# | Line 95 | Line 95 | namespace OpenMD { | |
---|---|---|
95 | storageLayout_ = sman_->getStorageLayout(); | |
96 | ff_ = info_->getForceField(); | |
97 | nLocal_ = snap_->getNumberOfAtoms(); | |
98 | < | |
98 | > | |
99 | nGroups_ = info_->getNLocalCutoffGroups(); | |
100 | // gather the information for atomtype IDs (atids): | |
101 | idents = info_->getIdentArray(); | |
# | Line 109 | Line 109 | namespace OpenMD { | |
109 | PairList* oneTwo = info_->getOneTwoInteractions(); | |
110 | PairList* oneThree = info_->getOneThreeInteractions(); | |
111 | PairList* oneFour = info_->getOneFourInteractions(); | |
112 | < | |
112 | > | |
113 | > | if (needVelocities_) |
114 | > | snap_->cgData.setStorageLayout(DataStorage::dslPosition | |
115 | > | DataStorage::dslVelocity); |
116 | > | else |
117 | > | snap_->cgData.setStorageLayout(DataStorage::dslPosition); |
118 | > | |
119 | #ifdef IS_MPI | |
120 | ||
121 | MPI::Intracomm row = rowComm.getComm(); | |
# | Line 145 | Line 151 | namespace OpenMD { | |
151 | cgRowData.resize(nGroupsInRow_); | |
152 | cgRowData.setStorageLayout(DataStorage::dslPosition); | |
153 | cgColData.resize(nGroupsInCol_); | |
154 | < | cgColData.setStorageLayout(DataStorage::dslPosition); |
155 | < | |
154 | > | if (needVelocities_) |
155 | > | // we only need column velocities if we need them. |
156 | > | cgColData.setStorageLayout(DataStorage::dslPosition | |
157 | > | DataStorage::dslVelocity); |
158 | > | else |
159 | > | cgColData.setStorageLayout(DataStorage::dslPosition); |
160 | > | |
161 | identsRow.resize(nAtomsInRow_); | |
162 | identsCol.resize(nAtomsInCol_); | |
163 | ||
# | Line 523 | Line 534 | namespace OpenMD { | |
534 | atomRowData.skippedCharge.end(), 0.0); | |
535 | fill(atomColData.skippedCharge.begin(), | |
536 | atomColData.skippedCharge.end(), 0.0); | |
537 | + | } |
538 | + | |
539 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
540 | + | fill(atomRowData.flucQFrc.begin(), |
541 | + | atomRowData.flucQFrc.end(), 0.0); |
542 | + | fill(atomColData.flucQFrc.begin(), |
543 | + | atomColData.flucQFrc.end(), 0.0); |
544 | + | } |
545 | + | |
546 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
547 | + | fill(atomRowData.electricField.begin(), |
548 | + | atomRowData.electricField.end(), V3Zero); |
549 | + | fill(atomColData.electricField.begin(), |
550 | + | atomColData.electricField.end(), V3Zero); |
551 | } | |
552 | ||
553 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
554 | + | fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), |
555 | + | 0.0); |
556 | + | fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), |
557 | + | 0.0); |
558 | + | } |
559 | + | |
560 | #endif | |
561 | // even in parallel, we need to zero out the local arrays: | |
562 | ||
# | Line 537 | Line 569 | namespace OpenMD { | |
569 | fill(snap_->atomData.density.begin(), | |
570 | snap_->atomData.density.end(), 0.0); | |
571 | } | |
572 | + | |
573 | if (storageLayout_ & DataStorage::dslFunctional) { | |
574 | fill(snap_->atomData.functional.begin(), | |
575 | snap_->atomData.functional.end(), 0.0); | |
576 | } | |
577 | + | |
578 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
579 | fill(snap_->atomData.functionalDerivative.begin(), | |
580 | snap_->atomData.functionalDerivative.end(), 0.0); | |
581 | } | |
582 | + | |
583 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | |
584 | fill(snap_->atomData.skippedCharge.begin(), | |
585 | snap_->atomData.skippedCharge.end(), 0.0); | |
586 | } | |
587 | < | |
587 | > | |
588 | > | if (storageLayout_ & DataStorage::dslElectricField) { |
589 | > | fill(snap_->atomData.electricField.begin(), |
590 | > | snap_->atomData.electricField.end(), V3Zero); |
591 | > | } |
592 | } | |
593 | ||
594 | ||
# | Line 572 | Line 611 | namespace OpenMD { | |
611 | cgPlanVectorColumn->gather(snap_->cgData.position, | |
612 | cgColData.position); | |
613 | ||
614 | + | |
615 | + | |
616 | + | if (needVelocities_) { |
617 | + | // gather up the atomic velocities |
618 | + | AtomPlanVectorColumn->gather(snap_->atomData.velocity, |
619 | + | atomColData.velocity); |
620 | + | |
621 | + | cgPlanVectorColumn->gather(snap_->cgData.velocity, |
622 | + | cgColData.velocity); |
623 | + | } |
624 | + | |
625 | ||
626 | // if needed, gather the atomic rotation matrices | |
627 | if (storageLayout_ & DataStorage::dslAmat) { | |
# | Line 589 | Line 639 | namespace OpenMD { | |
639 | atomColData.electroFrame); | |
640 | } | |
641 | ||
642 | + | // if needed, gather the atomic fluctuating charge values |
643 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
644 | + | AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
645 | + | atomRowData.flucQPos); |
646 | + | AtomPlanRealColumn->gather(snap_->atomData.flucQPos, |
647 | + | atomColData.flucQPos); |
648 | + | } |
649 | + | |
650 | #endif | |
651 | } | |
652 | ||
# | Line 611 | Line 669 | namespace OpenMD { | |
669 | for (int i = 0; i < n; i++) | |
670 | snap_->atomData.density[i] += rho_tmp[i]; | |
671 | } | |
672 | + | |
673 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
674 | + | |
675 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, |
676 | + | snap_->atomData.electricField); |
677 | + | |
678 | + | int n = snap_->atomData.electricField.size(); |
679 | + | vector<Vector3d> field_tmp(n, V3Zero); |
680 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); |
681 | + | for (int i = 0; i < n; i++) |
682 | + | snap_->atomData.electricField[i] += field_tmp[i]; |
683 | + | } |
684 | #endif | |
685 | } | |
686 | ||
# | Line 690 | Line 760 | namespace OpenMD { | |
760 | ||
761 | } | |
762 | ||
763 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
764 | + | |
765 | + | int nq = snap_->atomData.flucQFrc.size(); |
766 | + | vector<RealType> fqfrc_tmp(nq, 0.0); |
767 | + | |
768 | + | AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); |
769 | + | for (int i = 0; i < nq; i++) { |
770 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
771 | + | fqfrc_tmp[i] = 0.0; |
772 | + | } |
773 | + | |
774 | + | AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); |
775 | + | for (int i = 0; i < nq; i++) |
776 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
777 | + | |
778 | + | } |
779 | + | |
780 | nLocal_ = snap_->getNumberOfAtoms(); | |
781 | ||
782 | vector<potVec> pot_temp(nLocal_, | |
# | Line 701 | Line 788 | namespace OpenMD { | |
788 | ||
789 | for (int ii = 0; ii < pot_temp.size(); ii++ ) | |
790 | pairwisePot += pot_temp[ii]; | |
791 | < | |
791 | > | |
792 | > | if (storageLayout_ & DataStorage::dslParticlePot) { |
793 | > | // This is the pairwise contribution to the particle pot. The |
794 | > | // embedding contribution is added in each of the low level |
795 | > | // non-bonded routines. In single processor, this is done in |
796 | > | // unpackInteractionData, not in collectData. |
797 | > | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
798 | > | for (int i = 0; i < nLocal_; i++) { |
799 | > | // factor of two is because the total potential terms are divided |
800 | > | // by 2 in parallel due to row/ column scatter |
801 | > | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
802 | > | } |
803 | > | } |
804 | > | } |
805 | > | |
806 | fill(pot_temp.begin(), pot_temp.end(), | |
807 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
808 | ||
# | Line 709 | Line 810 | namespace OpenMD { | |
810 | ||
811 | for (int ii = 0; ii < pot_temp.size(); ii++ ) | |
812 | pairwisePot += pot_temp[ii]; | |
813 | + | |
814 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
815 | + | // This is the pairwise contribution to the particle pot. The |
816 | + | // embedding contribution is added in each of the low level |
817 | + | // non-bonded routines. In single processor, this is done in |
818 | + | // unpackInteractionData, not in collectData. |
819 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
820 | + | for (int i = 0; i < nLocal_; i++) { |
821 | + | // factor of two is because the total potential terms are divided |
822 | + | // by 2 in parallel due to row/ column scatter |
823 | + | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
824 | + | } |
825 | + | } |
826 | + | } |
827 | ||
828 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
829 | + | int npp = snap_->atomData.particlePot.size(); |
830 | + | vector<RealType> ppot_temp(npp, 0.0); |
831 | + | |
832 | + | // This is the direct or embedding contribution to the particle |
833 | + | // pot. |
834 | + | |
835 | + | AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); |
836 | + | for (int i = 0; i < npp; i++) { |
837 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; |
838 | + | } |
839 | + | |
840 | + | fill(ppot_temp.begin(), ppot_temp.end(), 0.0); |
841 | + | |
842 | + | AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); |
843 | + | for (int i = 0; i < npp; i++) { |
844 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; |
845 | + | } |
846 | + | } |
847 | + | |
848 | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | |
849 | RealType ploc1 = pairwisePot[ii]; | |
850 | RealType ploc2 = 0.0; | |
# | Line 723 | Line 858 | namespace OpenMD { | |
858 | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | |
859 | embeddingPot[ii] = ploc2; | |
860 | } | |
861 | + | |
862 | + | // Here be dragons. |
863 | + | MPI::Intracomm col = colComm.getComm(); |
864 | ||
865 | + | col.Allreduce(MPI::IN_PLACE, |
866 | + | &snap_->frameData.conductiveHeatFlux[0], 3, |
867 | + | MPI::REALTYPE, MPI::SUM); |
868 | + | |
869 | + | |
870 | #endif | |
871 | ||
872 | } | |
# | Line 766 | Line 909 | namespace OpenMD { | |
909 | ||
910 | snap_->wrapVector(d); | |
911 | return d; | |
912 | + | } |
913 | + | |
914 | + | Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ |
915 | + | #ifdef IS_MPI |
916 | + | return cgColData.velocity[cg2]; |
917 | + | #else |
918 | + | return snap_->cgData.velocity[cg2]; |
919 | + | #endif |
920 | + | } |
921 | + | |
922 | + | Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ |
923 | + | #ifdef IS_MPI |
924 | + | return atomColData.velocity[atom2]; |
925 | + | #else |
926 | + | return snap_->atomData.velocity[atom2]; |
927 | + | #endif |
928 | } | |
929 | ||
930 | ||
# | Line 950 | Line 1109 | namespace OpenMD { | |
1109 | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); | |
1110 | } | |
1111 | ||
1112 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1113 | + | idat.flucQ1 = &(atomRowData.flucQPos[atom1]); |
1114 | + | idat.flucQ2 = &(atomColData.flucQPos[atom2]); |
1115 | + | } |
1116 | + | |
1117 | #else | |
1118 | + | |
1119 | ||
1120 | + | // cerr << "atoms = " << atom1 << " " << atom2 << "\n"; |
1121 | + | // cerr << "pos1 = " << snap_->atomData.position[atom1] << "\n"; |
1122 | + | // cerr << "pos2 = " << snap_->atomData.position[atom2] << "\n"; |
1123 | + | |
1124 | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); | |
1125 | //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), | |
1126 | // ff_->getAtomType(idents[atom2]) ); | |
# | Line 995 | Line 1164 | namespace OpenMD { | |
1164 | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); | |
1165 | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); | |
1166 | } | |
1167 | + | |
1168 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1169 | + | idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); |
1170 | + | idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); |
1171 | + | } |
1172 | + | |
1173 | #endif | |
1174 | } | |
1175 | ||
# | Line 1006 | Line 1181 | namespace OpenMD { | |
1181 | ||
1182 | atomRowData.force[atom1] += *(idat.f1); | |
1183 | atomColData.force[atom2] -= *(idat.f1); | |
1184 | + | |
1185 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
1186 | + | atomRowData.flucQFrc[atom1] += *(idat.dVdFQ1); |
1187 | + | atomColData.flucQFrc[atom2] += *(idat.dVdFQ2); |
1188 | + | } |
1189 | + | |
1190 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
1191 | + | atomRowData.electricField[atom1] += *(idat.eField1); |
1192 | + | atomColData.electricField[atom2] += *(idat.eField2); |
1193 | + | } |
1194 | + | |
1195 | #else | |
1196 | pairwisePot += *(idat.pot); | |
1197 | ||
1198 | snap_->atomData.force[atom1] += *(idat.f1); | |
1199 | snap_->atomData.force[atom2] -= *(idat.f1); | |
1200 | + | |
1201 | + | if (idat.doParticlePot) { |
1202 | + | // This is the pairwise contribution to the particle pot. The |
1203 | + | // embedding contribution is added in each of the low level |
1204 | + | // non-bonded routines. In parallel, this calculation is done |
1205 | + | // in collectData, not in unpackInteractionData. |
1206 | + | snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); |
1207 | + | snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); |
1208 | + | } |
1209 | + | |
1210 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
1211 | + | snap_->atomData.flucQFrc[atom1] += *(idat.dVdFQ1); |
1212 | + | snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1213 | + | } |
1214 | + | |
1215 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
1216 | + | snap_->atomData.electricField[atom1] += *(idat.eField1); |
1217 | + | snap_->atomData.electricField[atom2] += *(idat.eField2); |
1218 | + | } |
1219 | + | |
1220 | #endif | |
1221 | ||
1222 | } |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |