# | Line 36 | Line 36 | |
---|---|---|
36 | * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | |
37 | * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | |
38 | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | |
39 | < | * [4] Vardeman & Gezelter, in progress (2009). |
39 | > | * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 | > | * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 | */ | |
42 | #include "parallel/ForceMatrixDecomposition.hpp" | |
43 | #include "math/SquareMatrix3.hpp" | |
44 | #include "nonbonded/NonBondedInteraction.hpp" | |
45 | #include "brains/SnapshotManager.hpp" | |
46 | + | #include "brains/PairList.hpp" |
47 | ||
48 | using namespace std; | |
49 | namespace OpenMD { | |
50 | ||
51 | + | ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { |
52 | + | |
53 | + | // In a parallel computation, row and colum scans must visit all |
54 | + | // surrounding cells (not just the 14 upper triangular blocks that |
55 | + | // are used when the processor can see all pairs) |
56 | + | #ifdef IS_MPI |
57 | + | cellOffsets_.clear(); |
58 | + | cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
59 | + | cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
60 | + | cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
61 | + | cellOffsets_.push_back( Vector3i(-1, 0,-1) ); |
62 | + | cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
63 | + | cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
64 | + | cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
65 | + | cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
66 | + | cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
67 | + | cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
68 | + | cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
69 | + | cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
70 | + | cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
71 | + | cellOffsets_.push_back( Vector3i( 0, 0, 0) ); |
72 | + | cellOffsets_.push_back( Vector3i( 1, 0, 0) ); |
73 | + | cellOffsets_.push_back( Vector3i(-1, 1, 0) ); |
74 | + | cellOffsets_.push_back( Vector3i( 0, 1, 0) ); |
75 | + | cellOffsets_.push_back( Vector3i( 1, 1, 0) ); |
76 | + | cellOffsets_.push_back( Vector3i(-1,-1, 1) ); |
77 | + | cellOffsets_.push_back( Vector3i( 0,-1, 1) ); |
78 | + | cellOffsets_.push_back( Vector3i( 1,-1, 1) ); |
79 | + | cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
80 | + | cellOffsets_.push_back( Vector3i( 0, 0, 1) ); |
81 | + | cellOffsets_.push_back( Vector3i( 1, 0, 1) ); |
82 | + | cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
83 | + | cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
84 | + | cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
85 | + | #endif |
86 | + | } |
87 | + | |
88 | + | |
89 | /** | |
90 | * distributeInitialData is essentially a copy of the older fortran | |
91 | * SimulationSetup | |
92 | */ | |
53 | – | |
93 | void ForceMatrixDecomposition::distributeInitialData() { | |
94 | snap_ = sman_->getCurrentSnapshot(); | |
95 | storageLayout_ = sman_->getStorageLayout(); | |
96 | + | ff_ = info_->getForceField(); |
97 | nLocal_ = snap_->getNumberOfAtoms(); | |
98 | < | nGroups_ = snap_->getNumberOfCutoffGroups(); |
98 | > | |
99 | > | nGroups_ = info_->getNLocalCutoffGroups(); |
100 | > | // gather the information for atomtype IDs (atids): |
101 | > | idents = info_->getIdentArray(); |
102 | > | AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
103 | > | cgLocalToGlobal = info_->getGlobalGroupIndices(); |
104 | > | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
105 | ||
106 | + | massFactors = info_->getMassFactors(); |
107 | + | |
108 | + | PairList* excludes = info_->getExcludedInteractions(); |
109 | + | PairList* oneTwo = info_->getOneTwoInteractions(); |
110 | + | PairList* oneThree = info_->getOneThreeInteractions(); |
111 | + | PairList* oneFour = info_->getOneFourInteractions(); |
112 | + | |
113 | #ifdef IS_MPI | |
114 | ||
115 | < | AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
116 | < | AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
64 | < | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
65 | < | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
115 | > | MPI::Intracomm row = rowComm.getComm(); |
116 | > | MPI::Intracomm col = colComm.getComm(); |
117 | ||
118 | < | AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
119 | < | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
120 | < | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
121 | < | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
118 | > | AtomPlanIntRow = new Plan<int>(row, nLocal_); |
119 | > | AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
120 | > | AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); |
121 | > | AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); |
122 | > | AtomPlanPotRow = new Plan<potVec>(row, nLocal_); |
123 | ||
124 | < | cgCommIntRow = new Communicator<Row,int>(nGroups_); |
125 | < | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
126 | < | cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
127 | < | cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
124 | > | AtomPlanIntColumn = new Plan<int>(col, nLocal_); |
125 | > | AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); |
126 | > | AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); |
127 | > | AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); |
128 | > | AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); |
129 | ||
130 | < | nAtomsInRow_ = AtomCommIntRow->getSize(); |
131 | < | nAtomsInCol_ = AtomCommIntColumn->getSize(); |
132 | < | nGroupsInRow_ = cgCommIntRow->getSize(); |
133 | < | nGroupsInCol_ = cgCommIntColumn->getSize(); |
130 | > | cgPlanIntRow = new Plan<int>(row, nGroups_); |
131 | > | cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); |
132 | > | cgPlanIntColumn = new Plan<int>(col, nGroups_); |
133 | > | cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); |
134 | ||
135 | + | nAtomsInRow_ = AtomPlanIntRow->getSize(); |
136 | + | nAtomsInCol_ = AtomPlanIntColumn->getSize(); |
137 | + | nGroupsInRow_ = cgPlanIntRow->getSize(); |
138 | + | nGroupsInCol_ = cgPlanIntColumn->getSize(); |
139 | + | |
140 | // Modify the data storage objects with the correct layouts and sizes: | |
141 | atomRowData.resize(nAtomsInRow_); | |
142 | atomRowData.setStorageLayout(storageLayout_); | |
# | Line 88 | Line 146 | namespace OpenMD { | |
146 | cgRowData.setStorageLayout(DataStorage::dslPosition); | |
147 | cgColData.resize(nGroupsInCol_); | |
148 | cgColData.setStorageLayout(DataStorage::dslPosition); | |
149 | + | |
150 | + | identsRow.resize(nAtomsInRow_); |
151 | + | identsCol.resize(nAtomsInCol_); |
152 | ||
153 | < | vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES, |
154 | < | vector<RealType> (nAtomsInRow_, 0.0)); |
155 | < | vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES, |
156 | < | vector<RealType> (nAtomsInCol_, 0.0)); |
153 | > | AtomPlanIntRow->gather(idents, identsRow); |
154 | > | AtomPlanIntColumn->gather(idents, identsCol); |
155 | > | |
156 | > | // allocate memory for the parallel objects |
