atom1 = (*ia); | |
376 | atid = idents[atom1]; | |
377 | < | if (atypeCutoff[atid] > groupCutoff[cg1]) { |
377 | > | if (atypeCutoff[atid] > groupCutoff[cg1]) |
378 | groupCutoff[cg1] = atypeCutoff[atid]; | |
318 | – | } |
379 | } | |
380 | < | |
380 | > | |
381 | bool gTypeFound = false; | |
382 | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { | |
383 | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { | |
# | Line 325 | Line 385 | namespace OpenMD { | |
385 | gTypeFound = true; | |
386 | } | |
387 | } | |
388 | < | if (!gTypeFound) { |
388 | > | if (!gTypeFound) { |
389 | gTypeCutoffs.push_back( groupCutoff[cg1] ); | |
390 | groupToGtype[cg1] = gTypeCutoffs.size() - 1; | |
391 | } | |
# | Line 334 | Line 394 | namespace OpenMD { | |
394 | ||
395 | // Now we find the maximum group cutoff value present in the simulation | |
396 | ||
397 | < | RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); |
397 | > | RealType groupMax = *max_element(gTypeCutoffs.begin(), |
398 | > | gTypeCutoffs.end()); |
399 | ||
400 | #ifdef IS_MPI | |
401 | < | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); |
401 | > | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, |
402 | > | MPI::MAX); |
403 | #endif | |
404 | ||
405 | RealType tradRcut = groupMax; | |
# | Line 367 | Line 429 | namespace OpenMD { | |
429 | ||
430 | pair<int,int> key = make_pair(i,j); | |
431 | gTypeCutoffMap[key].first = thisRcut; | |
370 | – | |
432 | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; | |
372 | – | |
433 | gTypeCutoffMap[key].second = thisRcut*thisRcut; | |
374 | – | |
434 | gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); | |
376 | – | |
435 | // sanity check | |
436 | ||
437 | if (userChoseCutoff_) { | |
# | Line 433 | Line 491 | namespace OpenMD { | |
491 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
492 | ||
493 | if (storageLayout_ & DataStorage::dslParticlePot) { | |
494 | < | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); |
495 | < | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); |
494 | > | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
495 | > | 0.0); |
496 | > | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), |
497 | > | 0.0); |
498 | } | |
499 | ||
500 | if (storageLayout_ & DataStorage::dslDensity) { | |
# | Line 443 | Line 503 | namespace OpenMD { | |
503 | } | |
504 | ||
505 | if (storageLayout_ & DataStorage::dslFunctional) { | |
506 | < | fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); |
507 | < | fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); |
506 | > | fill(atomRowData.functional.begin(), atomRowData.functional.end(), |
507 | > | 0.0); |
508 | > | fill(atomColData.functional.begin(), atomColData.functional.end(), |
509 | > | 0.0); |
510 | } | |
511 | ||
512 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
# | Line 455 | Line 517 | namespace OpenMD { | |
517 | } | |
518 | ||
519 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | |
520 | < | fill(atomRowData.skippedCharge.begin(), atomRowData.skippedCharge.end(), 0.0); |
521 | < | fill(atomColData.skippedCharge.begin(), atomColData.skippedCharge.end(), 0.0); |
520 | > | fill(atomRowData.skippedCharge.begin(), |
521 | > | atomRowData.skippedCharge.end(), 0.0); |
522 | > | fill(atomColData.skippedCharge.begin(), |
523 | > | atomColData.skippedCharge.end(), 0.0); |
524 | } | |
525 | ||
526 | < | #else |
527 | < | |
526 | > | #endif |
527 | > | // even in parallel, we need to zero out the local arrays: |
528 | > | |
529 | if (storageLayout_ & DataStorage::dslParticlePot) { | |
530 | fill(snap_->atomData.particlePot.begin(), | |
531 | snap_->atomData.particlePot.end(), 0.0); | |
# | Line 482 | Line 547 | namespace OpenMD { | |
547 | fill(snap_->atomData.skippedCharge.begin(), | |
548 | snap_->atomData.skippedCharge.end(), 0.0); | |
549 | } | |
485 | – | #endif |
550 | ||
551 | } | |
552 | ||
# | Line 493 | Line 557 | namespace OpenMD { | |
557 | #ifdef IS_MPI | |
558 | ||
559 | // gather up the atomic positions | |
560 | < | AtomCommVectorRow->gather(snap_->atomData.position, |
560 | > | AtomPlanVectorRow->gather(snap_->atomData.position, |
561 | atomRowData.position); | |
562 | < | AtomCommVectorColumn->gather(snap_->atomData.position, |
562 | > | AtomPlanVectorColumn->gather(snap_->atomData.position, |
563 | atomColData.position); | |
564 | ||
565 | // gather up the cutoff group positions | |
566 | < | cgCommVectorRow->gather(snap_->cgData.position, |
566 | > | |
567 | > | cgPlanVectorRow->gather(snap_->cgData.position, |
568 | cgRowData.position); | |
569 | < | cgCommVectorColumn->gather(snap_->cgData.position, |
569 | > | |
570 | > | cgPlanVectorColumn->gather(snap_->cgData.position, |
571 | cgColData.position); | |
572 | + | |
573 | ||
574 | // if needed, gather the atomic rotation matrices | |
575 | if (storageLayout_ & DataStorage::dslAmat) { | |
576 | < | AtomCommMatrixRow->gather(snap_->atomData.aMat, |
576 | > | AtomPlanMatrixRow->gather(snap_->atomData.aMat, |
577 | atomRowData.aMat); | |
578 | < | AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
578 | > | AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
579 | atomColData.aMat); | |
580 | } | |
581 | ||
582 | // if needed, gather the atomic eletrostatic frames | |
583 | if (storageLayout_ & DataStorage::dslElectroFrame) { | |
584 | < | AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
584 | > | AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
585 | atomRowData.electroFrame); | |
586 | < | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
586 | > | AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
587 | atomColData.electroFrame); | |
588 | } | |
589 | + | |
590 | #endif | |
591 | } | |
592 | ||
# | Line 532 | Line 600 | namespace OpenMD { | |
600 | ||
601 | if (storageLayout_ & DataStorage::dslDensity) { | |
602 | ||
603 | < | AtomCommRealRow->scatter(atomRowData.density, |
603 | > | AtomPlanRealRow->scatter(atomRowData.density, |
604 | snap_->atomData.density); | |
605 | ||
606 | int n = snap_->atomData.density.size(); | |
607 | vector<RealType> rho_tmp(n, 0.0); | |
608 | < | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
608 | > | AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); |
609 | for (int i = 0; i < n; i++) | |
610 | snap_->atomData.density[i] += rho_tmp[i]; | |
611 | } | |
# | Line 553 | Line 621 | namespace OpenMD { | |
621 | storageLayout_ = sman_->getStorageLayout(); | |
622 | #ifdef IS_MPI | |
623 | if (storageLayout_ & DataStorage::dslFunctional) { | |
624 | < | AtomCommRealRow->gather(snap_->atomData.functional, |
624 | > | AtomPlanRealRow->gather(snap_->atomData.functional, |
625 | atomRowData.functional); | |
626 | < | AtomCommRealColumn->gather(snap_->atomData.functional, |
626 | > | AtomPlanRealColumn->gather(snap_->atomData.functional, |
627 | atomColData.functional); | |
628 | } | |
629 | ||
630 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
631 | < | AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
631 | > | AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, |
632 | atomRowData.functionalDerivative); | |
633 | < | AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
633 | > | AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, |
634 | atomColData.functionalDerivative); | |
635 | } | |
636 | #endif | |
# | Line 576 | Line 644 | namespace OpenMD { | |
644 | int n = snap_->atomData.force.size(); | |
645 | vector<Vector3d> frc_tmp(n, V3Zero); | |
646 | ||
647 | < | AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
647 | > | AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); |
648 | for (int i = 0; i < n; i++) { | |
649 | snap_->atomData.force[i] += frc_tmp[i]; | |
650 | frc_tmp[i] = 0.0; | |
651 | } | |
652 | ||
653 | < | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
654 | < | for (int i = 0; i < n; i++) |
653 | > | AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); |
654 | > | for (int i = 0; i < n; i++) { |
655 | snap_->atomData.force[i] += frc_tmp[i]; | |
656 | < | |
657 | < | |
656 | > | } |
657 | > | |
658 | if (storageLayout_ & DataStorage::dslTorque) { | |
659 | ||
660 | < | int nt = snap_->atomData.force.size(); |
660 | > | int nt = snap_->atomData.torque.size(); |
661 | vector<Vector3d> trq_tmp(nt, V3Zero); | |
662 | ||
663 | < | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
664 | < | for (int i = 0; i < n; i++) { |
663 | > | AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); |
664 | > | for (int i = 0; i < nt; i++) { |
665 | snap_->atomData.torque[i] += trq_tmp[i]; | |
666 | trq_tmp[i] = 0.0; | |
667 | } | |
668 | ||
669 | < | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
670 | < | for (int i = 0; i < n; i++) |
669 | > | AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); |
670 | > | for (int i = 0; i < nt; i++) |
671 | snap_->atomData.torque[i] += trq_tmp[i]; | |
672 | } | |
673 | + | |
674 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
675 | + | |
676 | + | int ns = snap_->atomData.skippedCharge.size(); |
677 | + | vector<RealType> skch_tmp(ns, 0.0); |
678 | + | |
679 | + | AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
680 | + | for (int i = 0; i < ns; i++) { |
681 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
682 | + | skch_tmp[i] = 0.0; |
683 | + | } |
684 | + | |
685 | + | AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
686 | + | for (int i = 0; i < ns; i++) |
687 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
688 | + | } |
689 | ||
690 | nLocal_ = snap_->getNumberOfAtoms(); | |
691 | ||
# | Line 610 | Line 694 | namespace OpenMD { | |
694 | ||
695 | // scatter/gather pot_row into the members of my column | |
696 | ||
697 | < | AtomCommPotRow->scatter(pot_row, pot_temp); |
697 | > | AtomPlanPotRow->scatter(pot_row, pot_temp); |
698 | ||
699 | for (int ii = 0; ii < pot_temp.size(); ii++ ) | |
700 | pairwisePot += pot_temp[ii]; | |
# | Line 618 | Line 702 | namespace OpenMD { | |
702 | fill(pot_temp.begin(), pot_temp.end(), | |
703 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
704 | ||
705 | < | AtomCommPotColumn->scatter(pot_col, pot_temp); |
705 | > | AtomPlanPotColumn->scatter(pot_col, pot_temp); |
706 | ||
707 | for (int ii = 0; ii < pot_temp.size(); ii++ ) | |
708 | pairwisePot += pot_temp[ii]; | |
709 | + | |
710 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
711 | + | RealType ploc1 = pairwisePot[ii]; |
712 | + | RealType ploc2 = 0.0; |
713 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
714 | + | pairwisePot[ii] = ploc2; |
715 | + | } |
716 | + | |
717 | #endif | |
718 | ||
719 | } | |
# | Line 724 | Line 816 | namespace OpenMD { | |
816 | return d; | |
817 | } | |
818 | ||
819 | < | vector<int> ForceMatrixDecomposition::getSkipsForAtom(int atom1) { |
820 | < | return skipsForAtom[atom1]; |
819 | > | vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
820 | > | return excludesForAtom[atom1]; |
821 | } | |
822 | ||
823 | /** | |
824 | < | * There are a number of reasons to skip a pair or a |
733 | < | * particle. Mostly we do this to exclude atoms who are involved in |
734 | < | * short range interactions (bonds, bends, torsions), but we also |
735 | < | * need to exclude some overcounted interactions that result from |
824 | > | * We need to exclude some overcounted interactions that result from |
825 | * the parallel decomposition. | |
826 | */ | |
827 | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { | |
828 | int unique_id_1, unique_id_2; | |
829 | < | |
829 | > | |
830 | #ifdef IS_MPI | |
831 | // in MPI, we have to look up the unique IDs for each atom | |
832 | unique_id_1 = AtomRowToGlobal[atom1]; | |
# | Line 752 | Line 841 | namespace OpenMD { | |
841 | } else { | |
842 | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | |
843 | } | |
844 | + | #endif |
845 | + | return false; |
846 | + | } |
847 | + | |
848 | + | /** |
849 | + | * We need to handle the interactions for atoms who are involved in |
850 | + | * the same rigid body as well as some short range interactions |
851 | + | * (bonds, bends, torsions) differently from other interactions. |
852 | + | * We'll still visit the pairwise routines, but with a flag that |
853 | + | * tells those routines to exclude the pair from direct long range |
854 | + | * interactions. Some indirect interactions (notably reaction |
855 | + | * field) must still be handled for these pairs. |
856 | + | */ |
857 | + | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
858 | + | int unique_id_2; |
859 | + | #ifdef IS_MPI |
860 | + | // in MPI, we have to look up the unique IDs for the row atom. |
861 | + | unique_id_2 = AtomColToGlobal[atom2]; |
862 | #else | |
863 | // in the normal loop, the atom numbers are unique | |
757 | – | unique_id_1 = atom1; |
864 | unique_id_2 = atom2; | |
865 | #endif | |
866 | ||
867 | < | for (vector<int>::iterator i = skipsForAtom[atom1].begin(); |
868 | < | i != skipsForAtom[atom1].end(); ++i) { |
867 | > | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
868 | > | i != excludesForAtom[atom1].end(); ++i) { |
869 | if ( (*i) == unique_id_2 ) return true; | |
870 | } | |
871 | ||
# | Line 785 | Line 891 | namespace OpenMD { | |
891 | ||
892 | // filling interaction blocks with pointers | |
893 | void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, | |
894 | < | int atom1, int atom2) { |
894 | > | int atom1, int atom2) { |
895 | > | |
896 | > | idat.excluded = excludeAtomPair(atom1, atom2); |
897 | > | |
898 | #ifdef IS_MPI | |
899 | + | idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
900 | + | //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
901 | + | // ff_->getAtomType(identsCol[atom2]) ); |
902 | ||
791 | – | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
792 | – | ff_->getAtomType(identsCol[atom2]) ); |
793 | – | |
903 | if (storageLayout_ & DataStorage::dslAmat) { | |
904 | idat.A1 = &(atomRowData.aMat[atom1]); | |
905 | idat.A2 = &(atomColData.aMat[atom2]); | |
# | Line 826 | Line 935 | namespace OpenMD { | |
935 | idat.particlePot2 = &(atomColData.particlePot[atom2]); | |
936 | } | |
937 | ||
938 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
939 | + | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
940 | + | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
941 | + | } |
942 | + | |
943 | #else | |
944 | ||
945 | < | idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
946 | < | ff_->getAtomType(idents[atom2]) ); |
945 | > | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
946 | > | //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
947 | > | // ff_->getAtomType(idents[atom2]) ); |
948 | ||
949 | if (storageLayout_ & DataStorage::dslAmat) { | |
950 | idat.A1 = &(snap_->atomData.aMat[atom1]); | |
# | Line 866 | Line 981 | namespace OpenMD { | |
981 | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); | |
982 | } | |
983 | ||
984 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
985 | + | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
986 | + | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
987 | + | } |
988 | #endif | |
989 | } | |
990 | ||
# | Line 886 | Line 1005 | namespace OpenMD { | |
1005 | ||
1006 | } | |
1007 | ||
889 | – | |
890 | – | void ForceMatrixDecomposition::fillSkipData(InteractionData &idat, |
891 | – | int atom1, int atom2) { |
892 | – | #ifdef IS_MPI |
893 | – | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
894 | – | ff_->getAtomType(identsCol[atom2]) ); |
895 | – | |
896 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { |
897 | – | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
898 | – | idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
899 | – | } |
900 | – | |
901 | – | if (storageLayout_ & DataStorage::dslTorque) { |
902 | – | idat.t1 = &(atomRowData.torque[atom1]); |
903 | – | idat.t2 = &(atomColData.torque[atom2]); |
904 | – | } |
905 | – | |
906 | – | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
907 | – | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
908 | – | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
909 | – | } |
910 | – | #else |
911 | – | idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
912 | – | ff_->getAtomType(idents[atom2]) ); |
913 | – | |
914 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { |
915 | – | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
916 | – | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
917 | – | } |
918 | – | |
919 | – | if (storageLayout_ & DataStorage::dslTorque) { |
920 | – | idat.t1 = &(snap_->atomData.torque[atom1]); |
921 | – | idat.t2 = &(snap_->atomData.torque[atom2]); |
922 | – | } |
923 | – | |
924 | – | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
925 | – | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
926 | – | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
927 | – | } |
928 | – | #endif |
929 | – | } |
930 | – | |
931 | – | |
932 | – | void ForceMatrixDecomposition::unpackSkipData(InteractionData &idat, int atom1, int atom2) { |
933 | – | #ifdef IS_MPI |
934 | – | pot_row[atom1] += 0.5 * *(idat.pot); |
935 | – | pot_col[atom2] += 0.5 * *(idat.pot); |
936 | – | #else |
937 | – | pairwisePot += *(idat.pot); |
938 | – | #endif |
939 | – | |
940 | – | } |
941 | – | |
942 | – | |
1008 | /* | |
1009 | * buildNeighborList | |
1010 | * | |
# | Line 950 | Line 1015 | namespace OpenMD { | |
1015 | ||
1016 | vector<pair<int, int> > neighborList; | |
1017 | groupCutoffs cuts; | |
1018 | + | bool doAllPairs = false; |
1019 | + | |
1020 | #ifdef IS_MPI | |
1021 | cellListRow_.clear(); | |
1022 | cellListCol_.clear(); | |
# | Line 969 | Line 1036 | namespace OpenMD { | |
1036 | nCells_.y() = (int) ( Hy.length() )/ rList_; | |
1037 | nCells_.z() = (int) ( Hz.length() )/ rList_; | |
1038 | ||
1039 | + | // handle small boxes where the cell offsets can end up repeating cells |
1040 | + | |
1041 | + | if (nCells_.x() < 3) doAllPairs = true; |
1042 | + | if (nCells_.y() < 3) doAllPairs = true; |
1043 | + | if (nCells_.z() < 3) doAllPairs = true; |
1044 | + | |
1045 | Mat3x3d invHmat = snap_->getInvHmat(); | |
1046 | Vector3d rs, scaled, dr; | |
1047 | Vector3i whichCell; | |
# | Line 982 | Line 1055 | namespace OpenMD { | |
1055 | cellList_.resize(nCtot); | |
1056 | #endif | |
1057 | ||
1058 | + | if (!doAllPairs) { |
1059 | #ifdef IS_MPI | |
986 | – | for (int i = 0; i < nGroupsInRow_; i++) { |
987 | – | rs = cgRowData.position[i]; |
1060 | ||
1061 | < | // scaled positions relative to the box vectors |
1062 | < | scaled = invHmat * rs; |
1063 | < | |
1064 | < | // wrap the vector back into the unit box by subtracting integer box |
1065 | < | // numbers |
1066 | < | for (int j = 0; j < 3; j++) { |
1067 | < | scaled[j] -= roundMe(scaled[j]); |
1068 | < | scaled[j] += 0.5; |
1061 | > | for (int i = 0; i < nGroupsInRow_; i++) { |
1062 | > | rs = cgRowData.position[i]; |
1063 | > | |
1064 | > | // scaled positions relative to the box vectors |
1065 | > | scaled = invHmat * rs; |
1066 | > | |
1067 | > | // wrap the vector back into the unit box by subtracting integer box |
1068 | > | // numbers |
1069 | > | for (int j = 0; j < 3; j++) { |
1070 | > | scaled[j] -= roundMe(scaled[j]); |
1071 | > | scaled[j] += 0.5; |
1072 | > | } |
1073 | > | |
1074 | > | // find xyz-indices of cell that cutoffGroup is in. |
1075 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1076 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1077 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1078 | > | |
1079 | > | // find single index of this cell: |
1080 | > | cellIndex = Vlinear(whichCell, nCells_); |
1081 | > | |
1082 | > | // add this cutoff group to the list of groups in this cell; |
1083 | > | cellListRow_[cellIndex].push_back(i); |
1084 | } | |
1085 | < | |
1086 | < | // find xyz-indices of cell that cutoffGroup is in. |
1087 | < | whichCell.x() = nCells_.x() * scaled.x(); |
1088 | < | whichCell.y() = nCells_.y() * scaled.y(); |
1089 | < | whichCell.z() = nCells_.z() * scaled.z(); |
1090 | < | |
1091 | < | // find single index of this cell: |
1092 | < | cellIndex = Vlinear(whichCell, nCells_); |
1093 | < | |
1094 | < | // add this cutoff group to the list of groups in this cell; |
1095 | < | cellListRow_[cellIndex].push_back(i); |
1096 | < | } |
1097 | < | |
1098 | < | for (int i = 0; i < nGroupsInCol_; i++) { |
1099 | < | rs = cgColData.position[i]; |
1100 | < | |
1101 | < | // scaled positions relative to the box vectors |
1102 | < | scaled = invHmat * rs; |
1103 | < | |
1104 | < | // wrap the vector back into the unit box by subtracting integer box |
1105 | < | // numbers |
1106 | < | for (int j = 0; j < 3; j++) { |
1107 | < | scaled[j] -= roundMe(scaled[j]); |
1021 | < | scaled[j] += 0.5; |
1085 | > | for (int i = 0; i < nGroupsInCol_; i++) { |
1086 | > | rs = cgColData.position[i]; |
1087 | > | |
1088 | > | // scaled positions relative to the box vectors |
1089 | > | scaled = invHmat * rs; |
1090 | > | |
1091 | > | // wrap the vector back into the unit box by subtracting integer box |
1092 | > | // numbers |
1093 | > | for (int j = 0; j < 3; j++) { |
1094 | > | scaled[j] -= roundMe(scaled[j]); |
1095 | > | scaled[j] += 0.5; |
1096 | > | } |
1097 | > | |
1098 | > | // find xyz-indices of cell that cutoffGroup is in. |
1099 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1100 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1101 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1102 | > | |
1103 | > | // find single index of this cell: |
1104 | > | cellIndex = Vlinear(whichCell, nCells_); |
1105 | > | |
1106 | > | // add this cutoff group to the list of groups in this cell; |
1107 | > | cellListCol_[cellIndex].push_back(i); |
1108 | } | |
1109 | < | |
1024 | < | // find xyz-indices of cell that cutoffGroup is in. |
1025 | < | whichCell.x() = nCells_.x() * scaled.x(); |
1026 | < | whichCell.y() = nCells_.y() * scaled.y(); |
1027 | < | whichCell.z() = nCells_.z() * scaled.z(); |
1028 | < | |
1029 | < | // find single index of this cell: |
1030 | < | cellIndex = Vlinear(whichCell, nCells_); |
1031 | < | |
1032 | < | // add this cutoff group to the list of groups in this cell; |
1033 | < | cellListCol_[cellIndex].push_back(i); |
1034 | < | } |
1109 | > | |
1110 | #else | |
1111 | < | for (int i = 0; i < nGroups_; i++) { |
1112 | < | rs = snap_->cgData.position[i]; |
1113 | < | |
1114 | < | // scaled positions relative to the box vectors |
1115 | < | scaled = invHmat * rs; |
1116 | < | |
1117 | < | // wrap the vector back into the unit box by subtracting integer box |
1118 | < | // numbers |
1119 | < | for (int j = 0; j < 3; j++) { |
1120 | < | scaled[j] -= roundMe(scaled[j]); |
1121 | < | scaled[j] += 0.5; |
1111 | > | for (int i = 0; i < nGroups_; i++) { |
1112 | > | rs = snap_->cgData.position[i]; |
1113 | > | |
1114 | > | // scaled positions relative to the box vectors |
1115 | > | scaled = invHmat * rs; |
1116 | > | |
1117 | > | // wrap the vector back into the unit box by subtracting integer box |
1118 | > | // numbers |
1119 | > | for (int j = 0; j < 3; j++) { |
1120 | > | scaled[j] -= roundMe(scaled[j]); |
1121 | > | scaled[j] += 0.5; |
1122 | > | } |
1123 | > | |
1124 | > | // find xyz-indices of cell that cutoffGroup is in. |
1125 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1126 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1127 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1128 | > | |
1129 | > | // find single index of this cell: |
1130 | > | cellIndex = Vlinear(whichCell, nCells_); |
1131 | > | |
1132 | > | // add this cutoff group to the list of groups in this cell; |
1133 | > | cellList_[cellIndex].push_back(i); |
1134 | } | |
1135 | ||
1049 | – | // find xyz-indices of cell that cutoffGroup is in. |
1050 | – | whichCell.x() = nCells_.x() * scaled.x(); |
1051 | – | whichCell.y() = nCells_.y() * scaled.y(); |
1052 | – | whichCell.z() = nCells_.z() * scaled.z(); |
1053 | – | |
1054 | – | // find single index of this cell: |
1055 | – | cellIndex = Vlinear(whichCell, nCells_); |
1056 | – | |
1057 | – | // add this cutoff group to the list of groups in this cell; |
1058 | – | cellList_[cellIndex].push_back(i); |
1059 | – | } |
1136 | #endif | |
1137 | ||
1138 | < | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1139 | < | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1140 | < | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1141 | < | Vector3i m1v(m1x, m1y, m1z); |
1142 | < | int m1 = Vlinear(m1v, nCells_); |
1067 | < | |
1068 | < | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1069 | < | os != cellOffsets_.end(); ++os) { |
1138 | > | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1139 | > | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1140 | > | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1141 | > | Vector3i m1v(m1x, m1y, m1z); |
1142 | > | int m1 = Vlinear(m1v, nCells_); |
1143 | ||
1144 | < | Vector3i m2v = m1v + (*os); |
1145 | < | |
1146 | < | if (m2v.x() >= nCells_.x()) { |
1147 | < | m2v.x() = 0; |
1148 | < | } else if (m2v.x() < 0) { |
1076 | < | m2v.x() = nCells_.x() - 1; |
1077 | < | } |
1078 | < | |
1079 | < | if (m2v.y() >= nCells_.y()) { |
1080 | < | m2v.y() = 0; |
1081 | < | } else if (m2v.y() < 0) { |
1082 | < | m2v.y() = nCells_.y() - 1; |
1083 | < | } |
1084 | < | |
1085 | < | if (m2v.z() >= nCells_.z()) { |
1086 | < | m2v.z() = 0; |
1087 | < | } else if (m2v.z() < 0) { |
1088 | < | m2v.z() = nCells_.z() - 1; |
1089 | < | } |
1090 | < | |
1091 | < | int m2 = Vlinear (m2v, nCells_); |
1144 | > | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1145 | > | os != cellOffsets_.end(); ++os) { |
1146 | > | |
1147 | > | Vector3i m2v = m1v + (*os); |
1148 | > | |
1149 | ||
1150 | < | #ifdef IS_MPI |
1151 | < | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1152 | < | j1 != cellListRow_[m1].end(); ++j1) { |
1153 | < | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1154 | < | j2 != cellListCol_[m2].end(); ++j2) { |
1155 | < | |
1156 | < | // Always do this if we're in different cells or if |
1157 | < | // we're in the same cell and the global index of the |
1158 | < | // j2 cutoff group is less than the j1 cutoff group |
1150 | > | if (m2v.x() >= nCells_.x()) { |
1151 | > | m2v.x() = 0; |
1152 | > | } else if (m2v.x() < 0) { |
1153 | > | m2v.x() = nCells_.x() - 1; |
1154 | > | } |
1155 | > | |
1156 | > | if (m2v.y() >= nCells_.y()) { |
1157 | > | m2v.y() = 0; |
1158 | > | } else if (m2v.y() < 0) { |
1159 | > | m2v.y() = nCells_.y() - 1; |
1160 | > | } |
1161 | > | |
1162 | > | if (m2v.z() >= nCells_.z()) { |
1163 | > | m2v.z() = 0; |
1164 | > | } else if (m2v.z() < 0) { |
1165 | > | m2v.z() = nCells_.z() - 1; |
1166 | > | } |
1167 | ||
1168 | < | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1168 | > | int m2 = Vlinear (m2v, nCells_); |
1169 | > | |
1170 | > | #ifdef IS_MPI |
1171 | > | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1172 | > | j1 != cellListRow_[m1].end(); ++j1) { |
1173 | > | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1174 | > | j2 != cellListCol_[m2].end(); ++j2) { |
1175 | > | |
1176 | > | // In parallel, we need to visit *all* pairs of row |
1177 | > | // & column indicies and will divide labor in the |
1178 | > | // force evaluation later. |
1179 | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | |
1180 | snap_->wrapVector(dr); | |
1181 | cuts = getGroupCutoffs( (*j1), (*j2) ); | |
1182 | if (dr.lengthSquare() < cuts.third) { | |
1183 | neighborList.push_back(make_pair((*j1), (*j2))); | |
1184 | < | } |
1184 | > | } |
1185 | } | |
1186 | } | |
1112 | – | } |
1187 | #else | |
1188 | < | |
1189 | < | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1190 | < | j1 != cellList_[m1].end(); ++j1) { |
1191 | < | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1192 | < | j2 != cellList_[m2].end(); ++j2) { |
1193 | < | |
1194 | < | // Always do this if we're in different cells or if |
1195 | < | // we're in the same cell and the global index of the |
1196 | < | // j2 cutoff group is less than the j1 cutoff group |
1197 | < | |
1198 | < | if (m2 != m1 || (*j2) < (*j1)) { |
1199 | < | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1200 | < | snap_->wrapVector(dr); |
1201 | < | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1202 | < | if (dr.lengthSquare() < cuts.third) { |
1203 | < | neighborList.push_back(make_pair((*j1), (*j2))); |
1188 | > | |
1189 | > | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1190 | > | j1 != cellList_[m1].end(); ++j1) { |
1191 | > | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1192 | > | j2 != cellList_[m2].end(); ++j2) { |
1193 | > | |
1194 | > | // Always do this if we're in different cells or if |
1195 | > | // we're in the same cell and the global index of the |
1196 | > | // j2 cutoff group is less than the j1 cutoff group |
1197 | > | |
1198 | > | if (m2 != m1 || (*j2) < (*j1)) { |
1199 | > | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1200 | > | snap_->wrapVector(dr); |
1201 | > | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1202 | > | if (dr.lengthSquare() < cuts.third) { |
1203 | > | neighborList.push_back(make_pair((*j1), (*j2))); |
1204 | > | } |
1205 | } | |
1206 | } | |
1207 | } | |
1133 | – | } |
1208 | #endif | |
1209 | + | } |
1210 | } | |
1211 | } | |
1212 | } | |
1213 | + | } else { |
1214 | + | // branch to do all cutoff group pairs |
1215 | + | #ifdef IS_MPI |
1216 | + | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1217 | + | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1218 | + | dr = cgColData.position[j2] - cgRowData.position[j1]; |
1219 | + | snap_->wrapVector(dr); |
1220 | + | cuts = getGroupCutoffs( j1, j2 ); |
1221 | + | if (dr.lengthSquare() < cuts.third) { |
1222 | + | neighborList.push_back(make_pair(j1, j2)); |
1223 | + | } |
1224 | + | } |
1225 | + | } |
1226 | + | #else |
1227 | + | for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1228 | + | for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1229 | + | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1230 | + | snap_->wrapVector(dr); |
1231 | + | cuts = getGroupCutoffs( j1, j2 ); |
1232 | + | if (dr.lengthSquare() < cuts.third) { |
1233 | + | neighborList.push_back(make_pair(j1, j2)); |
1234 | + | } |
1235 | + | } |
1236 | + | } |
1237 | + | #endif |
1238 | } | |
1239 | < | |
1239 | > | |
1240 | // save the local cutoff group positions for the check that is | |
1241 | // done on each loop: | |
1242 | saved_CG_positions_.clear(); | |
1243 | for (int i = 0; i < nGroups_; i++) | |
1244 | saved_CG_positions_.push_back(snap_->cgData.position[i]); | |
1245 | < | |
1245 | > | |
1246 | return neighborList; | |
1247 | } | |
1248 | } //end namespace OpenMD |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |