| 36 | 
  | 
 * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).              | 
| 37 | 
  | 
 * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).           | 
| 38 | 
  | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).           | 
| 39 | 
< | 
 * [4]  Vardeman & Gezelter, in progress (2009).                         | 
| 39 | 
> | 
 * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | 
> | 
 * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | 
  | 
 */ | 
| 42 | 
  | 
#include "parallel/ForceMatrixDecomposition.hpp" | 
| 43 | 
  | 
#include "math/SquareMatrix3.hpp" | 
| 48 | 
  | 
using namespace std; | 
| 49 | 
  | 
namespace OpenMD { | 
| 50 | 
  | 
 | 
| 51 | 
+ | 
  ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { | 
| 52 | 
+ | 
 | 
| 53 | 
+ | 
    // In a parallel computation, row and colum scans must visit all | 
| 54 | 
+ | 
    // surrounding cells (not just the 14 upper triangular blocks that | 
| 55 | 
+ | 
    // are used when the processor can see all pairs) | 
| 56 | 
+ | 
#ifdef IS_MPI | 
| 57 | 
+ | 
    cellOffsets_.clear(); | 
| 58 | 
+ | 
    cellOffsets_.push_back( Vector3i(-1,-1,-1) ); | 
| 59 | 
+ | 
    cellOffsets_.push_back( Vector3i( 0,-1,-1) ); | 
| 60 | 
+ | 
    cellOffsets_.push_back( Vector3i( 1,-1,-1) );                           | 
| 61 | 
+ | 
    cellOffsets_.push_back( Vector3i(-1, 0,-1) ); | 
| 62 | 
+ | 
    cellOffsets_.push_back( Vector3i( 0, 0,-1) ); | 
| 63 | 
+ | 
    cellOffsets_.push_back( Vector3i( 1, 0,-1) ); | 
| 64 | 
+ | 
    cellOffsets_.push_back( Vector3i(-1, 1,-1) ); | 
| 65 | 
+ | 
    cellOffsets_.push_back( Vector3i( 0, 1,-1) );       | 
| 66 | 
+ | 
    cellOffsets_.push_back( Vector3i( 1, 1,-1) ); | 
| 67 | 
+ | 
    cellOffsets_.push_back( Vector3i(-1,-1, 0) ); | 
| 68 | 
+ | 
    cellOffsets_.push_back( Vector3i( 0,-1, 0) ); | 
| 69 | 
+ | 
    cellOffsets_.push_back( Vector3i( 1,-1, 0) ); | 
| 70 | 
+ | 
    cellOffsets_.push_back( Vector3i(-1, 0, 0) );        | 
| 71 | 
+ | 
    cellOffsets_.push_back( Vector3i( 0, 0, 0) ); | 
| 72 | 
+ | 
    cellOffsets_.push_back( Vector3i( 1, 0, 0) ); | 
| 73 | 
+ | 
    cellOffsets_.push_back( Vector3i(-1, 1, 0) ); | 
| 74 | 
+ | 
    cellOffsets_.push_back( Vector3i( 0, 1, 0) ); | 
| 75 | 
+ | 
    cellOffsets_.push_back( Vector3i( 1, 1, 0) ); | 
| 76 | 
+ | 
    cellOffsets_.push_back( Vector3i(-1,-1, 1) ); | 
| 77 | 
+ | 
    cellOffsets_.push_back( Vector3i( 0,-1, 1) ); | 
| 78 | 
+ | 
    cellOffsets_.push_back( Vector3i( 1,-1, 1) ); | 
| 79 | 
+ | 
    cellOffsets_.push_back( Vector3i(-1, 0, 1) ); | 
| 80 | 
+ | 
    cellOffsets_.push_back( Vector3i( 0, 0, 1) ); | 
| 81 | 
+ | 
    cellOffsets_.push_back( Vector3i( 1, 0, 1) ); | 
| 82 | 
+ | 
    cellOffsets_.push_back( Vector3i(-1, 1, 1) ); | 
| 83 | 
+ | 
    cellOffsets_.push_back( Vector3i( 0, 1, 1) ); | 
| 84 | 
+ | 
    cellOffsets_.push_back( Vector3i( 1, 1, 1) ); | 
| 85 | 
+ | 
#endif     | 
| 86 | 
+ | 
  } | 
| 87 | 
+ | 
 | 
| 88 | 
+ | 
 | 
| 89 | 
  | 
  /** | 
| 90 | 
  | 
   * distributeInitialData is essentially a copy of the older fortran  | 
| 91 | 
  | 
   * SimulationSetup | 
| 92 | 
  | 
   */ | 
| 54 | 
– | 
   | 
| 93 | 
  | 
  void ForceMatrixDecomposition::distributeInitialData() { | 
| 94 | 
  | 
    snap_ = sman_->getCurrentSnapshot(); | 
| 95 | 
  | 
    storageLayout_ = sman_->getStorageLayout(); | 
| 96 | 
  | 
    ff_ = info_->getForceField(); | 
| 97 | 
  | 
    nLocal_ = snap_->getNumberOfAtoms(); | 
| 98 | 
< | 
     | 
| 98 | 
> | 
    | 
| 99 | 
  | 
    nGroups_ = info_->getNLocalCutoffGroups(); | 
| 100 | 
  | 
    // gather the information for atomtype IDs (atids): | 
| 101 | 
  | 
    idents = info_->getIdentArray(); | 
| 109 | 
  | 
    PairList* oneTwo = info_->getOneTwoInteractions(); | 
| 110 | 
  | 
    PairList* oneThree = info_->getOneThreeInteractions(); | 
| 111 | 
  | 
    PairList* oneFour = info_->getOneFourInteractions(); | 
| 112 | 
< | 
 | 
| 112 | 
> | 
     | 
| 113 | 
> | 
    if (needVelocities_)  | 
| 114 | 
> | 
      snap_->cgData.setStorageLayout(DataStorage::dslPosition |  | 
| 115 | 
> | 
                                     DataStorage::dslVelocity); | 
| 116 | 
> | 
    else  | 
| 117 | 
> | 
      snap_->cgData.setStorageLayout(DataStorage::dslPosition); | 
| 118 | 
> | 
     | 
| 119 | 
  | 
#ifdef IS_MPI | 
| 120 | 
  | 
  | 
| 121 | 
< | 
    AtomCommIntRow = new Communicator<Row,int>(nLocal_); | 
| 122 | 
< | 
    AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); | 
| 79 | 
< | 
    AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); | 
| 80 | 
< | 
    AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); | 
| 81 | 
< | 
    AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); | 
| 121 | 
> | 
    MPI::Intracomm row = rowComm.getComm(); | 
| 122 | 
> | 
    MPI::Intracomm col = colComm.getComm(); | 
| 123 | 
  | 
 | 
| 124 | 
< | 
    AtomCommIntColumn = new Communicator<Column,int>(nLocal_); | 
| 125 | 
< | 
    AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); | 
| 126 | 
< | 
    AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); | 
| 127 | 
< | 
    AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); | 
| 128 | 
< | 
    AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); | 
| 124 | 
> | 
    AtomPlanIntRow = new Plan<int>(row, nLocal_); | 
| 125 | 
> | 
    AtomPlanRealRow = new Plan<RealType>(row, nLocal_); | 
| 126 | 
> | 
    AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); | 
| 127 | 
> | 
    AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); | 
| 128 | 
> | 
    AtomPlanPotRow = new Plan<potVec>(row, nLocal_); | 
| 129 | 
  | 
 | 
| 130 | 
< | 
    cgCommIntRow = new Communicator<Row,int>(nGroups_); | 
| 131 | 
< | 
    cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); | 
| 132 | 
< | 
    cgCommIntColumn = new Communicator<Column,int>(nGroups_); | 
| 133 | 
< | 
    cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); | 
| 130 | 
> | 
    AtomPlanIntColumn = new Plan<int>(col, nLocal_); | 
| 131 | 
> | 
    AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); | 
| 132 | 
> | 
    AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); | 
| 133 | 
> | 
    AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); | 
| 134 | 
> | 
    AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); | 
| 135 | 
  | 
 | 
| 136 | 
< | 
    nAtomsInRow_ = AtomCommIntRow->getSize(); | 
| 137 | 
< | 
    nAtomsInCol_ = AtomCommIntColumn->getSize(); | 
| 138 | 
< | 
    nGroupsInRow_ = cgCommIntRow->getSize(); | 
| 139 | 
< | 
    nGroupsInCol_ = cgCommIntColumn->getSize(); | 
| 136 | 
> | 
    cgPlanIntRow = new Plan<int>(row, nGroups_); | 
| 137 | 
> | 
    cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); | 
| 138 | 
> | 
    cgPlanIntColumn = new Plan<int>(col, nGroups_); | 
| 139 | 
> | 
    cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); | 
| 140 | 
  | 
 | 
| 141 | 
+ | 
    nAtomsInRow_ = AtomPlanIntRow->getSize(); | 
| 142 | 
+ | 
    nAtomsInCol_ = AtomPlanIntColumn->getSize(); | 
| 143 | 
+ | 
    nGroupsInRow_ = cgPlanIntRow->getSize(); | 
| 144 | 
+ | 
    nGroupsInCol_ = cgPlanIntColumn->getSize(); | 
| 145 | 
+ | 
 | 
| 146 | 
  | 
    // Modify the data storage objects with the correct layouts and sizes: | 
| 147 | 
  | 
    atomRowData.resize(nAtomsInRow_); | 
| 148 | 
  | 
    atomRowData.setStorageLayout(storageLayout_); | 
| 151 | 
  | 
    cgRowData.resize(nGroupsInRow_); | 
| 152 | 
  | 
    cgRowData.setStorageLayout(DataStorage::dslPosition); | 
| 153 | 
  | 
    cgColData.resize(nGroupsInCol_); | 
| 154 | 
< | 
    cgColData.setStorageLayout(DataStorage::dslPosition); | 
| 155 | 
< | 
         | 
| 154 | 
> | 
    if (needVelocities_) | 
| 155 | 
> | 
      // we only need column velocities if we need them. | 
| 156 | 
> | 
      cgColData.setStorageLayout(DataStorage::dslPosition | | 
| 157 | 
> | 
                                 DataStorage::dslVelocity); | 
| 158 | 
> | 
    else      | 
| 159 | 
> | 
      cgColData.setStorageLayout(DataStorage::dslPosition); | 
| 160 | 
> | 
       | 
| 161 | 
  | 
    identsRow.resize(nAtomsInRow_); | 
| 162 | 
  | 
    identsCol.resize(nAtomsInCol_); | 
| 163 | 
  | 
     | 
| 164 | 
< | 
    AtomCommIntRow->gather(idents, identsRow); | 
| 165 | 
< | 
    AtomCommIntColumn->gather(idents, identsCol); | 
| 164 | 
> | 
    AtomPlanIntRow->gather(idents, identsRow); | 
| 165 | 
> | 
    AtomPlanIntColumn->gather(idents, identsCol); | 
| 166 | 
  | 
     | 
| 167 | 
< | 
    AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | 
| 168 | 
< | 
    AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); | 
| 169 | 
< | 
     | 
| 118 | 
< | 
    cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); | 
| 119 | 
< | 
    cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); | 
| 167 | 
> | 
    // allocate memory for the parallel objects | 
| 168 | 
> | 
    atypesRow.resize(nAtomsInRow_); | 
| 169 | 
> | 
    atypesCol.resize(nAtomsInCol_); | 
| 170 | 
  | 
 | 
| 171 | 
< | 
    AtomCommRealRow->gather(massFactors, massFactorsRow); | 
| 172 | 
< | 
    AtomCommRealColumn->gather(massFactors, massFactorsCol); | 
| 171 | 
> | 
    for (int i = 0; i < nAtomsInRow_; i++)  | 
| 172 | 
> | 
      atypesRow[i] = ff_->getAtomType(identsRow[i]); | 
| 173 | 
> | 
    for (int i = 0; i < nAtomsInCol_; i++)  | 
| 174 | 
> | 
      atypesCol[i] = ff_->getAtomType(identsCol[i]);          | 
| 175 | 
  | 
 | 
| 176 | 
+ | 
    pot_row.resize(nAtomsInRow_); | 
| 177 | 
+ | 
    pot_col.resize(nAtomsInCol_); | 
| 178 | 
+ | 
 | 
| 179 | 
+ | 
    AtomRowToGlobal.resize(nAtomsInRow_); | 
| 180 | 
+ | 
    AtomColToGlobal.resize(nAtomsInCol_); | 
| 181 | 
+ | 
    AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | 
| 182 | 
+ | 
    AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); | 
| 183 | 
+ | 
 | 
| 184 | 
+ | 
    cgRowToGlobal.resize(nGroupsInRow_); | 
| 185 | 
+ | 
    cgColToGlobal.resize(nGroupsInCol_); | 
| 186 | 
+ | 
    cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); | 
| 187 | 
+ | 
    cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); | 
| 188 | 
+ | 
 | 
| 189 | 
+ | 
    massFactorsRow.resize(nAtomsInRow_); | 
| 190 | 
+ | 
    massFactorsCol.resize(nAtomsInCol_); | 
| 191 | 
+ | 
    AtomPlanRealRow->gather(massFactors, massFactorsRow); | 
| 192 | 
+ | 
    AtomPlanRealColumn->gather(massFactors, massFactorsCol); | 
| 193 | 
+ | 
 | 
| 194 | 
  | 
    groupListRow_.clear(); | 
| 195 | 
  | 
    groupListRow_.resize(nGroupsInRow_); | 
| 196 | 
  | 
    for (int i = 0; i < nGroupsInRow_; i++) { | 
| 245 | 
  | 
      }       | 
| 246 | 
  | 
    } | 
| 247 | 
  | 
 | 
| 248 | 
< | 
#endif | 
| 179 | 
< | 
 | 
| 180 | 
< | 
    groupList_.clear(); | 
| 181 | 
< | 
    groupList_.resize(nGroups_); | 
| 182 | 
< | 
    for (int i = 0; i < nGroups_; i++) { | 
| 183 | 
< | 
      int gid = cgLocalToGlobal[i]; | 
| 184 | 
< | 
      for (int j = 0; j < nLocal_; j++) { | 
| 185 | 
< | 
        int aid = AtomLocalToGlobal[j]; | 
| 186 | 
< | 
        if (globalGroupMembership[aid] == gid) { | 
| 187 | 
< | 
          groupList_[i].push_back(j); | 
| 188 | 
< | 
        } | 
| 189 | 
< | 
      }       | 
| 190 | 
< | 
    } | 
| 191 | 
< | 
 | 
| 248 | 
> | 
#else | 
| 249 | 
  | 
    excludesForAtom.clear(); | 
| 250 | 
  | 
    excludesForAtom.resize(nLocal_); | 
| 251 | 
  | 
    toposForAtom.clear(); | 
| 278 | 
  | 
        } | 
| 279 | 
  | 
      }       | 
| 280 | 
  | 
    } | 
| 281 | 
< | 
     | 
| 281 | 
> | 
#endif | 
| 282 | 
> | 
 | 
| 283 | 
> | 
    // allocate memory for the parallel objects | 
| 284 | 
> | 
    atypesLocal.resize(nLocal_); | 
| 285 | 
> | 
 | 
| 286 | 
> | 
    for (int i = 0; i < nLocal_; i++)  | 
| 287 | 
> | 
      atypesLocal[i] = ff_->getAtomType(idents[i]); | 
| 288 | 
> | 
 | 
| 289 | 
> | 
    groupList_.clear(); | 
| 290 | 
> | 
    groupList_.resize(nGroups_); | 
| 291 | 
> | 
    for (int i = 0; i < nGroups_; i++) { | 
| 292 | 
> | 
      int gid = cgLocalToGlobal[i]; | 
| 293 | 
> | 
      for (int j = 0; j < nLocal_; j++) { | 
| 294 | 
> | 
        int aid = AtomLocalToGlobal[j]; | 
| 295 | 
> | 
        if (globalGroupMembership[aid] == gid) { | 
| 296 | 
> | 
          groupList_[i].push_back(j); | 
| 297 | 
> | 
        } | 
| 298 | 
> | 
      }       | 
| 299 | 
> | 
    } | 
| 300 | 
> | 
 | 
| 301 | 
> | 
 | 
| 302 | 
  | 
    createGtypeCutoffMap(); | 
| 303 | 
  | 
 | 
| 304 | 
  | 
  } | 
| 306 | 
  | 
  void ForceMatrixDecomposition::createGtypeCutoffMap() { | 
| 307 | 
  | 
     | 
| 308 | 
  | 
    RealType tol = 1e-6; | 
| 309 | 
+ | 
    largestRcut_ = 0.0; | 
| 310 | 
  | 
    RealType rc; | 
| 311 | 
  | 
    int atid; | 
| 312 | 
  | 
    set<AtomType*> atypes = info_->getSimulatedAtomTypes(); | 
| 313 | 
+ | 
     | 
| 314 | 
  | 
    map<int, RealType> atypeCutoff; | 
| 315 | 
  | 
       | 
| 316 | 
  | 
    for (set<AtomType*>::iterator at = atypes.begin();  | 
| 318 | 
  | 
      atid = (*at)->getIdent(); | 
| 319 | 
  | 
      if (userChoseCutoff_)  | 
| 320 | 
  | 
        atypeCutoff[atid] = userCutoff_; | 
| 321 | 
< | 
      else  | 
| 321 | 
> | 
      else | 
| 322 | 
  | 
        atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); | 
| 323 | 
  | 
    } | 
| 324 | 
< | 
 | 
| 324 | 
> | 
     | 
| 325 | 
  | 
    vector<RealType> gTypeCutoffs; | 
| 326 | 
  | 
    // first we do a single loop over the cutoff groups to find the | 
| 327 | 
  | 
    // largest cutoff for any atypes present in this group. | 
| 381 | 
  | 
    vector<RealType> groupCutoff(nGroups_, 0.0); | 
| 382 | 
  | 
    groupToGtype.resize(nGroups_); | 
| 383 | 
  | 
    for (int cg1 = 0; cg1 < nGroups_; cg1++) { | 
| 305 | 
– | 
 | 
| 384 | 
  | 
      groupCutoff[cg1] = 0.0; | 
| 385 | 
  | 
      vector<int> atomList = getAtomsInGroupRow(cg1); | 
| 308 | 
– | 
 | 
| 386 | 
  | 
      for (vector<int>::iterator ia = atomList.begin();  | 
| 387 | 
  | 
           ia != atomList.end(); ++ia) {             | 
| 388 | 
  | 
        int atom1 = (*ia); | 
| 389 | 
  | 
        atid = idents[atom1]; | 
| 390 | 
< | 
        if (atypeCutoff[atid] > groupCutoff[cg1]) { | 
| 390 | 
> | 
        if (atypeCutoff[atid] > groupCutoff[cg1])  | 
| 391 | 
  | 
          groupCutoff[cg1] = atypeCutoff[atid]; | 
| 315 | 
– | 
        } | 
| 392 | 
  | 
      } | 
| 393 | 
< | 
 | 
| 393 | 
> | 
       | 
| 394 | 
  | 
      bool gTypeFound = false; | 
| 395 | 
  | 
      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 396 | 
  | 
        if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { | 
| 398 | 
  | 
          gTypeFound = true; | 
| 399 | 
  | 
        }  | 
| 400 | 
  | 
      } | 
| 401 | 
< | 
      if (!gTypeFound) { | 
| 401 | 
> | 
      if (!gTypeFound) {       | 
| 402 | 
  | 
        gTypeCutoffs.push_back( groupCutoff[cg1] ); | 
| 403 | 
  | 
        groupToGtype[cg1] = gTypeCutoffs.size() - 1; | 
| 404 | 
  | 
      }       | 
| 407 | 
  | 
 | 
| 408 | 
  | 
    // Now we find the maximum group cutoff value present in the simulation | 
| 409 | 
  | 
 | 
| 410 | 
< | 
    RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); | 
| 410 | 
> | 
    RealType groupMax = *max_element(gTypeCutoffs.begin(),  | 
| 411 | 
> | 
                                     gTypeCutoffs.end()); | 
| 412 | 
  | 
 | 
| 413 | 
  | 
#ifdef IS_MPI | 
| 414 | 
< | 
    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); | 
| 414 | 
> | 
    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,  | 
| 415 | 
> | 
                              MPI::MAX); | 
| 416 | 
  | 
#endif | 
| 417 | 
  | 
     | 
| 418 | 
  | 
    RealType tradRcut = groupMax; | 
| 442 | 
  | 
 | 
| 443 | 
  | 
        pair<int,int> key = make_pair(i,j); | 
| 444 | 
  | 
        gTypeCutoffMap[key].first = thisRcut; | 
| 367 | 
– | 
 | 
| 445 | 
  | 
        if (thisRcut > largestRcut_) largestRcut_ = thisRcut; | 
| 369 | 
– | 
 | 
| 446 | 
  | 
        gTypeCutoffMap[key].second = thisRcut*thisRcut; | 
| 371 | 
– | 
         | 
| 447 | 
  | 
        gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); | 
| 373 | 
– | 
 | 
| 448 | 
  | 
        // sanity check | 
| 449 | 
  | 
         | 
| 450 | 
  | 
        if (userChoseCutoff_) { | 
| 504 | 
  | 
         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));    | 
| 505 | 
  | 
 | 
| 506 | 
  | 
    if (storageLayout_ & DataStorage::dslParticlePot) {     | 
| 507 | 
< | 
      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); | 
| 508 | 
< | 
      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); | 
| 507 | 
> | 
      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), | 
| 508 | 
> | 
           0.0); | 
| 509 | 
> | 
      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), | 
| 510 | 
> | 
           0.0); | 
| 511 | 
  | 
    } | 
| 512 | 
  | 
 | 
| 513 | 
  | 
    if (storageLayout_ & DataStorage::dslDensity) {       | 
| 516 | 
  | 
    } | 
| 517 | 
  | 
 | 
| 518 | 
  | 
    if (storageLayout_ & DataStorage::dslFunctional) {    | 
| 519 | 
< | 
      fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); | 
| 520 | 
< | 
      fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); | 
| 519 | 
> | 
      fill(atomRowData.functional.begin(), atomRowData.functional.end(), | 
| 520 | 
> | 
           0.0); | 
| 521 | 
> | 
      fill(atomColData.functional.begin(), atomColData.functional.end(), | 
| 522 | 
> | 
           0.0); | 
| 523 | 
  | 
    } | 
| 524 | 
  | 
 | 
| 525 | 
  | 
    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {       | 
| 536 | 
  | 
           atomColData.skippedCharge.end(), 0.0); | 
| 537 | 
  | 
    } | 
| 538 | 
  | 
 | 
| 539 | 
< | 
#else | 
| 540 | 
< | 
     | 
| 539 | 
> | 
    if (storageLayout_ & DataStorage::dslFlucQForce) {       | 
| 540 | 
> | 
      fill(atomRowData.flucQFrc.begin(),  | 
| 541 | 
> | 
           atomRowData.flucQFrc.end(), 0.0); | 
| 542 | 
> | 
      fill(atomColData.flucQFrc.begin(),  | 
| 543 | 
> | 
           atomColData.flucQFrc.end(), 0.0); | 
| 544 | 
> | 
    } | 
| 545 | 
> | 
 | 
| 546 | 
> | 
    if (storageLayout_ & DataStorage::dslElectricField) {     | 
| 547 | 
> | 
      fill(atomRowData.electricField.begin(),  | 
| 548 | 
> | 
           atomRowData.electricField.end(), V3Zero); | 
| 549 | 
> | 
      fill(atomColData.electricField.begin(),  | 
| 550 | 
> | 
           atomColData.electricField.end(), V3Zero); | 
| 551 | 
> | 
    } | 
| 552 | 
> | 
 | 
| 553 | 
> | 
    if (storageLayout_ & DataStorage::dslFlucQForce) {     | 
| 554 | 
> | 
      fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), | 
| 555 | 
> | 
           0.0); | 
| 556 | 
> | 
      fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), | 
| 557 | 
> | 
           0.0); | 
| 558 | 
> | 
    } | 
| 559 | 
> | 
 | 
| 560 | 
> | 
#endif | 
| 561 | 
> | 
    // even in parallel, we need to zero out the local arrays: | 
| 562 | 
> | 
 | 
| 563 | 
  | 
    if (storageLayout_ & DataStorage::dslParticlePot) {       | 
| 564 | 
  | 
      fill(snap_->atomData.particlePot.begin(),  | 
| 565 | 
  | 
           snap_->atomData.particlePot.end(), 0.0); | 
| 569 | 
  | 
      fill(snap_->atomData.density.begin(),  | 
| 570 | 
  | 
           snap_->atomData.density.end(), 0.0); | 
| 571 | 
  | 
    } | 
| 572 | 
+ | 
 | 
| 573 | 
  | 
    if (storageLayout_ & DataStorage::dslFunctional) { | 
| 574 | 
  | 
      fill(snap_->atomData.functional.begin(),  | 
| 575 | 
  | 
           snap_->atomData.functional.end(), 0.0); | 
| 576 | 
  | 
    } | 
| 577 | 
+ | 
 | 
| 578 | 
  | 
    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {       | 
| 579 | 
  | 
      fill(snap_->atomData.functionalDerivative.begin(),  | 
| 580 | 
  | 
           snap_->atomData.functionalDerivative.end(), 0.0); | 
| 581 | 
  | 
    } | 
| 582 | 
+ | 
 | 
| 583 | 
  | 
    if (storageLayout_ & DataStorage::dslSkippedCharge) {       | 
| 584 | 
  | 
      fill(snap_->atomData.skippedCharge.begin(),  | 
| 585 | 
  | 
           snap_->atomData.skippedCharge.end(), 0.0); | 
| 586 | 
  | 
    } | 
| 587 | 
< | 
#endif | 
| 588 | 
< | 
     | 
| 587 | 
> | 
 | 
| 588 | 
> | 
    if (storageLayout_ & DataStorage::dslElectricField) {       | 
| 589 | 
> | 
      fill(snap_->atomData.electricField.begin(),  | 
| 590 | 
> | 
           snap_->atomData.electricField.end(), V3Zero); | 
| 591 | 
> | 
    } | 
| 592 | 
  | 
  } | 
| 593 | 
  | 
 | 
| 594 | 
  | 
 | 
| 598 | 
  | 
#ifdef IS_MPI | 
| 599 | 
  | 
     | 
| 600 | 
  | 
    // gather up the atomic positions | 
| 601 | 
< | 
    AtomCommVectorRow->gather(snap_->atomData.position,  | 
| 601 | 
> | 
    AtomPlanVectorRow->gather(snap_->atomData.position,  | 
| 602 | 
  | 
                              atomRowData.position); | 
| 603 | 
< | 
    AtomCommVectorColumn->gather(snap_->atomData.position,  | 
| 603 | 
> | 
    AtomPlanVectorColumn->gather(snap_->atomData.position,  | 
| 604 | 
  | 
                                 atomColData.position); | 
| 605 | 
  | 
     | 
| 606 | 
  | 
    // gather up the cutoff group positions | 
| 607 | 
< | 
    cgCommVectorRow->gather(snap_->cgData.position,  | 
| 607 | 
> | 
 | 
| 608 | 
> | 
    cgPlanVectorRow->gather(snap_->cgData.position,  | 
| 609 | 
  | 
                            cgRowData.position); | 
| 610 | 
< | 
    cgCommVectorColumn->gather(snap_->cgData.position,  | 
| 610 | 
> | 
 | 
| 611 | 
> | 
    cgPlanVectorColumn->gather(snap_->cgData.position,  | 
| 612 | 
  | 
                               cgColData.position); | 
| 613 | 
+ | 
 | 
| 614 | 
+ | 
 | 
| 615 | 
+ | 
 | 
| 616 | 
+ | 
    if (needVelocities_) { | 
| 617 | 
+ | 
      // gather up the atomic velocities | 
| 618 | 
+ | 
      AtomPlanVectorColumn->gather(snap_->atomData.velocity,  | 
| 619 | 
+ | 
                                   atomColData.velocity); | 
| 620 | 
+ | 
       | 
| 621 | 
+ | 
      cgPlanVectorColumn->gather(snap_->cgData.velocity,  | 
| 622 | 
+ | 
                                 cgColData.velocity); | 
| 623 | 
+ | 
    } | 
| 624 | 
+ | 
 | 
| 625 | 
  | 
     | 
| 626 | 
  | 
    // if needed, gather the atomic rotation matrices | 
| 627 | 
  | 
    if (storageLayout_ & DataStorage::dslAmat) { | 
| 628 | 
< | 
      AtomCommMatrixRow->gather(snap_->atomData.aMat,  | 
| 628 | 
> | 
      AtomPlanMatrixRow->gather(snap_->atomData.aMat,  | 
| 629 | 
  | 
                                atomRowData.aMat); | 
| 630 | 
< | 
      AtomCommMatrixColumn->gather(snap_->atomData.aMat,  | 
| 630 | 
> | 
      AtomPlanMatrixColumn->gather(snap_->atomData.aMat,  | 
| 631 | 
  | 
                                   atomColData.aMat); | 
| 632 | 
  | 
    } | 
| 633 | 
  | 
     | 
| 634 | 
  | 
    // if needed, gather the atomic eletrostatic frames | 
| 635 | 
  | 
    if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 636 | 
< | 
      AtomCommMatrixRow->gather(snap_->atomData.electroFrame,  | 
| 636 | 
> | 
      AtomPlanMatrixRow->gather(snap_->atomData.electroFrame,  | 
| 637 | 
  | 
                                atomRowData.electroFrame); | 
| 638 | 
< | 
      AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,  | 
| 638 | 
> | 
      AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame,  | 
| 639 | 
  | 
                                   atomColData.electroFrame); | 
| 640 | 
  | 
    } | 
| 641 | 
+ | 
 | 
| 642 | 
+ | 
    // if needed, gather the atomic fluctuating charge values | 
| 643 | 
+ | 
    if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 644 | 
+ | 
      AtomPlanRealRow->gather(snap_->atomData.flucQPos,  | 
| 645 | 
+ | 
                              atomRowData.flucQPos); | 
| 646 | 
+ | 
      AtomPlanRealColumn->gather(snap_->atomData.flucQPos,  | 
| 647 | 
+ | 
                                 atomColData.flucQPos); | 
| 648 | 
+ | 
    } | 
| 649 | 
+ | 
 | 
| 650 | 
  | 
#endif       | 
| 651 | 
  | 
  } | 
| 652 | 
  | 
   | 
| 660 | 
  | 
     | 
| 661 | 
  | 
    if (storageLayout_ & DataStorage::dslDensity) { | 
| 662 | 
  | 
       | 
| 663 | 
< | 
      AtomCommRealRow->scatter(atomRowData.density,  | 
| 663 | 
> | 
      AtomPlanRealRow->scatter(atomRowData.density,  | 
| 664 | 
  | 
                               snap_->atomData.density); | 
| 665 | 
  | 
       | 
| 666 | 
  | 
      int n = snap_->atomData.density.size(); | 
| 667 | 
  | 
      vector<RealType> rho_tmp(n, 0.0); | 
| 668 | 
< | 
      AtomCommRealColumn->scatter(atomColData.density, rho_tmp); | 
| 668 | 
> | 
      AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); | 
| 669 | 
  | 
      for (int i = 0; i < n; i++) | 
| 670 | 
  | 
        snap_->atomData.density[i] += rho_tmp[i]; | 
| 671 | 
  | 
    } | 
| 672 | 
+ | 
 | 
| 673 | 
+ | 
    if (storageLayout_ & DataStorage::dslElectricField) { | 
| 674 | 
+ | 
       | 
| 675 | 
+ | 
      AtomPlanVectorRow->scatter(atomRowData.electricField,  | 
| 676 | 
+ | 
                                 snap_->atomData.electricField); | 
| 677 | 
+ | 
       | 
| 678 | 
+ | 
      int n = snap_->atomData.electricField.size(); | 
| 679 | 
+ | 
      vector<Vector3d> field_tmp(n, V3Zero); | 
| 680 | 
+ | 
      AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); | 
| 681 | 
+ | 
      for (int i = 0; i < n; i++) | 
| 682 | 
+ | 
        snap_->atomData.electricField[i] += field_tmp[i]; | 
| 683 | 
+ | 
    } | 
| 684 | 
  | 
#endif | 
| 685 | 
  | 
  } | 
| 686 | 
  | 
 | 
| 693 | 
  | 
    storageLayout_ = sman_->getStorageLayout(); | 
| 694 | 
  | 
#ifdef IS_MPI | 
| 695 | 
  | 
    if (storageLayout_ & DataStorage::dslFunctional) { | 
| 696 | 
< | 
      AtomCommRealRow->gather(snap_->atomData.functional,  | 
| 696 | 
> | 
      AtomPlanRealRow->gather(snap_->atomData.functional,  | 
| 697 | 
  | 
                              atomRowData.functional); | 
| 698 | 
< | 
      AtomCommRealColumn->gather(snap_->atomData.functional,  | 
| 698 | 
> | 
      AtomPlanRealColumn->gather(snap_->atomData.functional,  | 
| 699 | 
  | 
                                 atomColData.functional); | 
| 700 | 
  | 
    } | 
| 701 | 
  | 
     | 
| 702 | 
  | 
    if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 703 | 
< | 
      AtomCommRealRow->gather(snap_->atomData.functionalDerivative,  | 
| 703 | 
> | 
      AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,  | 
| 704 | 
  | 
                              atomRowData.functionalDerivative); | 
| 705 | 
< | 
      AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,  | 
| 705 | 
> | 
      AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,  | 
| 706 | 
  | 
                                 atomColData.functionalDerivative); | 
| 707 | 
  | 
    } | 
| 708 | 
  | 
#endif | 
| 716 | 
  | 
    int n = snap_->atomData.force.size(); | 
| 717 | 
  | 
    vector<Vector3d> frc_tmp(n, V3Zero); | 
| 718 | 
  | 
     | 
| 719 | 
< | 
    AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); | 
| 719 | 
> | 
    AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); | 
| 720 | 
  | 
    for (int i = 0; i < n; i++) { | 
| 721 | 
  | 
      snap_->atomData.force[i] += frc_tmp[i]; | 
| 722 | 
  | 
      frc_tmp[i] = 0.0; | 
| 723 | 
  | 
    } | 
| 724 | 
  | 
     | 
| 725 | 
< | 
    AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); | 
| 726 | 
< | 
    for (int i = 0; i < n; i++) | 
| 725 | 
> | 
    AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); | 
| 726 | 
> | 
    for (int i = 0; i < n; i++) { | 
| 727 | 
  | 
      snap_->atomData.force[i] += frc_tmp[i]; | 
| 728 | 
< | 
     | 
| 729 | 
< | 
     | 
| 728 | 
> | 
    } | 
| 729 | 
> | 
         | 
| 730 | 
  | 
    if (storageLayout_ & DataStorage::dslTorque) { | 
| 731 | 
  | 
 | 
| 732 | 
  | 
      int nt = snap_->atomData.torque.size(); | 
| 733 | 
  | 
      vector<Vector3d> trq_tmp(nt, V3Zero); | 
| 734 | 
  | 
 | 
| 735 | 
< | 
      AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); | 
| 735 | 
> | 
      AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); | 
| 736 | 
  | 
      for (int i = 0; i < nt; i++) { | 
| 737 | 
  | 
        snap_->atomData.torque[i] += trq_tmp[i]; | 
| 738 | 
  | 
        trq_tmp[i] = 0.0; | 
| 739 | 
  | 
      } | 
| 740 | 
  | 
       | 
| 741 | 
< | 
      AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); | 
| 741 | 
> | 
      AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); | 
| 742 | 
  | 
      for (int i = 0; i < nt; i++) | 
| 743 | 
  | 
        snap_->atomData.torque[i] += trq_tmp[i]; | 
| 744 | 
  | 
    } | 
| 748 | 
  | 
      int ns = snap_->atomData.skippedCharge.size(); | 
| 749 | 
  | 
      vector<RealType> skch_tmp(ns, 0.0); | 
| 750 | 
  | 
 | 
| 751 | 
< | 
      AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp); | 
| 751 | 
> | 
      AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); | 
| 752 | 
  | 
      for (int i = 0; i < ns; i++) { | 
| 753 | 
< | 
        snap_->atomData.skippedCharge[i] = skch_tmp[i]; | 
| 753 | 
> | 
        snap_->atomData.skippedCharge[i] += skch_tmp[i]; | 
| 754 | 
  | 
        skch_tmp[i] = 0.0; | 
| 755 | 
  | 
      } | 
| 756 | 
  | 
       | 
| 757 | 
< | 
      AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp); | 
| 758 | 
< | 
      for (int i = 0; i < ns; i++) | 
| 757 | 
> | 
      AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); | 
| 758 | 
> | 
      for (int i = 0; i < ns; i++)  | 
| 759 | 
  | 
        snap_->atomData.skippedCharge[i] += skch_tmp[i]; | 
| 760 | 
+ | 
             | 
| 761 | 
  | 
    } | 
| 762 | 
  | 
     | 
| 763 | 
+ | 
    if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 764 | 
+ | 
 | 
| 765 | 
+ | 
      int nq = snap_->atomData.flucQFrc.size(); | 
| 766 | 
+ | 
      vector<RealType> fqfrc_tmp(nq, 0.0); | 
| 767 | 
+ | 
 | 
| 768 | 
+ | 
      AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); | 
| 769 | 
+ | 
      for (int i = 0; i < nq; i++) { | 
| 770 | 
+ | 
        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; | 
| 771 | 
+ | 
        fqfrc_tmp[i] = 0.0; | 
| 772 | 
+ | 
      } | 
| 773 | 
+ | 
       | 
| 774 | 
+ | 
      AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); | 
| 775 | 
+ | 
      for (int i = 0; i < nq; i++)  | 
| 776 | 
+ | 
        snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; | 
| 777 | 
+ | 
             | 
| 778 | 
+ | 
    } | 
| 779 | 
+ | 
 | 
| 780 | 
  | 
    nLocal_ = snap_->getNumberOfAtoms(); | 
| 781 | 
  | 
 | 
| 782 | 
  | 
    vector<potVec> pot_temp(nLocal_,  | 
| 784 | 
  | 
 | 
| 785 | 
  | 
    // scatter/gather pot_row into the members of my column | 
| 786 | 
  | 
           | 
| 787 | 
< | 
    AtomCommPotRow->scatter(pot_row, pot_temp); | 
| 787 | 
> | 
    AtomPlanPotRow->scatter(pot_row, pot_temp); | 
| 788 | 
  | 
 | 
| 789 | 
  | 
    for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 790 | 
  | 
      pairwisePot += pot_temp[ii]; | 
| 791 | 
< | 
     | 
| 791 | 
> | 
         | 
| 792 | 
> | 
    if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 793 | 
> | 
      // This is the pairwise contribution to the particle pot.  The | 
| 794 | 
> | 
      // embedding contribution is added in each of the low level | 
| 795 | 
> | 
      // non-bonded routines.  In single processor, this is done in | 
| 796 | 
> | 
      // unpackInteractionData, not in collectData. | 
| 797 | 
> | 
      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 798 | 
> | 
        for (int i = 0; i < nLocal_; i++) { | 
| 799 | 
> | 
          // factor of two is because the total potential terms are divided | 
| 800 | 
> | 
          // by 2 in parallel due to row/ column scatter        | 
| 801 | 
> | 
          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); | 
| 802 | 
> | 
        } | 
| 803 | 
> | 
      } | 
| 804 | 
> | 
    } | 
| 805 | 
> | 
 | 
| 806 | 
  | 
    fill(pot_temp.begin(), pot_temp.end(),  | 
| 807 | 
  | 
         Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 808 | 
  | 
       | 
| 809 | 
< | 
    AtomCommPotColumn->scatter(pot_col, pot_temp);     | 
| 809 | 
> | 
    AtomPlanPotColumn->scatter(pot_col, pot_temp);     | 
| 810 | 
  | 
     | 
| 811 | 
  | 
    for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 812 | 
  | 
      pairwisePot += pot_temp[ii];     | 
| 813 | 
+ | 
 | 
| 814 | 
+ | 
    if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 815 | 
+ | 
      // This is the pairwise contribution to the particle pot.  The | 
| 816 | 
+ | 
      // embedding contribution is added in each of the low level | 
| 817 | 
+ | 
      // non-bonded routines.  In single processor, this is done in | 
| 818 | 
+ | 
      // unpackInteractionData, not in collectData. | 
| 819 | 
+ | 
      for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 820 | 
+ | 
        for (int i = 0; i < nLocal_; i++) { | 
| 821 | 
+ | 
          // factor of two is because the total potential terms are divided | 
| 822 | 
+ | 
          // by 2 in parallel due to row/ column scatter        | 
| 823 | 
+ | 
          snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); | 
| 824 | 
+ | 
        } | 
| 825 | 
+ | 
      } | 
| 826 | 
+ | 
    } | 
| 827 | 
+ | 
     | 
| 828 | 
+ | 
    if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 829 | 
+ | 
      int npp = snap_->atomData.particlePot.size(); | 
| 830 | 
+ | 
      vector<RealType> ppot_temp(npp, 0.0); | 
| 831 | 
+ | 
 | 
| 832 | 
+ | 
      // This is the direct or embedding contribution to the particle | 
| 833 | 
+ | 
      // pot. | 
| 834 | 
+ | 
       | 
| 835 | 
+ | 
      AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); | 
| 836 | 
+ | 
      for (int i = 0; i < npp; i++) { | 
| 837 | 
+ | 
        snap_->atomData.particlePot[i] += ppot_temp[i]; | 
| 838 | 
+ | 
      } | 
| 839 | 
+ | 
 | 
| 840 | 
+ | 
      fill(ppot_temp.begin(), ppot_temp.end(), 0.0); | 
| 841 | 
+ | 
       | 
| 842 | 
+ | 
      AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); | 
| 843 | 
+ | 
      for (int i = 0; i < npp; i++) { | 
| 844 | 
+ | 
        snap_->atomData.particlePot[i] += ppot_temp[i]; | 
| 845 | 
+ | 
      } | 
| 846 | 
+ | 
    } | 
| 847 | 
+ | 
 | 
| 848 | 
+ | 
    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 849 | 
+ | 
      RealType ploc1 = pairwisePot[ii]; | 
| 850 | 
+ | 
      RealType ploc2 = 0.0; | 
| 851 | 
+ | 
      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 852 | 
+ | 
      pairwisePot[ii] = ploc2; | 
| 853 | 
+ | 
    } | 
| 854 | 
+ | 
 | 
| 855 | 
+ | 
    for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 856 | 
+ | 
      RealType ploc1 = embeddingPot[ii]; | 
| 857 | 
+ | 
      RealType ploc2 = 0.0; | 
| 858 | 
+ | 
      MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 859 | 
+ | 
      embeddingPot[ii] = ploc2; | 
| 860 | 
+ | 
    } | 
| 861 | 
+ | 
     | 
| 862 | 
+ | 
    // Here be dragons. | 
| 863 | 
+ | 
    MPI::Intracomm col = colComm.getComm(); | 
| 864 | 
+ | 
 | 
| 865 | 
+ | 
    col.Allreduce(MPI::IN_PLACE,  | 
| 866 | 
+ | 
                  &snap_->frameData.conductiveHeatFlux[0], 3,  | 
| 867 | 
+ | 
                  MPI::REALTYPE, MPI::SUM); | 
| 868 | 
+ | 
 | 
| 869 | 
+ | 
 | 
| 870 | 
  | 
#endif | 
| 871 | 
  | 
 | 
| 872 | 
  | 
  } | 
| 911 | 
  | 
    return d;     | 
| 912 | 
  | 
  } | 
| 913 | 
  | 
 | 
| 914 | 
+ | 
  Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ | 
| 915 | 
+ | 
#ifdef IS_MPI | 
| 916 | 
+ | 
    return cgColData.velocity[cg2]; | 
| 917 | 
+ | 
#else | 
| 918 | 
+ | 
    return snap_->cgData.velocity[cg2]; | 
| 919 | 
+ | 
#endif | 
| 920 | 
+ | 
  } | 
| 921 | 
  | 
 | 
| 922 | 
+ | 
  Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ | 
| 923 | 
+ | 
#ifdef IS_MPI | 
| 924 | 
+ | 
    return atomColData.velocity[atom2]; | 
| 925 | 
+ | 
#else | 
| 926 | 
+ | 
    return snap_->atomData.velocity[atom2]; | 
| 927 | 
+ | 
#endif | 
| 928 | 
+ | 
  } | 
| 929 | 
+ | 
 | 
| 930 | 
+ | 
 | 
| 931 | 
  | 
  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ | 
| 932 | 
  | 
 | 
| 933 | 
  | 
    Vector3d d; | 
| 995 | 
  | 
   */ | 
| 996 | 
  | 
  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { | 
| 997 | 
  | 
    int unique_id_1, unique_id_2; | 
| 998 | 
< | 
 | 
| 998 | 
> | 
         | 
| 999 | 
  | 
#ifdef IS_MPI | 
| 1000 | 
  | 
    // in MPI, we have to look up the unique IDs for each atom | 
| 1001 | 
  | 
    unique_id_1 = AtomRowToGlobal[atom1]; | 
| 1002 | 
  | 
    unique_id_2 = AtomColToGlobal[atom2]; | 
| 1003 | 
+ | 
#else | 
| 1004 | 
+ | 
    unique_id_1 = AtomLocalToGlobal[atom1]; | 
| 1005 | 
+ | 
    unique_id_2 = AtomLocalToGlobal[atom2]; | 
| 1006 | 
+ | 
#endif    | 
| 1007 | 
  | 
 | 
| 758 | 
– | 
    // this situation should only arise in MPI simulations | 
| 1008 | 
  | 
    if (unique_id_1 == unique_id_2) return true; | 
| 1009 | 
< | 
     | 
| 1009 | 
> | 
 | 
| 1010 | 
> | 
#ifdef IS_MPI | 
| 1011 | 
  | 
    // this prevents us from doing the pair on multiple processors | 
| 1012 | 
  | 
    if (unique_id_1 < unique_id_2) { | 
| 1013 | 
  | 
      if ((unique_id_1 + unique_id_2) % 2 == 0) return true; | 
| 1014 | 
  | 
    } else { | 
| 1015 | 
< | 
      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;  | 
| 1015 | 
> | 
      if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | 
| 1016 | 
  | 
    } | 
| 1017 | 
  | 
#endif | 
| 1018 | 
+ | 
     | 
| 1019 | 
  | 
    return false; | 
| 1020 | 
  | 
  } | 
| 1021 | 
  | 
 | 
| 1029 | 
  | 
   * field) must still be handled for these pairs. | 
| 1030 | 
  | 
   */ | 
| 1031 | 
  | 
  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { | 
| 1032 | 
< | 
    int unique_id_2; | 
| 1032 | 
> | 
 | 
| 1033 | 
> | 
    // excludesForAtom was constructed to use row/column indices in the MPI | 
| 1034 | 
> | 
    // version, and to use local IDs in the non-MPI version: | 
| 1035 | 
  | 
     | 
| 783 | 
– | 
#ifdef IS_MPI | 
| 784 | 
– | 
    // in MPI, we have to look up the unique IDs for the row atom. | 
| 785 | 
– | 
    unique_id_2 = AtomColToGlobal[atom2]; | 
| 786 | 
– | 
#else | 
| 787 | 
– | 
    // in the normal loop, the atom numbers are unique | 
| 788 | 
– | 
    unique_id_2 = atom2; | 
| 789 | 
– | 
#endif | 
| 790 | 
– | 
     | 
| 1036 | 
  | 
    for (vector<int>::iterator i = excludesForAtom[atom1].begin(); | 
| 1037 | 
  | 
         i != excludesForAtom[atom1].end(); ++i) { | 
| 1038 | 
< | 
      if ( (*i) == unique_id_2 ) return true; | 
| 1038 | 
> | 
      if ( (*i) == atom2 ) return true; | 
| 1039 | 
  | 
    } | 
| 1040 | 
  | 
 | 
| 1041 | 
  | 
    return false; | 
| 1065 | 
  | 
    idat.excluded = excludeAtomPair(atom1, atom2); | 
| 1066 | 
  | 
    | 
| 1067 | 
  | 
#ifdef IS_MPI | 
| 1068 | 
+ | 
    idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); | 
| 1069 | 
+ | 
    //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),  | 
| 1070 | 
+ | 
    //                         ff_->getAtomType(identsCol[atom2]) ); | 
| 1071 | 
  | 
     | 
| 824 | 
– | 
    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),  | 
| 825 | 
– | 
                             ff_->getAtomType(identsCol[atom2]) ); | 
| 826 | 
– | 
     | 
| 1072 | 
  | 
    if (storageLayout_ & DataStorage::dslAmat) { | 
| 1073 | 
  | 
      idat.A1 = &(atomRowData.aMat[atom1]); | 
| 1074 | 
  | 
      idat.A2 = &(atomColData.aMat[atom2]); | 
| 1109 | 
  | 
      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); | 
| 1110 | 
  | 
    } | 
| 1111 | 
  | 
 | 
| 1112 | 
+ | 
    if (storageLayout_ & DataStorage::dslFlucQPosition) {               | 
| 1113 | 
+ | 
      idat.flucQ1 = &(atomRowData.flucQPos[atom1]); | 
| 1114 | 
+ | 
      idat.flucQ2 = &(atomColData.flucQPos[atom2]); | 
| 1115 | 
+ | 
    } | 
| 1116 | 
+ | 
 | 
| 1117 | 
  | 
#else | 
| 1118 | 
+ | 
     | 
| 1119 | 
  | 
 | 
| 1120 | 
< | 
    idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),  | 
| 1121 | 
< | 
                             ff_->getAtomType(idents[atom2]) ); | 
| 1120 | 
> | 
    // cerr << "atoms = " << atom1 << " " << atom2 << "\n"; | 
| 1121 | 
> | 
    // cerr << "pos1 = " << snap_->atomData.position[atom1] << "\n"; | 
| 1122 | 
> | 
    // cerr << "pos2 = " << snap_->atomData.position[atom2] << "\n"; | 
| 1123 | 
  | 
 | 
| 1124 | 
+ | 
    idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); | 
| 1125 | 
+ | 
    //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),  | 
| 1126 | 
+ | 
    //                         ff_->getAtomType(idents[atom2]) ); | 
| 1127 | 
+ | 
 | 
| 1128 | 
  | 
    if (storageLayout_ & DataStorage::dslAmat) { | 
| 1129 | 
  | 
      idat.A1 = &(snap_->atomData.aMat[atom1]); | 
| 1130 | 
  | 
      idat.A2 = &(snap_->atomData.aMat[atom2]); | 
| 1164 | 
  | 
      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); | 
| 1165 | 
  | 
      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); | 
| 1166 | 
  | 
    } | 
| 1167 | 
+ | 
 | 
| 1168 | 
+ | 
    if (storageLayout_ & DataStorage::dslFlucQPosition) {               | 
| 1169 | 
+ | 
      idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); | 
| 1170 | 
+ | 
      idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); | 
| 1171 | 
+ | 
    } | 
| 1172 | 
+ | 
 | 
| 1173 | 
  | 
#endif | 
| 1174 | 
  | 
  } | 
| 1175 | 
  | 
 | 
| 1176 | 
  | 
   | 
| 1177 | 
  | 
  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {     | 
| 1178 | 
  | 
#ifdef IS_MPI | 
| 1179 | 
< | 
    pot_row[atom1] += 0.5 *  *(idat.pot); | 
| 1180 | 
< | 
    pot_col[atom2] += 0.5 *  *(idat.pot); | 
| 1179 | 
> | 
    pot_row[atom1] += RealType(0.5) *  *(idat.pot); | 
| 1180 | 
> | 
    pot_col[atom2] += RealType(0.5) *  *(idat.pot); | 
| 1181 | 
  | 
 | 
| 1182 | 
  | 
    atomRowData.force[atom1] += *(idat.f1); | 
| 1183 | 
  | 
    atomColData.force[atom2] -= *(idat.f1); | 
| 1184 | 
+ | 
 | 
| 1185 | 
+ | 
    if (storageLayout_ & DataStorage::dslFlucQForce) {               | 
| 1186 | 
+ | 
      atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); | 
| 1187 | 
+ | 
      atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); | 
| 1188 | 
+ | 
    } | 
| 1189 | 
+ | 
 | 
| 1190 | 
+ | 
    if (storageLayout_ & DataStorage::dslElectricField) {               | 
| 1191 | 
+ | 
      atomRowData.electricField[atom1] += *(idat.eField1); | 
| 1192 | 
+ | 
      atomColData.electricField[atom2] += *(idat.eField2); | 
| 1193 | 
+ | 
    } | 
| 1194 | 
+ | 
 | 
| 1195 | 
  | 
#else | 
| 1196 | 
  | 
    pairwisePot += *(idat.pot); | 
| 1197 | 
  | 
 | 
| 1198 | 
  | 
    snap_->atomData.force[atom1] += *(idat.f1); | 
| 1199 | 
  | 
    snap_->atomData.force[atom2] -= *(idat.f1); | 
| 1200 | 
+ | 
 | 
| 1201 | 
+ | 
    if (idat.doParticlePot) { | 
| 1202 | 
+ | 
      // This is the pairwise contribution to the particle pot.  The | 
| 1203 | 
+ | 
      // embedding contribution is added in each of the low level | 
| 1204 | 
+ | 
      // non-bonded routines.  In parallel, this calculation is done | 
| 1205 | 
+ | 
      // in collectData, not in unpackInteractionData. | 
| 1206 | 
+ | 
      snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); | 
| 1207 | 
+ | 
      snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); | 
| 1208 | 
+ | 
    } | 
| 1209 | 
+ | 
     | 
| 1210 | 
+ | 
    if (storageLayout_ & DataStorage::dslFlucQForce) {               | 
| 1211 | 
+ | 
      snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); | 
| 1212 | 
+ | 
      snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); | 
| 1213 | 
+ | 
    } | 
| 1214 | 
+ | 
 | 
| 1215 | 
+ | 
    if (storageLayout_ & DataStorage::dslElectricField) {               | 
| 1216 | 
+ | 
      snap_->atomData.electricField[atom1] += *(idat.eField1); | 
| 1217 | 
+ | 
      snap_->atomData.electricField[atom2] += *(idat.eField2); | 
| 1218 | 
+ | 
    } | 
| 1219 | 
+ | 
 | 
| 1220 | 
  | 
#endif | 
| 1221 | 
  | 
     | 
| 1222 | 
  | 
  } | 
| 1298 | 
  | 
        // add this cutoff group to the list of groups in this cell; | 
| 1299 | 
  | 
        cellListRow_[cellIndex].push_back(i); | 
| 1300 | 
  | 
      } | 
| 1008 | 
– | 
       | 
| 1301 | 
  | 
      for (int i = 0; i < nGroupsInCol_; i++) { | 
| 1302 | 
  | 
        rs = cgColData.position[i]; | 
| 1303 | 
  | 
         | 
| 1322 | 
  | 
        // add this cutoff group to the list of groups in this cell; | 
| 1323 | 
  | 
        cellListCol_[cellIndex].push_back(i); | 
| 1324 | 
  | 
      } | 
| 1325 | 
+ | 
      | 
| 1326 | 
  | 
#else | 
| 1327 | 
  | 
      for (int i = 0; i < nGroups_; i++) { | 
| 1328 | 
  | 
        rs = snap_->cgData.position[i]; | 
| 1343 | 
  | 
        whichCell.z() = nCells_.z() * scaled.z(); | 
| 1344 | 
  | 
         | 
| 1345 | 
  | 
        // find single index of this cell: | 
| 1346 | 
< | 
        cellIndex = Vlinear(whichCell, nCells_);       | 
| 1346 | 
> | 
        cellIndex = Vlinear(whichCell, nCells_); | 
| 1347 | 
  | 
         | 
| 1348 | 
  | 
        // add this cutoff group to the list of groups in this cell; | 
| 1349 | 
  | 
        cellList_[cellIndex].push_back(i); | 
| 1350 | 
  | 
      } | 
| 1351 | 
+ | 
 | 
| 1352 | 
  | 
#endif | 
| 1353 | 
  | 
 | 
| 1354 | 
  | 
      for (int m1z = 0; m1z < nCells_.z(); m1z++) { | 
| 1361 | 
  | 
                 os != cellOffsets_.end(); ++os) { | 
| 1362 | 
  | 
               | 
| 1363 | 
  | 
              Vector3i m2v = m1v + (*os); | 
| 1364 | 
< | 
               | 
| 1364 | 
> | 
              | 
| 1365 | 
> | 
 | 
| 1366 | 
  | 
              if (m2v.x() >= nCells_.x()) { | 
| 1367 | 
  | 
                m2v.x() = 0;            | 
| 1368 | 
  | 
              } else if (m2v.x() < 0) { | 
| 1380 | 
  | 
              } else if (m2v.z() < 0) { | 
| 1381 | 
  | 
                m2v.z() = nCells_.z() - 1;  | 
| 1382 | 
  | 
              } | 
| 1383 | 
< | 
               | 
| 1383 | 
> | 
 | 
| 1384 | 
  | 
              int m2 = Vlinear (m2v, nCells_); | 
| 1385 | 
  | 
               | 
| 1386 | 
  | 
#ifdef IS_MPI | 
| 1389 | 
  | 
                for (vector<int>::iterator j2 = cellListCol_[m2].begin();  | 
| 1390 | 
  | 
                     j2 != cellListCol_[m2].end(); ++j2) { | 
| 1391 | 
  | 
                   | 
| 1392 | 
< | 
                  // Always do this if we're in different cells or if | 
| 1393 | 
< | 
                  // we're in the same cell and the global index of the | 
| 1394 | 
< | 
                  // j2 cutoff group is less than the j1 cutoff group | 
| 1395 | 
< | 
                   | 
| 1396 | 
< | 
                  if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { | 
| 1397 | 
< | 
                    dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | 
| 1398 | 
< | 
                    snap_->wrapVector(dr); | 
| 1399 | 
< | 
                    cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1400 | 
< | 
                    if (dr.lengthSquare() < cuts.third) { | 
| 1106 | 
< | 
                      neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1107 | 
< | 
                    } | 
| 1108 | 
< | 
                  } | 
| 1392 | 
> | 
                  // In parallel, we need to visit *all* pairs of row | 
| 1393 | 
> | 
                  // & column indicies and will divide labor in the | 
| 1394 | 
> | 
                  // force evaluation later. | 
| 1395 | 
> | 
                  dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | 
| 1396 | 
> | 
                  snap_->wrapVector(dr); | 
| 1397 | 
> | 
                  cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1398 | 
> | 
                  if (dr.lengthSquare() < cuts.third) { | 
| 1399 | 
> | 
                    neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1400 | 
> | 
                  }                   | 
| 1401 | 
  | 
                } | 
| 1402 | 
  | 
              } | 
| 1403 | 
  | 
#else | 
| 1112 | 
– | 
               | 
| 1404 | 
  | 
              for (vector<int>::iterator j1 = cellList_[m1].begin();  | 
| 1405 | 
  | 
                   j1 != cellList_[m1].end(); ++j1) { | 
| 1406 | 
  | 
                for (vector<int>::iterator j2 = cellList_[m2].begin();  | 
| 1407 | 
  | 
                     j2 != cellList_[m2].end(); ++j2) { | 
| 1408 | 
< | 
                   | 
| 1408 | 
> | 
      | 
| 1409 | 
  | 
                  // Always do this if we're in different cells or if | 
| 1410 | 
< | 
                  // we're in the same cell and the global index of the | 
| 1411 | 
< | 
                  // j2 cutoff group is less than the j1 cutoff group | 
| 1412 | 
< | 
                   | 
| 1413 | 
< | 
                  if (m2 != m1 || (*j2) < (*j1)) { | 
| 1410 | 
> | 
                  // we're in the same cell and the global index of | 
| 1411 | 
> | 
                  // the j2 cutoff group is greater than or equal to | 
| 1412 | 
> | 
                  // the j1 cutoff group.  Note that Rappaport's code | 
| 1413 | 
> | 
                  // has a "less than" conditional here, but that | 
| 1414 | 
> | 
                  // deals with atom-by-atom computation.  OpenMD | 
| 1415 | 
> | 
                  // allows atoms within a single cutoff group to | 
| 1416 | 
> | 
                  // interact with each other. | 
| 1417 | 
> | 
 | 
| 1418 | 
> | 
 | 
| 1419 | 
> | 
 | 
| 1420 | 
> | 
                  if (m2 != m1 || (*j2) >= (*j1) ) { | 
| 1421 | 
> | 
 | 
| 1422 | 
  | 
                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | 
| 1423 | 
  | 
                    snap_->wrapVector(dr); | 
| 1424 | 
  | 
                    cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1437 | 
  | 
      // branch to do all cutoff group pairs | 
| 1438 | 
  | 
#ifdef IS_MPI | 
| 1439 | 
  | 
      for (int j1 = 0; j1 < nGroupsInRow_; j1++) { | 
| 1440 | 
< | 
        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {        | 
| 1440 | 
> | 
        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {     | 
| 1441 | 
  | 
          dr = cgColData.position[j2] - cgRowData.position[j1]; | 
| 1442 | 
  | 
          snap_->wrapVector(dr); | 
| 1443 | 
  | 
          cuts = getGroupCutoffs( j1, j2 ); | 
| 1445 | 
  | 
            neighborList.push_back(make_pair(j1, j2)); | 
| 1446 | 
  | 
          } | 
| 1447 | 
  | 
        } | 
| 1448 | 
< | 
      } | 
| 1448 | 
> | 
      }       | 
| 1449 | 
  | 
#else | 
| 1450 | 
< | 
      for (int j1 = 0; j1 < nGroups_ - 1; j1++) { | 
| 1451 | 
< | 
        for (int j2 = j1 + 1; j2 < nGroups_; j2++) { | 
| 1450 | 
> | 
      // include all groups here. | 
| 1451 | 
> | 
      for (int j1 = 0; j1 < nGroups_; j1++) { | 
| 1452 | 
> | 
        // include self group interactions j2 == j1 | 
| 1453 | 
> | 
        for (int j2 = j1; j2 < nGroups_; j2++) { | 
| 1454 | 
  | 
          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; | 
| 1455 | 
  | 
          snap_->wrapVector(dr); | 
| 1456 | 
  | 
          cuts = getGroupCutoffs( j1, j2 ); | 
| 1457 | 
  | 
          if (dr.lengthSquare() < cuts.third) { | 
| 1458 | 
  | 
            neighborList.push_back(make_pair(j1, j2)); | 
| 1459 | 
  | 
          } | 
| 1460 | 
< | 
        } | 
| 1461 | 
< | 
      }         | 
| 1460 | 
> | 
        }     | 
| 1461 | 
> | 
      } | 
| 1462 | 
  | 
#endif | 
| 1463 | 
  | 
    } | 
| 1464 | 
  | 
       |