157 | > | atypesRow.resize(nAtomsInRow_); |
158 | > | atypesCol.resize(nAtomsInCol_); |
159 | ||
160 | + | for (int i = 0; i < nAtomsInRow_; i++) |
161 | + | atypesRow[i] = ff_->getAtomType(identsRow[i]); |
162 | + | for (int i = 0; i < nAtomsInCol_; i++) |
163 | + | atypesCol[i] = ff_->getAtomType(identsCol[i]); |
164 | ||
165 | < | vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0); |
165 | > | pot_row.resize(nAtomsInRow_); |
166 | > | pot_col.resize(nAtomsInCol_); |
167 | > | |
168 | > | AtomRowToGlobal.resize(nAtomsInRow_); |
169 | > | AtomColToGlobal.resize(nAtomsInCol_); |
170 | > | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
171 | > | AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
172 | > | |
173 | > | cgRowToGlobal.resize(nGroupsInRow_); |
174 | > | cgColToGlobal.resize(nGroupsInCol_); |
175 | > | cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
176 | > | cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
177 | > | |
178 | > | massFactorsRow.resize(nAtomsInRow_); |
179 | > | massFactorsCol.resize(nAtomsInCol_); |
180 | > | AtomPlanRealRow->gather(massFactors, massFactorsRow); |
181 | > | AtomPlanRealColumn->gather(massFactors, massFactorsCol); |
182 | > | |
183 | > | groupListRow_.clear(); |
184 | > | groupListRow_.resize(nGroupsInRow_); |
185 | > | for (int i = 0; i < nGroupsInRow_; i++) { |
186 | > | int gid = cgRowToGlobal[i]; |
187 | > | for (int j = 0; j < nAtomsInRow_; j++) { |
188 | > | int aid = AtomRowToGlobal[j]; |
189 | > | if (globalGroupMembership[aid] == gid) |
190 | > | groupListRow_[i].push_back(j); |
191 | > | } |
192 | > | } |
193 | > | |
194 | > | groupListCol_.clear(); |
195 | > | groupListCol_.resize(nGroupsInCol_); |
196 | > | for (int i = 0; i < nGroupsInCol_; i++) { |
197 | > | int gid = cgColToGlobal[i]; |
198 | > | for (int j = 0; j < nAtomsInCol_; j++) { |
199 | > | int aid = AtomColToGlobal[j]; |
200 | > | if (globalGroupMembership[aid] == gid) |
201 | > | groupListCol_[i].push_back(j); |
202 | > | } |
203 | > | } |
204 | > | |
205 | > | excludesForAtom.clear(); |
206 | > | excludesForAtom.resize(nAtomsInRow_); |
207 | > | toposForAtom.clear(); |
208 | > | toposForAtom.resize(nAtomsInRow_); |
209 | > | topoDist.clear(); |
210 | > | topoDist.resize(nAtomsInRow_); |
211 | > | for (int i = 0; i < nAtomsInRow_; i++) { |
212 | > | int iglob = AtomRowToGlobal[i]; |
213 | > | |
214 | > | for (int j = 0; j < nAtomsInCol_; j++) { |
215 | > | int jglob = AtomColToGlobal[j]; |
216 | > | |
217 | > | if (excludes->hasPair(iglob, jglob)) |
218 | > | excludesForAtom[i].push_back(j); |
219 | > | |
220 | > | if (oneTwo->hasPair(iglob, jglob)) { |
221 | > | toposForAtom[i].push_back(j); |
222 | > | topoDist[i].push_back(1); |
223 | > | } else { |
224 | > | if (oneThree->hasPair(iglob, jglob)) { |
225 | > | toposForAtom[i].push_back(j); |
226 | > | topoDist[i].push_back(2); |
227 | > | } else { |
228 | > | if (oneFour->hasPair(iglob, jglob)) { |
229 | > | toposForAtom[i].push_back(j); |
230 | > | topoDist[i].push_back(3); |
231 | > | } |
232 | > | } |
233 | > | } |
234 | > | } |
235 | > | } |
236 | > | |
237 | > | #else |
238 | > | excludesForAtom.clear(); |
239 | > | excludesForAtom.resize(nLocal_); |
240 | > | toposForAtom.clear(); |
241 | > | toposForAtom.resize(nLocal_); |
242 | > | topoDist.clear(); |
243 | > | topoDist.resize(nLocal_); |
244 | > | |
245 | > | for (int i = 0; i < nLocal_; i++) { |
246 | > | int iglob = AtomLocalToGlobal[i]; |
247 | > | |
248 | > | for (int j = 0; j < nLocal_; j++) { |
249 | > | int jglob = AtomLocalToGlobal[j]; |
250 | > | |
251 | > | if (excludes->hasPair(iglob, jglob)) |
252 | > | excludesForAtom[i].push_back(j); |
253 | > | |
254 | > | if (oneTwo->hasPair(iglob, jglob)) { |
255 | > | toposForAtom[i].push_back(j); |
256 | > | topoDist[i].push_back(1); |
257 | > | } else { |
258 | > | if (oneThree->hasPair(iglob, jglob)) { |
259 | > | toposForAtom[i].push_back(j); |
260 | > | topoDist[i].push_back(2); |
261 | > | } else { |
262 | > | if (oneFour->hasPair(iglob, jglob)) { |
263 | > | toposForAtom[i].push_back(j); |
264 | > | topoDist[i].push_back(3); |
265 | > | } |
266 | > | } |
267 | > | } |
268 | > | } |
269 | > | } |
270 | > | #endif |
271 | > | |
272 | > | // allocate memory for the parallel objects |
273 | > | atypesLocal.resize(nLocal_); |
274 | > | |
275 | > | for (int i = 0; i < nLocal_; i++) |
276 | > | atypesLocal[i] = ff_->getAtomType(idents[i]); |
277 | > | |
278 | > | groupList_.clear(); |
279 | > | groupList_.resize(nGroups_); |
280 | > | for (int i = 0; i < nGroups_; i++) { |
281 | > | int gid = cgLocalToGlobal[i]; |
282 | > | for (int j = 0; j < nLocal_; j++) { |
283 | > | int aid = AtomLocalToGlobal[j]; |
284 | > | if (globalGroupMembership[aid] == gid) { |
285 | > | groupList_[i].push_back(j); |
286 | > | } |
287 | > | } |
288 | > | } |
289 | > | |
290 | > | |
291 | > | createGtypeCutoffMap(); |
292 | > | |
293 | > | } |
294 | > | |
295 | > | void ForceMatrixDecomposition::createGtypeCutoffMap() { |
296 | ||
297 | < | // gather the information for atomtype IDs (atids): |
298 | < | vector<int> identsLocal = info_->getIdentArray(); |
299 | < | identsRow.reserve(nAtomsInRow_); |
300 | < | identsCol.reserve(nAtomsInCol_); |
297 | > | RealType tol = 1e-6; |
298 | > | largestRcut_ = 0.0; |
299 | > | RealType rc; |
300 | > | int atid; |
301 | > | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
302 | ||
303 | < | AtomCommIntRow->gather(identsLocal, identsRow); |
304 | < | AtomCommIntColumn->gather(identsLocal, identsCol); |
303 | > | map<int, RealType> atypeCutoff; |
304 | > | |
305 | > | for (set<AtomType*>::iterator at = atypes.begin(); |
306 | > | at != atypes.end(); ++at){ |
307 | > | atid = (*at)->getIdent(); |
308 | > | if (userChoseCutoff_) |
309 | > | atypeCutoff[atid] = userCutoff_; |
310 | > | else |
311 | > | atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
312 | > | } |
313 | ||
314 | < | AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
315 | < | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
316 | < | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
317 | < | |
318 | < | cgLocalToGlobal = info_->getGlobalGroupIndices(); |
319 | < | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
320 | < | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
314 | > | vector<RealType> gTypeCutoffs; |
315 | > | // first we do a single loop over the cutoff groups to find the |
316 | > | // largest cutoff for any atypes present in this group. |
317 | > | #ifdef IS_MPI |
318 | > | vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); |
319 | > | groupRowToGtype.resize(nGroupsInRow_); |
320 | > | for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { |
321 | > | vector<int> atomListRow = getAtomsInGroupRow(cg1); |
322 | > | for (vector<int>::iterator ia = atomListRow.begin(); |
323 | > | ia != atomListRow.end(); ++ia) { |
324 | > | int atom1 = (*ia); |
325 | > | atid = identsRow[atom1]; |
326 | > | if (atypeCutoff[atid] > groupCutoffRow[cg1]) { |
327 | > | groupCutoffRow[cg1] = atypeCutoff[atid]; |
328 | > | } |
329 | > | } |
330 | ||
331 | < | // still need: |
332 | < | // topoDist |
333 | < | // exclude |
331 | > | bool gTypeFound = false; |
332 | > | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
333 | > | if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) { |
334 | > | groupRowToGtype[cg1] = gt; |
335 | > | gTypeFound = true; |
336 | > | } |
337 | > | } |
338 | > | if (!gTypeFound) { |
339 | > | gTypeCutoffs.push_back( groupCutoffRow[cg1] ); |
340 | > | groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; |
341 | > | } |
342 | > | |
343 | > | } |
344 | > | vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); |
345 | > | groupColToGtype.resize(nGroupsInCol_); |
346 | > | for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { |
347 | > | vector<int> atomListCol = getAtomsInGroupColumn(cg2); |
348 | > | for (vector<int>::iterator jb = atomListCol.begin(); |
349 | > | jb != atomListCol.end(); ++jb) { |
350 | > | int atom2 = (*jb); |
351 | > | atid = identsCol[atom2]; |
352 | > | if (atypeCutoff[atid] > groupCutoffCol[cg2]) { |
353 | > | groupCutoffCol[cg2] = atypeCutoff[atid]; |
354 | > | } |
355 | > | } |
356 | > | bool gTypeFound = false; |
357 | > | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
358 | > | if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) { |
359 | > | groupColToGtype[cg2] = gt; |
360 | > | gTypeFound = true; |
361 | > | } |
362 | > | } |
363 | > | if (!gTypeFound) { |
364 | > | gTypeCutoffs.push_back( groupCutoffCol[cg2] ); |
365 | > | groupColToGtype[cg2] = gTypeCutoffs.size() - 1; |
366 | > | } |
367 | > | } |
368 | > | #else |
369 | > | |
370 | > | vector<RealType> groupCutoff(nGroups_, 0.0); |
371 | > | groupToGtype.resize(nGroups_); |
372 | > | for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
373 | > | groupCutoff[cg1] = 0.0; |
374 | > | vector<int> atomList = getAtomsInGroupRow(cg1); |
375 | > | for (vector<int>::iterator ia = atomList.begin(); |
376 | > | ia != atomList.end(); ++ia) { |
377 | > | int atom1 = (*ia); |
378 | > | atid = idents[atom1]; |
379 | > | if (atypeCutoff[atid] > groupCutoff[cg1]) |
380 | > | groupCutoff[cg1] = atypeCutoff[atid]; |
381 | > | } |
382 | > | |
383 | > | bool gTypeFound = false; |
384 | > | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
385 | > | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
386 | > | groupToGtype[cg1] = gt; |
387 | > | gTypeFound = true; |
388 | > | } |
389 | > | } |
390 | > | if (!gTypeFound) { |
391 | > | gTypeCutoffs.push_back( groupCutoff[cg1] ); |
392 | > | groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
393 | > | } |
394 | > | } |
395 | #endif | |
396 | + | |
397 | + | // Now we find the maximum group cutoff value present in the simulation |
398 | + | |
399 | + | RealType groupMax = *max_element(gTypeCutoffs.begin(), |
400 | + | gTypeCutoffs.end()); |
401 | + | |
402 | + | #ifdef IS_MPI |
403 | + | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, |
404 | + | MPI::MAX); |
405 | + | #endif |
406 | + | |
407 | + | RealType tradRcut = groupMax; |
408 | + | |
409 | + | for (int i = 0; i < gTypeCutoffs.size(); i++) { |
410 | + | for (int j = 0; j < gTypeCutoffs.size(); j++) { |
411 | + | RealType thisRcut; |
412 | + | switch(cutoffPolicy_) { |
413 | + | case TRADITIONAL: |
414 | + | thisRcut = tradRcut; |
415 | + | break; |
416 | + | case MIX: |
417 | + | thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); |
418 | + | break; |
419 | + | case MAX: |
420 | + | thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); |
421 | + | break; |
422 | + | default: |
423 | + | sprintf(painCave.errMsg, |
424 | + | "ForceMatrixDecomposition::createGtypeCutoffMap " |
425 | + | "hit an unknown cutoff policy!\n"); |
426 | + | painCave.severity = OPENMD_ERROR; |
427 | + | painCave.isFatal = 1; |
428 | + | simError(); |
429 | + | break; |
430 | + | } |
431 | + | |
432 | + | pair<int,int> key = make_pair(i,j); |
433 | + | gTypeCutoffMap[key].first = thisRcut; |
434 | + | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
435 | + | gTypeCutoffMap[key].second = thisRcut*thisRcut; |
436 | + | gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
437 | + | // sanity check |
438 | + | |
439 | + | if (userChoseCutoff_) { |
440 | + | if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
441 | + | sprintf(painCave.errMsg, |
442 | + | "ForceMatrixDecomposition::createGtypeCutoffMap " |
443 | + | "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
444 | + | painCave.severity = OPENMD_ERROR; |
445 | + | painCave.isFatal = 1; |
446 | + | simError(); |
447 | + | } |
448 | + | } |
449 | + | } |
450 | + | } |
451 | } | |
452 | + | |
453 | + | |
454 | + | groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
455 | + | int i, j; |
456 | + | #ifdef IS_MPI |
457 | + | i = groupRowToGtype[cg1]; |
458 | + | j = groupColToGtype[cg2]; |
459 | + | #else |
460 | + | i = groupToGtype[cg1]; |
461 | + | j = groupToGtype[cg2]; |
462 | + | #endif |
463 | + | return gTypeCutoffMap[make_pair(i,j)]; |
464 | + | } |
465 | + | |
466 | + | int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
467 | + | for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
468 | + | if (toposForAtom[atom1][j] == atom2) |
469 | + | return topoDist[atom1][j]; |
470 | + | } |
471 | + | return 0; |
472 | + | } |
473 | + | |
474 | + | void ForceMatrixDecomposition::zeroWorkArrays() { |
475 | + | pairwisePot = 0.0; |
476 | + | embeddingPot = 0.0; |
477 | + | |
478 | + | #ifdef IS_MPI |
479 | + | if (storageLayout_ & DataStorage::dslForce) { |
480 | + | fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); |
481 | + | fill(atomColData.force.begin(), atomColData.force.end(), V3Zero); |
482 | + | } |
483 | + | |
484 | + | if (storageLayout_ & DataStorage::dslTorque) { |
485 | + | fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero); |
486 | + | fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero); |
487 | + | } |
488 | ||
489 | + | fill(pot_row.begin(), pot_row.end(), |
490 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
491 | ||
492 | + | fill(pot_col.begin(), pot_col.end(), |
493 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
494 | ||
495 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
496 | + | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
497 | + | 0.0); |
498 | + | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), |
499 | + | 0.0); |
500 | + | } |
501 | + | |
502 | + | if (storageLayout_ & DataStorage::dslDensity) { |
503 | + | fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0); |
504 | + | fill(atomColData.density.begin(), atomColData.density.end(), 0.0); |
505 | + | } |
506 | + | |
507 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
508 | + | fill(atomRowData.functional.begin(), atomRowData.functional.end(), |
509 | + | 0.0); |
510 | + | fill(atomColData.functional.begin(), atomColData.functional.end(), |
511 | + | 0.0); |
512 | + | } |
513 | + | |
514 | + | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
515 | + | fill(atomRowData.functionalDerivative.begin(), |
516 | + | atomRowData.functionalDerivative.end(), 0.0); |
517 | + | fill(atomColData.functionalDerivative.begin(), |
518 | + | atomColData.functionalDerivative.end(), 0.0); |
519 | + | } |
520 | + | |
521 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
522 | + | fill(atomRowData.skippedCharge.begin(), |
523 | + | atomRowData.skippedCharge.end(), 0.0); |
524 | + | fill(atomColData.skippedCharge.begin(), |
525 | + | atomColData.skippedCharge.end(), 0.0); |
526 | + | } |
527 | + | |
528 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
529 | + | fill(atomRowData.electricField.begin(), |
530 | + | atomRowData.electricField.end(), V3Zero); |
531 | + | fill(atomColData.electricField.begin(), |
532 | + | atomColData.electricField.end(), V3Zero); |
533 | + | } |
534 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
535 | + | fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), |
536 | + | 0.0); |
537 | + | fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), |
538 | + | 0.0); |
539 | + | } |
540 | + | |
541 | + | #endif |
542 | + | // even in parallel, we need to zero out the local arrays: |
543 | + | |
544 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
545 | + | fill(snap_->atomData.particlePot.begin(), |
546 | + | snap_->atomData.particlePot.end(), 0.0); |
547 | + | } |
548 | + | |
549 | + | if (storageLayout_ & DataStorage::dslDensity) { |
550 | + | fill(snap_->atomData.density.begin(), |
551 | + | snap_->atomData.density.end(), 0.0); |
552 | + | } |
553 | + | |
554 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
555 | + | fill(snap_->atomData.functional.begin(), |
556 | + | snap_->atomData.functional.end(), 0.0); |
557 | + | } |
558 | + | |
559 | + | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
560 | + | fill(snap_->atomData.functionalDerivative.begin(), |
561 | + | snap_->atomData.functionalDerivative.end(), 0.0); |
562 | + | } |
563 | + | |
564 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
565 | + | fill(snap_->atomData.skippedCharge.begin(), |
566 | + | snap_->atomData.skippedCharge.end(), 0.0); |
567 | + | } |
568 | + | |
569 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
570 | + | fill(snap_->atomData.electricField.begin(), |
571 | + | snap_->atomData.electricField.end(), V3Zero); |
572 | + | } |
573 | + | } |
574 | + | |
575 | + | |
576 | void ForceMatrixDecomposition::distributeData() { | |
577 | snap_ = sman_->getCurrentSnapshot(); | |
578 | storageLayout_ = sman_->getStorageLayout(); | |
579 | #ifdef IS_MPI | |
580 | ||
581 | // gather up the atomic positions | |
582 | < | AtomCommVectorRow->gather(snap_->atomData.position, |
582 | > | AtomPlanVectorRow->gather(snap_->atomData.position, |
583 | atomRowData.position); | |
584 | < | AtomCommVectorColumn->gather(snap_->atomData.position, |
584 | > | AtomPlanVectorColumn->gather(snap_->atomData.position, |
585 | atomColData.position); | |
586 | ||
587 | // gather up the cutoff group positions | |
588 | < | cgCommVectorRow->gather(snap_->cgData.position, |
588 | > | |
589 | > | cgPlanVectorRow->gather(snap_->cgData.position, |
590 | cgRowData.position); | |
591 | < | cgCommVectorColumn->gather(snap_->cgData.position, |
591 | > | |
592 | > | cgPlanVectorColumn->gather(snap_->cgData.position, |
593 | cgColData.position); | |
594 | + | |
595 | ||
596 | // if needed, gather the atomic rotation matrices | |
597 | if (storageLayout_ & DataStorage::dslAmat) { | |
598 | < | AtomCommMatrixRow->gather(snap_->atomData.aMat, |
598 | > | AtomPlanMatrixRow->gather(snap_->atomData.aMat, |
599 | atomRowData.aMat); | |
600 | < | AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
600 | > | AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
601 | atomColData.aMat); | |
602 | } | |
603 | ||
604 | // if needed, gather the atomic eletrostatic frames | |
605 | if (storageLayout_ & DataStorage::dslElectroFrame) { | |
606 | < | AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
606 | > | AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
607 | atomRowData.electroFrame); | |
608 | < | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
608 | > | AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
609 | atomColData.electroFrame); | |
610 | } | |
611 | + | |
612 | + | // if needed, gather the atomic fluctuating charge values |
613 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
614 | + | AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
615 | + | atomRowData.flucQPos); |
616 | + | AtomPlanRealColumn->gather(snap_->atomData.flucQPos, |
617 | + | atomColData.flucQPos); |
618 | + | } |
619 | + | |
620 | #endif | |
621 | } | |
622 | ||
623 | + | /* collects information obtained during the pre-pair loop onto local |
624 | + | * data structures. |
625 | + | */ |
626 | void ForceMatrixDecomposition::collectIntermediateData() { | |
627 | snap_ = sman_->getCurrentSnapshot(); | |
628 | storageLayout_ = sman_->getStorageLayout(); | |
# | Line 163 | Line 630 | namespace OpenMD { | |
630 | ||
631 | if (storageLayout_ & DataStorage::dslDensity) { | |
632 | ||
633 | < | AtomCommRealRow->scatter(atomRowData.density, |
633 | > | AtomPlanRealRow->scatter(atomRowData.density, |
634 | snap_->atomData.density); | |
635 | ||
636 | int n = snap_->atomData.density.size(); | |
637 | < | std::vector<RealType> rho_tmp(n, 0.0); |
638 | < | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
637 | > | vector<RealType> rho_tmp(n, 0.0); |
638 | > | AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); |
639 | for (int i = 0; i < n; i++) | |
640 | snap_->atomData.density[i] += rho_tmp[i]; | |
641 | } | |
642 | + | |
643 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
644 | + | |
645 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, |
646 | + | snap_->atomData.electricField); |
647 | + | |
648 | + | int n = snap_->atomData.electricField.size(); |
649 | + | vector<Vector3d> field_tmp(n, V3Zero); |
650 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); |
651 | + | for (int i = 0; i < n; i++) |
652 | + | snap_->atomData.electricField[i] += field_tmp[i]; |
653 | + | } |
654 | #endif | |
655 | } | |
656 | < | |
656 | > | |
657 | > | /* |
658 | > | * redistributes information obtained during the pre-pair loop out to |
659 | > | * row and column-indexed data structures |
660 | > | */ |
661 | void ForceMatrixDecomposition::distributeIntermediateData() { | |
662 | snap_ = sman_->getCurrentSnapshot(); | |
663 | storageLayout_ = sman_->getStorageLayout(); | |
664 | #ifdef IS_MPI | |
665 | if (storageLayout_ & DataStorage::dslFunctional) { | |
666 | < | AtomCommRealRow->gather(snap_->atomData.functional, |
666 | > | AtomPlanRealRow->gather(snap_->atomData.functional, |
667 | atomRowData.functional); | |
668 | < | AtomCommRealColumn->gather(snap_->atomData.functional, |
668 | > | AtomPlanRealColumn->gather(snap_->atomData.functional, |
669 | atomColData.functional); | |
670 | } | |
671 | ||
672 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
673 | < | AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
673 | > | AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, |
674 | atomRowData.functionalDerivative); | |
675 | < | AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
675 | > | AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, |
676 | atomColData.functionalDerivative); | |
677 | } | |
678 | #endif | |
# | Line 203 | Line 686 | namespace OpenMD { | |
686 | int n = snap_->atomData.force.size(); | |
687 | vector<Vector3d> frc_tmp(n, V3Zero); | |
688 | ||
689 | < | AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
689 | > | AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); |
690 | for (int i = 0; i < n; i++) { | |
691 | snap_->atomData.force[i] += frc_tmp[i]; | |
692 | frc_tmp[i] = 0.0; | |
693 | } | |
694 | ||
695 | < | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
696 | < | for (int i = 0; i < n; i++) |
695 | > | AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); |
696 | > | for (int i = 0; i < n; i++) { |
697 | snap_->atomData.force[i] += frc_tmp[i]; | |
698 | < | |
699 | < | |
698 | > | } |
699 | > | |
700 | if (storageLayout_ & DataStorage::dslTorque) { | |
701 | ||
702 | < | int nt = snap_->atomData.force.size(); |
702 | > | int nt = snap_->atomData.torque.size(); |
703 | vector<Vector3d> trq_tmp(nt, V3Zero); | |
704 | ||
705 | < | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
706 | < | for (int i = 0; i < n; i++) { |
705 | > | AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); |
706 | > | for (int i = 0; i < nt; i++) { |
707 | snap_->atomData.torque[i] += trq_tmp[i]; | |
708 | trq_tmp[i] = 0.0; | |
709 | } | |
710 | ||
711 | < | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
712 | < | for (int i = 0; i < n; i++) |
711 | > | AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); |
712 | > | for (int i = 0; i < nt; i++) |
713 | snap_->atomData.torque[i] += trq_tmp[i]; | |
714 | } | |
715 | + | |
716 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
717 | + | |
718 | + | int ns = snap_->atomData.skippedCharge.size(); |
719 | + | vector<RealType> skch_tmp(ns, 0.0); |
720 | + | |
721 | + | AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
722 | + | for (int i = 0; i < ns; i++) { |
723 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
724 | + | skch_tmp[i] = 0.0; |
725 | + | } |
726 | + | |
727 | + | AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
728 | + | for (int i = 0; i < ns; i++) |
729 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
730 | + | |
731 | + | } |
732 | ||
733 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
734 | + | |
735 | + | int nq = snap_->atomData.flucQFrc.size(); |
736 | + | vector<RealType> fqfrc_tmp(nq, 0.0); |
737 | + | |
738 | + | AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); |
739 | + | for (int i = 0; i < nq; i++) { |
740 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
741 | + | fqfrc_tmp[i] = 0.0; |
742 | + | } |
743 | + | |
744 | + | AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); |
745 | + | for (int i = 0; i < nq; i++) |
746 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
747 | + | |
748 | + | } |
749 | + | |
750 | nLocal_ = snap_->getNumberOfAtoms(); | |
751 | ||
752 | < | vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES, |
753 | < | vector<RealType> (nLocal_, 0.0)); |
752 | > | vector<potVec> pot_temp(nLocal_, |
753 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
754 | > | |
755 | > | // scatter/gather pot_row into the members of my column |
756 | > | |
757 | > | AtomPlanPotRow->scatter(pot_row, pot_temp); |
758 | > | |
759 | > | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
760 | > | pairwisePot += pot_temp[ii]; |
761 | ||
762 | < | for (int i = 0; i < N_INTERACTION_FAMILIES; i++) { |
763 | < | AtomCommRealRow->scatter(pot_row[i], pot_temp[i]); |
764 | < | for (int ii = 0; ii < pot_temp[i].size(); ii++ ) { |
765 | < | pot_local[i] += pot_temp[i][ii]; |
766 | < | } |
762 | > | fill(pot_temp.begin(), pot_temp.end(), |
763 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
764 | > | |
765 | > | AtomPlanPotColumn->scatter(pot_col, pot_temp); |
766 | > | |
767 | > | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
768 | > | pairwisePot += pot_temp[ii]; |
769 | > | |
770 | > | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
771 | > | RealType ploc1 = pairwisePot[ii]; |
772 | > | RealType ploc2 = 0.0; |
773 | > | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
774 | > | pairwisePot[ii] = ploc2; |
775 | } | |
776 | + | |
777 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
778 | + | RealType ploc1 = embeddingPot[ii]; |
779 | + | RealType ploc2 = 0.0; |
780 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
781 | + | embeddingPot[ii] = ploc2; |
782 | + | } |
783 | + | |
784 | #endif | |
785 | + | |
786 | } | |
787 | ||
788 | + | int ForceMatrixDecomposition::getNAtomsInRow() { |
789 | + | #ifdef IS_MPI |
790 | + | return nAtomsInRow_; |
791 | + | #else |
792 | + | return nLocal_; |
793 | + | #endif |
794 | + | } |
795 | + | |
796 | + | /** |
797 | + | * returns the list of atoms belonging to this group. |
798 | + | */ |
799 | + | vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
800 | + | #ifdef IS_MPI |
801 | + | return groupListRow_[cg1]; |
802 | + | #else |
803 | + | return groupList_[cg1]; |
804 | + | #endif |
805 | + | } |
806 | + | |
807 | + | vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
808 | + | #ifdef IS_MPI |
809 | + | return groupListCol_[cg2]; |
810 | + | #else |
811 | + | return groupList_[cg2]; |
812 | + | #endif |
813 | + | } |
814 | ||
815 | Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ | |
816 | Vector3d d; | |
# | Line 285 | Line 852 | namespace OpenMD { | |
852 | snap_->wrapVector(d); | |
853 | return d; | |
854 | } | |
855 | + | |
856 | + | RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
857 | + | #ifdef IS_MPI |
858 | + | return massFactorsRow[atom1]; |
859 | + | #else |
860 | + | return massFactors[atom1]; |
861 | + | #endif |
862 | + | } |
863 | + | |
864 | + | RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
865 | + | #ifdef IS_MPI |
866 | + | return massFactorsCol[atom2]; |
867 | + | #else |
868 | + | return massFactors[atom2]; |
869 | + | #endif |
870 | + | |
871 | + | } |
872 | ||
873 | Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ | |
874 | Vector3d d; | |
# | Line 297 | Line 881 | namespace OpenMD { | |
881 | ||
882 | snap_->wrapVector(d); | |
883 | return d; | |
884 | + | } |
885 | + | |
886 | + | vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
887 | + | return excludesForAtom[atom1]; |
888 | + | } |
889 | + | |
890 | + | /** |
891 | + | * We need to exclude some overcounted interactions that result from |
892 | + | * the parallel decomposition. |
893 | + | */ |
894 | + | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
895 | + | int unique_id_1, unique_id_2; |
896 | + | |
897 | + | #ifdef IS_MPI |
898 | + | // in MPI, we have to look up the unique IDs for each atom |
899 | + | unique_id_1 = AtomRowToGlobal[atom1]; |
900 | + | unique_id_2 = AtomColToGlobal[atom2]; |
901 | + | #else |
902 | + | unique_id_1 = AtomLocalToGlobal[atom1]; |
903 | + | unique_id_2 = AtomLocalToGlobal[atom2]; |
904 | + | #endif |
905 | + | |
906 | + | if (unique_id_1 == unique_id_2) return true; |
907 | + | |
908 | + | #ifdef IS_MPI |
909 | + | // this prevents us from doing the pair on multiple processors |
910 | + | if (unique_id_1 < unique_id_2) { |
911 | + | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
912 | + | } else { |
913 | + | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
914 | + | } |
915 | + | #endif |
916 | + | |
917 | + | return false; |
918 | } | |
919 | ||
920 | + | /** |
921 | + | * We need to handle the interactions for atoms who are involved in |
922 | + | * the same rigid body as well as some short range interactions |
923 | + | * (bonds, bends, torsions) differently from other interactions. |
924 | + | * We'll still visit the pairwise routines, but with a flag that |
925 | + | * tells those routines to exclude the pair from direct long range |
926 | + | * interactions. Some indirect interactions (notably reaction |
927 | + | * field) must still be handled for these pairs. |
928 | + | */ |
929 | + | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
930 | + | |
931 | + | // excludesForAtom was constructed to use row/column indices in the MPI |
932 | + | // version, and to use local IDs in the non-MPI version: |
933 | + | |
934 | + | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
935 | + | i != excludesForAtom[atom1].end(); ++i) { |
936 | + | if ( (*i) == atom2 ) return true; |
937 | + | } |
938 | + | |
939 | + | return false; |
940 | + | } |
941 | + | |
942 | + | |
943 | void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ | |
944 | #ifdef IS_MPI | |
945 | atomRowData.force[atom1] += fg; | |
# | Line 316 | Line 957 | namespace OpenMD { | |
957 | } | |
958 | ||
959 | // filling interaction blocks with pointers | |
960 | < | InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) { |
961 | < | InteractionData idat; |
960 | > | void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
961 | > | int atom1, int atom2) { |
962 | ||
963 | + | idat.excluded = excludeAtomPair(atom1, atom2); |
964 | + | |
965 | #ifdef IS_MPI | |
966 | + | idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
967 | + | //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
968 | + | // ff_->getAtomType(identsCol[atom2]) ); |
969 | + | |
970 | if (storageLayout_ & DataStorage::dslAmat) { | |
971 | idat.A1 = &(atomRowData.aMat[atom1]); | |
972 | idat.A2 = &(atomColData.aMat[atom2]); | |
# | Line 340 | Line 987 | namespace OpenMD { | |
987 | idat.rho2 = &(atomColData.density[atom2]); | |
988 | } | |
989 | ||
990 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
991 | + | idat.frho1 = &(atomRowData.functional[atom1]); |
992 | + | idat.frho2 = &(atomColData.functional[atom2]); |
993 | + | } |
994 | + | |
995 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
996 | idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); | |
997 | idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); | |
998 | } | |
999 | + | |
1000 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
1001 | + | idat.particlePot1 = &(atomRowData.particlePot[atom1]); |
1002 | + | idat.particlePot2 = &(atomColData.particlePot[atom2]); |
1003 | + | } |
1004 | + | |
1005 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
1006 | + | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
1007 | + | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
1008 | + | } |
1009 | + | |
1010 | #else | |
1011 | + | |
1012 | + | |
1013 | + | // cerr << "atoms = " << atom1 << " " << atom2 << "\n"; |
1014 | + | // cerr << "pos1 = " << snap_->atomData.position[atom1] << "\n"; |
1015 | + | // cerr << "pos2 = " << snap_->atomData.position[atom2] << "\n"; |
1016 | + | |
1017 | + | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
1018 | + | //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
1019 | + | // ff_->getAtomType(idents[atom2]) ); |
1020 | + | |
1021 | if (storageLayout_ & DataStorage::dslAmat) { | |
1022 | idat.A1 = &(snap_->atomData.aMat[atom1]); | |
1023 | idat.A2 = &(snap_->atomData.aMat[atom2]); | |
# | Line 360 | Line 1033 | namespace OpenMD { | |
1033 | idat.t2 = &(snap_->atomData.torque[atom2]); | |
1034 | } | |
1035 | ||
1036 | < | if (storageLayout_ & DataStorage::dslDensity) { |
1036 | > | if (storageLayout_ & DataStorage::dslDensity) { |
1037 | idat.rho1 = &(snap_->atomData.density[atom1]); | |
1038 | idat.rho2 = &(snap_->atomData.density[atom2]); | |
1039 | } | |
1040 | ||
1041 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
1042 | + | idat.frho1 = &(snap_->atomData.functional[atom1]); |
1043 | + | idat.frho2 = &(snap_->atomData.functional[atom2]); |
1044 | + | } |
1045 | + | |
1046 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
1047 | idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); | |
1048 | idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); | |
1049 | } | |
1050 | + | |
1051 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
1052 | + | idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); |
1053 | + | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
1054 | + | } |
1055 | + | |
1056 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
1057 | + | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
1058 | + | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
1059 | + | } |
1060 | #endif | |
373 | – | return idat; |
1061 | } | |
1062 | ||
1063 | < | InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ |
1064 | < | |
378 | < | InteractionData idat; |
1063 | > | |
1064 | > | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
1065 | #ifdef IS_MPI | |
1066 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { |
1067 | < | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
1068 | < | idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
1069 | < | } |
1070 | < | if (storageLayout_ & DataStorage::dslTorque) { |
1071 | < | idat.t1 = &(atomRowData.torque[atom1]); |
1072 | < | idat.t2 = &(atomColData.torque[atom2]); |
387 | < | } |
388 | < | if (storageLayout_ & DataStorage::dslForce) { |
389 | < | idat.t1 = &(atomRowData.force[atom1]); |
390 | < | idat.t2 = &(atomColData.force[atom2]); |
391 | < | } |
1066 | > | pot_row[atom1] += RealType(0.5) * *(idat.pot); |
1067 | > | pot_col[atom2] += RealType(0.5) * *(idat.pot); |
1068 | > | |
1069 | > | atomRowData.force[atom1] += *(idat.f1); |
1070 | > | atomColData.force[atom2] -= *(idat.f1); |
1071 | > | |
1072 | > | // should particle pot be done here also? |
1073 | #else | |
1074 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { |
1075 | < | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
1076 | < | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
1074 | > | pairwisePot += *(idat.pot); |
1075 | > | |
1076 | > | snap_->atomData.force[atom1] += *(idat.f1); |
1077 | > | snap_->atomData.force[atom2] -= *(idat.f1); |
1078 | > | |
1079 | > | if (idat.doParticlePot) { |
1080 | > | snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); |
1081 | > | snap_->atomData.particlePot[atom2] -= *(idat.vpair) * *(idat.sw); |
1082 | } | |
1083 | < | if (storageLayout_ & DataStorage::dslTorque) { |
398 | < | idat.t1 = &(snap_->atomData.torque[atom1]); |
399 | < | idat.t2 = &(snap_->atomData.torque[atom2]); |
400 | < | } |
401 | < | if (storageLayout_ & DataStorage::dslForce) { |
402 | < | idat.t1 = &(snap_->atomData.force[atom1]); |
403 | < | idat.t2 = &(snap_->atomData.force[atom2]); |
404 | < | } |
1083 | > | |
1084 | #endif | |
1085 | ||
1086 | } | |
1087 | ||
409 | – | |
410 | – | |
411 | – | |
1088 | /* | |
1089 | * buildNeighborList | |
1090 | * | |
# | Line 418 | Line 1094 | namespace OpenMD { | |
1094 | vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { | |
1095 | ||
1096 | vector<pair<int, int> > neighborList; | |
1097 | + | groupCutoffs cuts; |
1098 | + | bool doAllPairs = false; |
1099 | + | |
1100 | #ifdef IS_MPI | |
1101 | cellListRow_.clear(); | |
1102 | cellListCol_.clear(); | |
# | Line 425 | Line 1104 | namespace OpenMD { | |
1104 | cellList_.clear(); | |
1105 | #endif | |
1106 | ||
1107 | < | // dangerous to not do error checking. |
429 | < | RealType rCut_; |
430 | < | |
431 | < | RealType rList_ = (rCut_ + skinThickness_); |
1107 | > | RealType rList_ = (largestRcut_ + skinThickness_); |
1108 | RealType rl2 = rList_ * rList_; | |
1109 | Snapshot* snap_ = sman_->getCurrentSnapshot(); | |
1110 | Mat3x3d Hmat = snap_->getHmat(); | |
# | Line 440 | Line 1116 | namespace OpenMD { | |
1116 | nCells_.y() = (int) ( Hy.length() )/ rList_; | |
1117 | nCells_.z() = (int) ( Hz.length() )/ rList_; | |
1118 | ||
1119 | + | // handle small boxes where the cell offsets can end up repeating cells |
1120 | + | |
1121 | + | if (nCells_.x() < 3) doAllPairs = true; |
1122 | + | if (nCells_.y() < 3) doAllPairs = true; |
1123 | + | if (nCells_.z() < 3) doAllPairs = true; |
1124 | + | |
1125 | Mat3x3d invHmat = snap_->getInvHmat(); | |
1126 | Vector3d rs, scaled, dr; | |
1127 | Vector3i whichCell; | |
1128 | int cellIndex; | |
1129 | + | int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
1130 | ||
1131 | #ifdef IS_MPI | |
1132 | < | for (int i = 0; i < nGroupsInRow_; i++) { |
1133 | < | rs = cgRowData.position[i]; |
1134 | < | // scaled positions relative to the box vectors |
1135 | < | scaled = invHmat * rs; |
1136 | < | // wrap the vector back into the unit box by subtracting integer box |
454 | < | // numbers |
455 | < | for (int j = 0; j < 3; j++) |
456 | < | scaled[j] -= roundMe(scaled[j]); |
457 | < | |
458 | < | // find xyz-indices of cell that cutoffGroup is in. |
459 | < | whichCell.x() = nCells_.x() * scaled.x(); |
460 | < | whichCell.y() = nCells_.y() * scaled.y(); |
461 | < | whichCell.z() = nCells_.z() * scaled.z(); |
1132 | > | cellListRow_.resize(nCtot); |
1133 | > | cellListCol_.resize(nCtot); |
1134 | > | #else |
1135 | > | cellList_.resize(nCtot); |
1136 | > | #endif |
1137 | ||
1138 | < | // find single index of this cell: |
1139 | < | cellIndex = Vlinear(whichCell, nCells_); |
465 | < | // add this cutoff group to the list of groups in this cell; |
466 | < | cellListRow_[cellIndex].push_back(i); |
467 | < | } |
1138 | > | if (!doAllPairs) { |
1139 | > | #ifdef IS_MPI |
1140 | ||
1141 | < | for (int i = 0; i < nGroupsInCol_; i++) { |
1142 | < | rs = cgColData.position[i]; |
1143 | < | // scaled positions relative to the box vectors |
1144 | < | scaled = invHmat * rs; |
1145 | < | // wrap the vector back into the unit box by subtracting integer box |
1146 | < | // numbers |
1147 | < | for (int j = 0; j < 3; j++) |
1148 | < | scaled[j] -= roundMe(scaled[j]); |
1149 | < | |
1150 | < | // find xyz-indices of cell that cutoffGroup is in. |
1151 | < | whichCell.x() = nCells_.x() * scaled.x(); |
1152 | < | whichCell.y() = nCells_.y() * scaled.y(); |
1153 | < | whichCell.z() = nCells_.z() * scaled.z(); |
1154 | < | |
1155 | < | // find single index of this cell: |
1156 | < | cellIndex = Vlinear(whichCell, nCells_); |
1157 | < | // add this cutoff group to the list of groups in this cell; |
1158 | < | cellListCol_[cellIndex].push_back(i); |
1159 | < | } |
1141 | > | for (int i = 0; i < nGroupsInRow_; i++) { |
1142 | > | rs = cgRowData.position[i]; |
1143 | > | |
1144 | > | // scaled positions relative to the box vectors |
1145 | > | scaled = invHmat * rs; |
1146 | > | |
1147 | > | // wrap the vector back into the unit box by subtracting integer box |
1148 | > | // numbers |
1149 | > | for (int j = 0; j < 3; j++) { |
1150 | > | scaled[j] -= roundMe(scaled[j]); |
1151 | > | scaled[j] += 0.5; |
1152 | > | } |
1153 | > | |
1154 | > | // find xyz-indices of cell that cutoffGroup is in. |
1155 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1156 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1157 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1158 | > | |
1159 | > | // find single index of this cell: |
1160 | > | cellIndex = Vlinear(whichCell, nCells_); |
1161 | > | |
1162 | > | // add this cutoff group to the list of groups in this cell; |
1163 | > | cellListRow_[cellIndex].push_back(i); |
1164 | > | } |
1165 | > | for (int i = 0; i < nGroupsInCol_; i++) { |
1166 | > | rs = cgColData.position[i]; |
1167 | > | |
1168 | > | // scaled positions relative to the box vectors |
1169 | > | scaled = invHmat * rs; |
1170 | > | |
1171 | > | // wrap the vector back into the unit box by subtracting integer box |
1172 | > | // numbers |
1173 | > | for (int j = 0; j < 3; j++) { |
1174 | > | scaled[j] -= roundMe(scaled[j]); |
1175 | > | scaled[j] += 0.5; |
1176 | > | } |
1177 | > | |
1178 | > | // find xyz-indices of cell that cutoffGroup is in. |
1179 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1180 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1181 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1182 | > | |
1183 | > | // find single index of this cell: |
1184 | > | cellIndex = Vlinear(whichCell, nCells_); |
1185 | > | |
1186 | > | // add this cutoff group to the list of groups in this cell; |
1187 | > | cellListCol_[cellIndex].push_back(i); |
1188 | > | } |
1189 | > | |
1190 | #else | |
1191 | < | for (int i = 0; i < nGroups_; i++) { |
1192 | < | rs = snap_->cgData.position[i]; |
1193 | < | // scaled positions relative to the box vectors |
1194 | < | scaled = invHmat * rs; |
1195 | < | // wrap the vector back into the unit box by subtracting integer box |
1196 | < | // numbers |
1197 | < | for (int j = 0; j < 3; j++) |
1198 | < | scaled[j] -= roundMe(scaled[j]); |
1191 | > | for (int i = 0; i < nGroups_; i++) { |
1192 | > | rs = snap_->cgData.position[i]; |
1193 | > | |
1194 | > | // scaled positions relative to the box vectors |
1195 | > | scaled = invHmat * rs; |
1196 | > | |
1197 | > | // wrap the vector back into the unit box by subtracting integer box |
1198 | > | // numbers |
1199 | > | for (int j = 0; j < 3; j++) { |
1200 | > | scaled[j] -= roundMe(scaled[j]); |
1201 | > | scaled[j] += 0.5; |
1202 | > | } |
1203 | > | |
1204 | > | // find xyz-indices of cell that cutoffGroup is in. |
1205 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1206 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1207 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1208 | > | |
1209 | > | // find single index of this cell: |
1210 | > | cellIndex = Vlinear(whichCell, nCells_); |
1211 | > | |
1212 | > | // add this cutoff group to the list of groups in this cell; |
1213 | > | cellList_[cellIndex].push_back(i); |
1214 | > | } |
1215 | ||
498 | – | // find xyz-indices of cell that cutoffGroup is in. |
499 | – | whichCell.x() = nCells_.x() * scaled.x(); |
500 | – | whichCell.y() = nCells_.y() * scaled.y(); |
501 | – | whichCell.z() = nCells_.z() * scaled.z(); |
502 | – | |
503 | – | // find single index of this cell: |
504 | – | cellIndex = Vlinear(whichCell, nCells_); |
505 | – | // add this cutoff group to the list of groups in this cell; |
506 | – | cellList_[cellIndex].push_back(i); |
507 | – | } |
1216 | #endif | |
1217 | ||
1218 | < | |
1219 | < | |
1220 | < | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1221 | < | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1222 | < | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
515 | < | Vector3i m1v(m1x, m1y, m1z); |
516 | < | int m1 = Vlinear(m1v, nCells_); |
517 | < | |
518 | < | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
519 | < | os != cellOffsets_.end(); ++os) { |
1218 | > | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1219 | > | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1220 | > | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1221 | > | Vector3i m1v(m1x, m1y, m1z); |
1222 | > | int m1 = Vlinear(m1v, nCells_); |
1223 | ||
1224 | < | Vector3i m2v = m1v + (*os); |
1225 | < | |
1226 | < | if (m2v.x() >= nCells_.x()) { |
1227 | < | m2v.x() = 0; |
1228 | < | } else if (m2v.x() < 0) { |
526 | < | m2v.x() = nCells_.x() - 1; |
527 | < | } |
528 | < | |
529 | < | if (m2v.y() >= nCells_.y()) { |
530 | < | m2v.y() = 0; |
531 | < | } else if (m2v.y() < 0) { |
532 | < | m2v.y() = nCells_.y() - 1; |
533 | < | } |
534 | < | |
535 | < | if (m2v.z() >= nCells_.z()) { |
536 | < | m2v.z() = 0; |
537 | < | } else if (m2v.z() < 0) { |
538 | < | m2v.z() = nCells_.z() - 1; |
539 | < | } |
540 | < | |
541 | < | int m2 = Vlinear (m2v, nCells_); |
1224 | > | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1225 | > | os != cellOffsets_.end(); ++os) { |
1226 | > | |
1227 | > | Vector3i m2v = m1v + (*os); |
1228 | > | |
1229 | ||
1230 | < | #ifdef IS_MPI |
1231 | < | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1232 | < | j1 != cellListRow_[m1].end(); ++j1) { |
1233 | < | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1234 | < | j2 != cellListCol_[m2].end(); ++j2) { |
1235 | < | |
1236 | < | // Always do this if we're in different cells or if |
1237 | < | // we're in the same cell and the global index of the |
1238 | < | // j2 cutoff group is less than the j1 cutoff group |
1230 | > | if (m2v.x() >= nCells_.x()) { |
1231 | > | m2v.x() = 0; |
1232 | > | } else if (m2v.x() < 0) { |
1233 | > | m2v.x() = nCells_.x() - 1; |
1234 | > | } |
1235 | > | |
1236 | > | if (m2v.y() >= nCells_.y()) { |
1237 | > | m2v.y() = 0; |
1238 | > | } else if (m2v.y() < 0) { |
1239 | > | m2v.y() = nCells_.y() - 1; |
1240 | > | } |
1241 | > | |
1242 | > | if (m2v.z() >= nCells_.z()) { |
1243 | > | m2v.z() = 0; |
1244 | > | } else if (m2v.z() < 0) { |
1245 | > | m2v.z() = nCells_.z() - 1; |
1246 | > | } |
1247 | ||
1248 | < | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1248 | > | int m2 = Vlinear (m2v, nCells_); |
1249 | > | |
1250 | > | #ifdef IS_MPI |
1251 | > | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1252 | > | j1 != cellListRow_[m1].end(); ++j1) { |
1253 | > | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1254 | > | j2 != cellListCol_[m2].end(); ++j2) { |
1255 | > | |
1256 | > | // In parallel, we need to visit *all* pairs of row |
1257 | > | // & column indicies and will divide labor in the |
1258 | > | // force evaluation later. |
1259 | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | |
1260 | snap_->wrapVector(dr); | |
1261 | < | if (dr.lengthSquare() < rl2) { |
1261 | > | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1262 | > | if (dr.lengthSquare() < cuts.third) { |
1263 | neighborList.push_back(make_pair((*j1), (*j2))); | |
1264 | < | } |
1264 | > | } |
1265 | } | |
1266 | } | |
561 | – | } |
1267 | #else | |
1268 | < | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1269 | < | j1 != cellList_[m1].end(); ++j1) { |
1270 | < | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1271 | < | j2 != cellList_[m2].end(); ++j2) { |
1272 | < | |
1273 | < | // Always do this if we're in different cells or if |
1274 | < | // we're in the same cell and the global index of the |
1275 | < | // j2 cutoff group is less than the j1 cutoff group |
1268 | > | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1269 | > | j1 != cellList_[m1].end(); ++j1) { |
1270 | > | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1271 | > | j2 != cellList_[m2].end(); ++j2) { |
1272 | > | |
1273 | > | // Always do this if we're in different cells or if |
1274 | > | // we're in the same cell and the global index of |
1275 | > | // the j2 cutoff group is greater than or equal to |
1276 | > | // the j1 cutoff group. Note that Rappaport's code |
1277 | > | // has a "less than" conditional here, but that |
1278 | > | // deals with atom-by-atom computation. OpenMD |
1279 | > | // allows atoms within a single cutoff group to |
1280 | > | // interact with each other. |
1281 | ||
1282 | < | if (m2 != m1 || (*j2) < (*j1)) { |
1283 | < | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1284 | < | snap_->wrapVector(dr); |
1285 | < | if (dr.lengthSquare() < rl2) { |
1286 | < | neighborList.push_back(make_pair((*j1), (*j2))); |
1282 | > | |
1283 | > | |
1284 | > | if (m2 != m1 || (*j2) >= (*j1) ) { |
1285 | > | |
1286 | > | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1287 | > | snap_->wrapVector(dr); |
1288 | > | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1289 | > | if (dr.lengthSquare() < cuts.third) { |
1290 | > | neighborList.push_back(make_pair((*j1), (*j2))); |
1291 | > | } |
1292 | } | |
1293 | } | |
1294 | } | |
580 | – | } |
1295 | #endif | |
1296 | + | } |
1297 | } | |
1298 | } | |
1299 | } | |
1300 | + | } else { |
1301 | + | // branch to do all cutoff group pairs |
1302 | + | #ifdef IS_MPI |
1303 | + | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1304 | + | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1305 | + | dr = cgColData.position[j2] - cgRowData.position[j1]; |
1306 | + | snap_->wrapVector(dr); |
1307 | + | cuts = getGroupCutoffs( j1, j2 ); |
1308 | + | if (dr.lengthSquare() < cuts.third) { |
1309 | + | neighborList.push_back(make_pair(j1, j2)); |
1310 | + | } |
1311 | + | } |
1312 | + | } |
1313 | + | #else |
1314 | + | // include all groups here. |
1315 | + | for (int j1 = 0; j1 < nGroups_; j1++) { |
1316 | + | // include self group interactions j2 == j1 |
1317 | + | for (int j2 = j1; j2 < nGroups_; j2++) { |
1318 | + | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1319 | + | snap_->wrapVector(dr); |
1320 | + | cuts = getGroupCutoffs( j1, j2 ); |
1321 | + | if (dr.lengthSquare() < cuts.third) { |
1322 | + | neighborList.push_back(make_pair(j1, j2)); |
1323 | + | } |
1324 | + | } |
1325 | + | } |
1326 | + | #endif |
1327 | } | |
1328 | < | |
1328 | > | |
1329 | // save the local cutoff group positions for the check that is | |
1330 | // done on each loop: | |
1331 | saved_CG_positions_.clear(); | |
1332 | for (int i = 0; i < nGroups_; i++) | |
1333 | saved_CG_positions_.push_back(snap_->cgData.position[i]); | |
1334 | < | |
1334 | > | |
1335 | return neighborList; | |
1336 | } | |
1337 | } //end namespace OpenMD |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |