# | Line 36 | Line 36 | |
---|---|---|
36 | * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | |
37 | * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | |
38 | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | |
39 | < | * [4] Vardeman & Gezelter, in progress (2009). |
39 | > | * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 | > | * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 | */ | |
42 | < | #include "parallel/ForceDecomposition.hpp" |
42 | < | #include "parallel/Communicator.hpp" |
42 | > | #include "parallel/ForceMatrixDecomposition.hpp" |
43 | #include "math/SquareMatrix3.hpp" | |
44 | + | #include "nonbonded/NonBondedInteraction.hpp" |
45 | + | #include "brains/SnapshotManager.hpp" |
46 | + | #include "brains/PairList.hpp" |
47 | ||
48 | + | using namespace std; |
49 | namespace OpenMD { | |
50 | ||
51 | < | void ForceDecomposition::distributeInitialData() { |
51 | > | ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { |
52 | > | |
53 | > | // In a parallel computation, row and colum scans must visit all |
54 | > | // surrounding cells (not just the 14 upper triangular blocks that |
55 | > | // are used when the processor can see all pairs) |
56 | #ifdef IS_MPI | |
57 | + | cellOffsets_.clear(); |
58 | + | cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
59 | + | cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
60 | + | cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
61 | + | cellOffsets_.push_back( Vector3i(-1, 0,-1) ); |
62 | + | cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
63 | + | cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
64 | + | cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
65 | + | cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
66 | + | cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
67 | + | cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
68 | + | cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
69 | + | cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
70 | + | cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
71 | + | cellOffsets_.push_back( Vector3i( 0, 0, 0) ); |
72 | + | cellOffsets_.push_back( Vector3i( 1, 0, 0) ); |
73 | + | cellOffsets_.push_back( Vector3i(-1, 1, 0) ); |
74 | + | cellOffsets_.push_back( Vector3i( 0, 1, 0) ); |
75 | + | cellOffsets_.push_back( Vector3i( 1, 1, 0) ); |
76 | + | cellOffsets_.push_back( Vector3i(-1,-1, 1) ); |
77 | + | cellOffsets_.push_back( Vector3i( 0,-1, 1) ); |
78 | + | cellOffsets_.push_back( Vector3i( 1,-1, 1) ); |
79 | + | cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
80 | + | cellOffsets_.push_back( Vector3i( 0, 0, 1) ); |
81 | + | cellOffsets_.push_back( Vector3i( 1, 0, 1) ); |
82 | + | cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
83 | + | cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
84 | + | cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
85 | + | #endif |
86 | + | } |
87 | ||
50 | – | int nAtoms; |
51 | – | int nGroups; |
88 | ||
89 | < | AtomCommRealI = new Comm<I,RealType>(nAtoms); |
90 | < | AtomCommVectorI = new Comm<I,Vector3d>(nAtoms); |
91 | < | AtomCommMatrixI = new Comm<I,Mat3x3d>(nAtoms); |
89 | > | /** |
90 | > | * distributeInitialData is essentially a copy of the older fortran |
91 | > | * SimulationSetup |
92 | > | */ |
93 | > | void ForceMatrixDecomposition::distributeInitialData() { |
94 | > | snap_ = sman_->getCurrentSnapshot(); |
95 | > | storageLayout_ = sman_->getStorageLayout(); |
96 | > | ff_ = info_->getForceField(); |
97 | > | nLocal_ = snap_->getNumberOfAtoms(); |
98 | > | |
99 | > | nGroups_ = info_->getNLocalCutoffGroups(); |
100 | > | // gather the information for atomtype IDs (atids): |
101 | > | idents = info_->getIdentArray(); |
102 | > | AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
103 | > | cgLocalToGlobal = info_->getGlobalGroupIndices(); |
104 | > | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
105 | ||
106 | < | AtomCommRealJ = new Comm<J,RealType>(nAtoms); |
58 | < | AtomCommVectorJ = new Comm<J,Vector3d>(nAtoms); |
59 | < | AtomCommMatrixJ = new Comm<J,Mat3x3d>(nAtoms); |
106 | > | massFactors = info_->getMassFactors(); |
107 | ||
108 | < | cgCommVectorI = new Comm<I,Vector3d>(nGroups); |
109 | < | cgCommVectorJ = new Comm<J,Vector3d>(nGroups); |
110 | < | // more to come |
108 | > | PairList* excludes = info_->getExcludedInteractions(); |
109 | > | PairList* oneTwo = info_->getOneTwoInteractions(); |
110 | > | PairList* oneThree = info_->getOneThreeInteractions(); |
111 | > | PairList* oneFour = info_->getOneFourInteractions(); |
112 | > | |
113 | > | if (needVelocities_) |
114 | > | snap_->cgData.setStorageLayout(DataStorage::dslPosition | |
115 | > | DataStorage::dslVelocity); |
116 | > | else |
117 | > | snap_->cgData.setStorageLayout(DataStorage::dslPosition); |
118 | > | |
119 | > | #ifdef IS_MPI |
120 | > | |
121 | > | MPI::Intracomm row = rowComm.getComm(); |
122 | > | MPI::Intracomm col = colComm.getComm(); |
123 | > | |
124 | > | AtomPlanIntRow = new Plan<int>(row, nLocal_); |
125 | > | AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
126 | > | AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); |
127 | > | AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); |
128 | > | AtomPlanPotRow = new Plan<potVec>(row, nLocal_); |
129 | > | |
130 | > | AtomPlanIntColumn = new Plan<int>(col, nLocal_); |
131 | > | AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); |
132 | > | AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); |
133 | > | AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); |
134 | > | AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); |
135 | > | |
136 | > | cgPlanIntRow = new Plan<int>(row, nGroups_); |
137 | > | cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); |
138 | > | cgPlanIntColumn = new Plan<int>(col, nGroups_); |
139 | > | cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); |
140 | > | |
141 | > | nAtomsInRow_ = AtomPlanIntRow->getSize(); |
142 | > | nAtomsInCol_ = AtomPlanIntColumn->getSize(); |
143 | > | nGroupsInRow_ = cgPlanIntRow->getSize(); |
144 | > | nGroupsInCol_ = cgPlanIntColumn->getSize(); |
145 | > | |
146 | > | // Modify the data storage objects with the correct layouts and sizes: |
147 | > | atomRowData.resize(nAtomsInRow_); |
148 | > | atomRowData.setStorageLayout(storageLayout_); |
149 | > | atomColData.resize(nAtomsInCol_); |
150 | > | atomColData.setStorageLayout(storageLayout_); |
151 | > | cgRowData.resize(nGroupsInRow_); |
152 | > | cgRowData.setStorageLayout(DataStorage::dslPosition); |
153 | > | cgColData.resize(nGroupsInCol_); |
154 | > | if (needVelocities_) |
155 | > | // we only need column velocities if we need them. |
156 | > | cgColData.setStorageLayout(DataStorage::dslPosition | |
157 | > | DataStorage::dslVelocity); |
158 | > | else |
159 | > | cgColData.setStorageLayout(DataStorage::dslPosition); |
160 | > | |
161 | > | identsRow.resize(nAtomsInRow_); |
162 | > | identsCol.resize(nAtomsInCol_); |
163 | > | |
164 | > | AtomPlanIntRow->gather(idents, identsRow); |
165 | > | AtomPlanIntColumn->gather(idents, identsCol); |
166 | > | |
167 | > | // allocate memory for the parallel objects |
168 | > | atypesRow.resize(nAtomsInRow_); |
169 | > | atypesCol.resize(nAtomsInCol_); |
170 | > | |
171 | > | for (int i = 0; i < nAtomsInRow_; i++) |
172 | > | atypesRow[i] = ff_->getAtomType(identsRow[i]); |
173 | > | for (int i = 0; i < nAtomsInCol_; i++) |
174 | > | atypesCol[i] = ff_->getAtomType(identsCol[i]); |
175 | > | |
176 | > | pot_row.resize(nAtomsInRow_); |
177 | > | pot_col.resize(nAtomsInCol_); |
178 | > | |
179 | > | expot_row.resize(nAtomsInRow_); |
180 | > | expot_col.resize(nAtomsInCol_); |
181 | > | |
182 | > | AtomRowToGlobal.resize(nAtomsInRow_); |
183 | > | AtomColToGlobal.resize(nAtomsInCol_); |
184 | > | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
185 | > | AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
186 | > | |
187 | > | cgRowToGlobal.resize(nGroupsInRow_); |
188 | > | cgColToGlobal.resize(nGroupsInCol_); |
189 | > | cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
190 | > | cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
191 | > | |
192 | > | massFactorsRow.resize(nAtomsInRow_); |
193 | > | massFactorsCol.resize(nAtomsInCol_); |
194 | > | AtomPlanRealRow->gather(massFactors, massFactorsRow); |
195 | > | AtomPlanRealColumn->gather(massFactors, massFactorsCol); |
196 | > | |
197 | > | groupListRow_.clear(); |
198 | > | groupListRow_.resize(nGroupsInRow_); |
199 | > | for (int i = 0; i < nGroupsInRow_; i++) { |
200 | > | int gid = cgRowToGlobal[i]; |
201 | > | for (int j = 0; j < nAtomsInRow_; j++) { |
202 | > | int aid = AtomRowToGlobal[j]; |
203 | > | if (globalGroupMembership[aid] == gid) |
204 | > | groupListRow_[i].push_back(j); |
205 | > | } |
206 | > | } |
207 | > | |
208 | > | groupListCol_.clear(); |
209 | > | groupListCol_.resize(nGroupsInCol_); |
210 | > | for (int i = 0; i < nGroupsInCol_; i++) { |
211 | > | int gid = cgColToGlobal[i]; |
212 | > | for (int j = 0; j < nAtomsInCol_; j++) { |
213 | > | int aid = AtomColToGlobal[j]; |
214 | > | if (globalGroupMembership[aid] == gid) |
215 | > | groupListCol_[i].push_back(j); |
216 | > | } |
217 | > | } |
218 | > | |
219 | > | excludesForAtom.clear(); |
220 | > | excludesForAtom.resize(nAtomsInRow_); |
221 | > | toposForAtom.clear(); |
222 | > | toposForAtom.resize(nAtomsInRow_); |
223 | > | topoDist.clear(); |
224 | > | topoDist.resize(nAtomsInRow_); |
225 | > | for (int i = 0; i < nAtomsInRow_; i++) { |
226 | > | int iglob = AtomRowToGlobal[i]; |
227 | > | |
228 | > | for (int j = 0; j < nAtomsInCol_; j++) { |
229 | > | int jglob = AtomColToGlobal[j]; |
230 | > | |
231 | > | if (excludes->hasPair(iglob, jglob)) |
232 | > | excludesForAtom[i].push_back(j); |
233 | > | |
234 | > | if (oneTwo->hasPair(iglob, jglob)) { |
235 | > | toposForAtom[i].push_back(j); |
236 | > | topoDist[i].push_back(1); |
237 | > | } else { |
238 | > | if (oneThree->hasPair(iglob, jglob)) { |
239 | > | toposForAtom[i].push_back(j); |
240 | > | topoDist[i].push_back(2); |
241 | > | } else { |
242 | > | if (oneFour->hasPair(iglob, jglob)) { |
243 | > | toposForAtom[i].push_back(j); |
244 | > | topoDist[i].push_back(3); |
245 | > | } |
246 | > | } |
247 | > | } |
248 | > | } |
249 | > | } |
250 | > | |
251 | > | #else |
252 | > | excludesForAtom.clear(); |
253 | > | excludesForAtom.resize(nLocal_); |
254 | > | toposForAtom.clear(); |
255 | > | toposForAtom.resize(nLocal_); |
256 | > | topoDist.clear(); |
257 | > | topoDist.resize(nLocal_); |
258 | > | |
259 | > | for (int i = 0; i < nLocal_; i++) { |
260 | > | int iglob = AtomLocalToGlobal[i]; |
261 | > | |
262 | > | for (int j = 0; j < nLocal_; j++) { |
263 | > | int jglob = AtomLocalToGlobal[j]; |
264 | > | |
265 | > | if (excludes->hasPair(iglob, jglob)) |
266 | > | excludesForAtom[i].push_back(j); |
267 | > | |
268 | > | if (oneTwo->hasPair(iglob, jglob)) { |
269 | > | toposForAtom[i].push_back(j); |
270 | > | topoDist[i].push_back(1); |
271 | > | } else { |
272 | > | if (oneThree->hasPair(iglob, jglob)) { |
273 | > | toposForAtom[i].push_back(j); |
274 | > | topoDist[i].push_back(2); |
275 | > | } else { |
276 | > | if (oneFour->hasPair(iglob, jglob)) { |
277 | > | toposForAtom[i].push_back(j); |
278 | > | topoDist[i].push_back(3); |
279 | > | } |
280 | > | } |
281 | > | } |
282 | > | } |
283 | > | } |
284 | #endif | |
285 | + | |
286 | + | // allocate memory for the parallel objects |
287 | + | atypesLocal.resize(nLocal_); |
288 | + | |
289 | + | for (int i = 0; i < nLocal_; i++) |
290 | + | atypesLocal[i] = ff_->getAtomType(idents[i]); |
291 | + | |
292 | + | groupList_.clear(); |
293 | + | groupList_.resize(nGroups_); |
294 | + | for (int i = 0; i < nGroups_; i++) { |
295 | + | int gid = cgLocalToGlobal[i]; |
296 | + | for (int j = 0; j < nLocal_; j++) { |
297 | + | int aid = AtomLocalToGlobal[j]; |
298 | + | if (globalGroupMembership[aid] == gid) { |
299 | + | groupList_[i].push_back(j); |
300 | + | } |
301 | + | } |
302 | + | } |
303 | + | |
304 | + | |
305 | + | createGtypeCutoffMap(); |
306 | + | |
307 | } | |
308 | + | |
309 | + | void ForceMatrixDecomposition::createGtypeCutoffMap() { |
310 | ||
311 | + | RealType tol = 1e-6; |
312 | + | largestRcut_ = 0.0; |
313 | + | RealType rc; |
314 | + | int atid; |
315 | + | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
316 | + | |
317 | + | map<int, RealType> atypeCutoff; |
318 | + | |
319 | + | for (set<AtomType*>::iterator at = atypes.begin(); |
320 | + | at != atypes.end(); ++at){ |
321 | + | atid = (*at)->getIdent(); |
322 | + | if (userChoseCutoff_) |
323 | + | atypeCutoff[atid] = userCutoff_; |
324 | + | else |
325 | + | atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
326 | + | } |
327 | + | |
328 | + | vector<RealType> gTypeCutoffs; |
329 | + | // first we do a single loop over the cutoff groups to find the |
330 | + | // largest cutoff for any atypes present in this group. |
331 | + | #ifdef IS_MPI |
332 | + | vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); |
333 | + | groupRowToGtype.resize(nGroupsInRow_); |
334 | + | for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { |
335 | + | vector<int> atomListRow = getAtomsInGroupRow(cg1); |
336 | + | for (vector<int>::iterator ia = atomListRow.begin(); |
337 | + | ia != atomListRow.end(); ++ia) { |
338 | + | int atom1 = (*ia); |
339 | + | atid = identsRow[atom1]; |
340 | + | if (atypeCutoff[atid] > groupCutoffRow[cg1]) { |
341 | + | groupCutoffRow[cg1] = atypeCutoff[atid]; |
342 | + | } |
343 | + | } |
344 | ||
345 | + | bool gTypeFound = false; |
346 | + | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
347 | + | if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) { |
348 | + | groupRowToGtype[cg1] = gt; |
349 | + | gTypeFound = true; |
350 | + | } |
351 | + | } |
352 | + | if (!gTypeFound) { |
353 | + | gTypeCutoffs.push_back( groupCutoffRow[cg1] ); |
354 | + | groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; |
355 | + | } |
356 | + | |
357 | + | } |
358 | + | vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); |
359 | + | groupColToGtype.resize(nGroupsInCol_); |
360 | + | for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { |
361 | + | vector<int> atomListCol = getAtomsInGroupColumn(cg2); |
362 | + | for (vector<int>::iterator jb = atomListCol.begin(); |
363 | + | jb != atomListCol.end(); ++jb) { |
364 | + | int atom2 = (*jb); |
365 | + | atid = identsCol[atom2]; |
366 | + | if (atypeCutoff[atid] > groupCutoffCol[cg2]) { |
367 | + | groupCutoffCol[cg2] = atypeCutoff[atid]; |
368 | + | } |
369 | + | } |
370 | + | bool gTypeFound = false; |
371 | + | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
372 | + | if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) { |
373 | + | groupColToGtype[cg2] = gt; |
374 | + | gTypeFound = true; |
375 | + | } |
376 | + | } |
377 | + | if (!gTypeFound) { |
378 | + | gTypeCutoffs.push_back( groupCutoffCol[cg2] ); |
379 | + | groupColToGtype[cg2] = gTypeCutoffs.size() - 1; |
380 | + | } |
381 | + | } |
382 | + | #else |
383 | ||
384 | < | void ForceDecomposition::distributeData() { |
384 | > | vector<RealType> groupCutoff(nGroups_, 0.0); |
385 | > | groupToGtype.resize(nGroups_); |
386 | > | for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
387 | > | groupCutoff[cg1] = 0.0; |
388 | > | vector<int> atomList = getAtomsInGroupRow(cg1); |
389 | > | for (vector<int>::iterator ia = atomList.begin(); |
390 | > | ia != atomList.end(); ++ia) { |
391 | > | int atom1 = (*ia); |
392 | > | atid = idents[atom1]; |
393 | > | if (atypeCutoff[atid] > groupCutoff[cg1]) |
394 | > | groupCutoff[cg1] = atypeCutoff[atid]; |
395 | > | } |
396 | > | |
397 | > | bool gTypeFound = false; |
398 | > | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
399 | > | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
400 | > | groupToGtype[cg1] = gt; |
401 | > | gTypeFound = true; |
402 | > | } |
403 | > | } |
404 | > | if (!gTypeFound) { |
405 | > | gTypeCutoffs.push_back( groupCutoff[cg1] ); |
406 | > | groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
407 | > | } |
408 | > | } |
409 | > | #endif |
410 | > | |
411 | > | // Now we find the maximum group cutoff value present in the simulation |
412 | > | |
413 | > | RealType groupMax = *max_element(gTypeCutoffs.begin(), |
414 | > | gTypeCutoffs.end()); |
415 | > | |
416 | #ifdef IS_MPI | |
417 | < | Snapshot* snap = sman_->getCurrentSnapshot(); |
417 | > | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, |
418 | > | MPI::MAX); |
419 | > | #endif |
420 | > | |
421 | > | RealType tradRcut = groupMax; |
422 | ||
423 | + | for (int i = 0; i < gTypeCutoffs.size(); i++) { |
424 | + | for (int j = 0; j < gTypeCutoffs.size(); j++) { |
425 | + | RealType thisRcut; |
426 | + | switch(cutoffPolicy_) { |
427 | + | case TRADITIONAL: |
428 | + | thisRcut = tradRcut; |
429 | + | break; |
430 | + | case MIX: |
431 | + | thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); |
432 | + | break; |
433 | + | case MAX: |
434 | + | thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); |
435 | + | break; |
436 | + | default: |
437 | + | sprintf(painCave.errMsg, |
438 | + | "ForceMatrixDecomposition::createGtypeCutoffMap " |
439 | + | "hit an unknown cutoff policy!\n"); |
440 | + | painCave.severity = OPENMD_ERROR; |
441 | + | painCave.isFatal = 1; |
442 | + | simError(); |
443 | + | break; |
444 | + | } |
445 | + | |
446 | + | pair<int,int> key = make_pair(i,j); |
447 | + | gTypeCutoffMap[key].first = thisRcut; |
448 | + | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
449 | + | gTypeCutoffMap[key].second = thisRcut*thisRcut; |
450 | + | gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
451 | + | // sanity check |
452 | + | |
453 | + | if (userChoseCutoff_) { |
454 | + | if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
455 | + | sprintf(painCave.errMsg, |
456 | + | "ForceMatrixDecomposition::createGtypeCutoffMap " |
457 | + | "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
458 | + | painCave.severity = OPENMD_ERROR; |
459 | + | painCave.isFatal = 1; |
460 | + | simError(); |
461 | + | } |
462 | + | } |
463 | + | } |
464 | + | } |
465 | + | } |
466 | + | |
467 | + | groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
468 | + | int i, j; |
469 | + | #ifdef IS_MPI |
470 | + | i = groupRowToGtype[cg1]; |
471 | + | j = groupColToGtype[cg2]; |
472 | + | #else |
473 | + | i = groupToGtype[cg1]; |
474 | + | j = groupToGtype[cg2]; |
475 | + | #endif |
476 | + | return gTypeCutoffMap[make_pair(i,j)]; |
477 | + | } |
478 | + | |
479 | + | int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
480 | + | for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
481 | + | if (toposForAtom[atom1][j] == atom2) |
482 | + | return topoDist[atom1][j]; |
483 | + | } |
484 | + | return 0; |
485 | + | } |
486 | + | |
487 | + | void ForceMatrixDecomposition::zeroWorkArrays() { |
488 | + | pairwisePot = 0.0; |
489 | + | embeddingPot = 0.0; |
490 | + | excludedPot = 0.0; |
491 | + | excludedSelfPot = 0.0; |
492 | + | |
493 | + | #ifdef IS_MPI |
494 | + | if (storageLayout_ & DataStorage::dslForce) { |
495 | + | fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); |
496 | + | fill(atomColData.force.begin(), atomColData.force.end(), V3Zero); |
497 | + | } |
498 | + | |
499 | + | if (storageLayout_ & DataStorage::dslTorque) { |
500 | + | fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero); |
501 | + | fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero); |
502 | + | } |
503 | + | |
504 | + | fill(pot_row.begin(), pot_row.end(), |
505 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
506 | + | |
507 | + | fill(pot_col.begin(), pot_col.end(), |
508 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
509 | + | |
510 | + | fill(expot_row.begin(), expot_row.end(), |
511 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
512 | + | |
513 | + | fill(expot_col.begin(), expot_col.end(), |
514 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
515 | + | |
516 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
517 | + | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
518 | + | 0.0); |
519 | + | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), |
520 | + | 0.0); |
521 | + | } |
522 | + | |
523 | + | if (storageLayout_ & DataStorage::dslDensity) { |
524 | + | fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0); |
525 | + | fill(atomColData.density.begin(), atomColData.density.end(), 0.0); |
526 | + | } |
527 | + | |
528 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
529 | + | fill(atomRowData.functional.begin(), atomRowData.functional.end(), |
530 | + | 0.0); |
531 | + | fill(atomColData.functional.begin(), atomColData.functional.end(), |
532 | + | 0.0); |
533 | + | } |
534 | + | |
535 | + | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
536 | + | fill(atomRowData.functionalDerivative.begin(), |
537 | + | atomRowData.functionalDerivative.end(), 0.0); |
538 | + | fill(atomColData.functionalDerivative.begin(), |
539 | + | atomColData.functionalDerivative.end(), 0.0); |
540 | + | } |
541 | + | |
542 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
543 | + | fill(atomRowData.skippedCharge.begin(), |
544 | + | atomRowData.skippedCharge.end(), 0.0); |
545 | + | fill(atomColData.skippedCharge.begin(), |
546 | + | atomColData.skippedCharge.end(), 0.0); |
547 | + | } |
548 | + | |
549 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
550 | + | fill(atomRowData.flucQFrc.begin(), |
551 | + | atomRowData.flucQFrc.end(), 0.0); |
552 | + | fill(atomColData.flucQFrc.begin(), |
553 | + | atomColData.flucQFrc.end(), 0.0); |
554 | + | } |
555 | + | |
556 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
557 | + | fill(atomRowData.electricField.begin(), |
558 | + | atomRowData.electricField.end(), V3Zero); |
559 | + | fill(atomColData.electricField.begin(), |
560 | + | atomColData.electricField.end(), V3Zero); |
561 | + | } |
562 | + | |
563 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
564 | + | fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), |
565 | + | 0.0); |
566 | + | fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), |
567 | + | 0.0); |
568 | + | } |
569 | + | |
570 | + | #endif |
571 | + | // even in parallel, we need to zero out the local arrays: |
572 | + | |
573 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
574 | + | fill(snap_->atomData.particlePot.begin(), |
575 | + | snap_->atomData.particlePot.end(), 0.0); |
576 | + | } |
577 | + | |
578 | + | if (storageLayout_ & DataStorage::dslDensity) { |
579 | + | fill(snap_->atomData.density.begin(), |
580 | + | snap_->atomData.density.end(), 0.0); |
581 | + | } |
582 | + | |
583 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
584 | + | fill(snap_->atomData.functional.begin(), |
585 | + | snap_->atomData.functional.end(), 0.0); |
586 | + | } |
587 | + | |
588 | + | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
589 | + | fill(snap_->atomData.functionalDerivative.begin(), |
590 | + | snap_->atomData.functionalDerivative.end(), 0.0); |
591 | + | } |
592 | + | |
593 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
594 | + | fill(snap_->atomData.skippedCharge.begin(), |
595 | + | snap_->atomData.skippedCharge.end(), 0.0); |
596 | + | } |
597 | + | |
598 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
599 | + | fill(snap_->atomData.electricField.begin(), |
600 | + | snap_->atomData.electricField.end(), V3Zero); |
601 | + | } |
602 | + | } |
603 | + | |
604 | + | |
605 | + | void ForceMatrixDecomposition::distributeData() { |
606 | + | snap_ = sman_->getCurrentSnapshot(); |
607 | + | storageLayout_ = sman_->getStorageLayout(); |
608 | + | #ifdef IS_MPI |
609 | + | |
610 | // gather up the atomic positions | |
611 | < | AtomCommVectorI->gather(snap->atomData.position, |
612 | < | snap->atomIData.position); |
613 | < | AtomCommVectorJ->gather(snap->atomData.position, |
614 | < | snap->atomJData.position); |
611 | > | AtomPlanVectorRow->gather(snap_->atomData.position, |
612 | > | atomRowData.position); |
613 | > | AtomPlanVectorColumn->gather(snap_->atomData.position, |
614 | > | atomColData.position); |
615 | ||
616 | // gather up the cutoff group positions | |
617 | < | cgCommVectorI->gather(snap->cgData.position, |
618 | < | snap->cgIData.position); |
619 | < | cgCommVectorJ->gather(snap->cgData.position, |
620 | < | snap->cgJData.position); |
617 | > | |
618 | > | cgPlanVectorRow->gather(snap_->cgData.position, |
619 | > | cgRowData.position); |
620 | > | |
621 | > | cgPlanVectorColumn->gather(snap_->cgData.position, |
622 | > | cgColData.position); |
623 | > | |
624 | > | |
625 | > | |
626 | > | if (needVelocities_) { |
627 | > | // gather up the atomic velocities |
628 | > | AtomPlanVectorColumn->gather(snap_->atomData.velocity, |
629 | > | atomColData.velocity); |
630 | > | |
631 | > | cgPlanVectorColumn->gather(snap_->cgData.velocity, |
632 | > | cgColData.velocity); |
633 | > | } |
634 | > | |
635 | ||
636 | // if needed, gather the atomic rotation matrices | |
637 | < | if (snap->atomData.getStorageLayout() & DataStorage::dslAmat) { |
638 | < | AtomCommMatrixI->gather(snap->atomData.aMat, |
639 | < | snap->atomIData.aMat); |
640 | < | AtomCommMatrixJ->gather(snap->atomData.aMat, |
641 | < | snap->atomJData.aMat); |
637 | > | if (storageLayout_ & DataStorage::dslAmat) { |
638 | > | AtomPlanMatrixRow->gather(snap_->atomData.aMat, |
639 | > | atomRowData.aMat); |
640 | > | AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
641 | > | atomColData.aMat); |
642 | } | |
643 | ||
644 | // if needed, gather the atomic eletrostatic frames | |
645 | < | if (snap->atomData.getStorageLayout() & DataStorage::dslElectroFrame) { |
646 | < | AtomCommMatrixI->gather(snap->atomData.electroFrame, |
647 | < | snap->atomIData.electroFrame); |
648 | < | AtomCommMatrixJ->gather(snap->atomData.electroFrame, |
649 | < | snap->atomJData.electroFrame); |
645 | > | if (storageLayout_ & DataStorage::dslElectroFrame) { |
646 | > | AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
647 | > | atomRowData.electroFrame); |
648 | > | AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
649 | > | atomColData.electroFrame); |
650 | } | |
651 | + | |
652 | + | // if needed, gather the atomic fluctuating charge values |
653 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
654 | + | AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
655 | + | atomRowData.flucQPos); |
656 | + | AtomPlanRealColumn->gather(snap_->atomData.flucQPos, |
657 | + | atomColData.flucQPos); |
658 | + | } |
659 | + | |
660 | #endif | |
661 | } | |
662 | ||
663 | < | void ForceDecomposition::collectIntermediateData() { |
663 | > | /* collects information obtained during the pre-pair loop onto local |
664 | > | * data structures. |
665 | > | */ |
666 | > | void ForceMatrixDecomposition::collectIntermediateData() { |
667 | > | snap_ = sman_->getCurrentSnapshot(); |
668 | > | storageLayout_ = sman_->getStorageLayout(); |
669 | #ifdef IS_MPI | |
105 | – | Snapshot* snap = sman_->getCurrentSnapshot(); |
106 | – | // gather up the atomic positions |
670 | ||
671 | < | if (snap->atomData.getStorageLayout() & DataStorage::dslDensity) { |
672 | < | AtomCommRealI->scatter(snap->atomIData.density, |
673 | < | snap->atomData.density); |
674 | < | std::vector<RealType> rho_tmp; |
675 | < | int n = snap->getNumberOfAtoms(); |
676 | < | rho_tmp.reserve( n ); |
677 | < | AtomCommRealJ->scatter(snap->atomJData.density, rho_tmp); |
671 | > | if (storageLayout_ & DataStorage::dslDensity) { |
672 | > | |
673 | > | AtomPlanRealRow->scatter(atomRowData.density, |
674 | > | snap_->atomData.density); |
675 | > | |
676 | > | int n = snap_->atomData.density.size(); |
677 | > | vector<RealType> rho_tmp(n, 0.0); |
678 | > | AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); |
679 | for (int i = 0; i < n; i++) | |
680 | < | snap->atomData.density[i] += rho_tmp[i]; |
680 | > | snap_->atomData.density[i] += rho_tmp[i]; |
681 | } | |
682 | + | |
683 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
684 | + | |
685 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, |
686 | + | snap_->atomData.electricField); |
687 | + | |
688 | + | int n = snap_->atomData.electricField.size(); |
689 | + | vector<Vector3d> field_tmp(n, V3Zero); |
690 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); |
691 | + | for (int i = 0; i < n; i++) |
692 | + | snap_->atomData.electricField[i] += field_tmp[i]; |
693 | + | } |
694 | #endif | |
695 | } | |
696 | < | |
697 | < | void ForceDecomposition::distributeIntermediateData() { |
696 | > | |
697 | > | /* |
698 | > | * redistributes information obtained during the pre-pair loop out to |
699 | > | * row and column-indexed data structures |
700 | > | */ |
701 | > | void ForceMatrixDecomposition::distributeIntermediateData() { |
702 | > | snap_ = sman_->getCurrentSnapshot(); |
703 | > | storageLayout_ = sman_->getStorageLayout(); |
704 | #ifdef IS_MPI | |
705 | < | Snapshot* snap = sman_->getCurrentSnapshot(); |
706 | < | if (snap->atomData.getStorageLayout() & DataStorage::dslFunctional) { |
707 | < | AtomCommRealI->gather(snap->atomData.functional, |
708 | < | snap->atomIData.functional); |
709 | < | AtomCommRealJ->gather(snap->atomData.functional, |
128 | < | snap->atomJData.functional); |
705 | > | if (storageLayout_ & DataStorage::dslFunctional) { |
706 | > | AtomPlanRealRow->gather(snap_->atomData.functional, |
707 | > | atomRowData.functional); |
708 | > | AtomPlanRealColumn->gather(snap_->atomData.functional, |
709 | > | atomColData.functional); |
710 | } | |
711 | ||
712 | < | if (snap->atomData.getStorageLayout() & DataStorage::dslFunctionalDerivative) { |
713 | < | AtomCommRealI->gather(snap->atomData.functionalDerivative, |
714 | < | snap->atomIData.functionalDerivative); |
715 | < | AtomCommRealJ->gather(snap->atomData.functionalDerivative, |
716 | < | snap->atomJData.functionalDerivative); |
712 | > | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
713 | > | AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, |
714 | > | atomRowData.functionalDerivative); |
715 | > | AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, |
716 | > | atomColData.functionalDerivative); |
717 | } | |
718 | #endif | |
719 | } | |
720 | ||
721 | ||
722 | < | void ForceDecomposition::collectData() { |
722 | > | void ForceMatrixDecomposition::collectData() { |
723 | > | snap_ = sman_->getCurrentSnapshot(); |
724 | > | storageLayout_ = sman_->getStorageLayout(); |
725 | > | #ifdef IS_MPI |
726 | > | int n = snap_->atomData.force.size(); |
727 | > | vector<Vector3d> frc_tmp(n, V3Zero); |
728 | > | |
729 | > | AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); |
730 | > | for (int i = 0; i < n; i++) { |
731 | > | snap_->atomData.force[i] += frc_tmp[i]; |
732 | > | frc_tmp[i] = 0.0; |
733 | > | } |
734 | > | |
735 | > | AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); |
736 | > | for (int i = 0; i < n; i++) { |
737 | > | snap_->atomData.force[i] += frc_tmp[i]; |
738 | > | } |
739 | > | |
740 | > | if (storageLayout_ & DataStorage::dslTorque) { |
741 | > | |
742 | > | int nt = snap_->atomData.torque.size(); |
743 | > | vector<Vector3d> trq_tmp(nt, V3Zero); |
744 | > | |
745 | > | AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); |
746 | > | for (int i = 0; i < nt; i++) { |
747 | > | snap_->atomData.torque[i] += trq_tmp[i]; |
748 | > | trq_tmp[i] = 0.0; |
749 | > | } |
750 | > | |
751 | > | AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); |
752 | > | for (int i = 0; i < nt; i++) |
753 | > | snap_->atomData.torque[i] += trq_tmp[i]; |
754 | > | } |
755 | > | |
756 | > | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
757 | > | |
758 | > | int ns = snap_->atomData.skippedCharge.size(); |
759 | > | vector<RealType> skch_tmp(ns, 0.0); |
760 | > | |
761 | > | AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
762 | > | for (int i = 0; i < ns; i++) { |
763 | > | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
764 | > | skch_tmp[i] = 0.0; |
765 | > | } |
766 | > | |
767 | > | AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
768 | > | for (int i = 0; i < ns; i++) |
769 | > | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
770 | > | |
771 | > | } |
772 | > | |
773 | > | if (storageLayout_ & DataStorage::dslFlucQForce) { |
774 | > | |
775 | > | int nq = snap_->atomData.flucQFrc.size(); |
776 | > | vector<RealType> fqfrc_tmp(nq, 0.0); |
777 | > | |
778 | > | AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); |
779 | > | for (int i = 0; i < nq; i++) { |
780 | > | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
781 | > | fqfrc_tmp[i] = 0.0; |
782 | > | } |
783 | > | |
784 | > | AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); |
785 | > | for (int i = 0; i < nq; i++) |
786 | > | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
787 | > | |
788 | > | } |
789 | > | |
790 | > | nLocal_ = snap_->getNumberOfAtoms(); |
791 | > | |
792 | > | vector<potVec> pot_temp(nLocal_, |
793 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
794 | > | vector<potVec> expot_temp(nLocal_, |
795 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
796 | > | |
797 | > | // scatter/gather pot_row into the members of my column |
798 | > | |
799 | > | AtomPlanPotRow->scatter(pot_row, pot_temp); |
800 | > | AtomPlanPotRow->scatter(expot_row, expot_temp); |
801 | > | |
802 | > | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
803 | > | pairwisePot += pot_temp[ii]; |
804 | > | |
805 | > | for (int ii = 0; ii < expot_temp.size(); ii++ ) |
806 | > | excludedPot += expot_temp[ii]; |
807 | > | |
808 | > | if (storageLayout_ & DataStorage::dslParticlePot) { |
809 | > | // This is the pairwise contribution to the particle pot. The |
810 | > | // embedding contribution is added in each of the low level |
811 | > | // non-bonded routines. In single processor, this is done in |
812 | > | // unpackInteractionData, not in collectData. |
813 | > | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
814 | > | for (int i = 0; i < nLocal_; i++) { |
815 | > | // factor of two is because the total potential terms are divided |
816 | > | // by 2 in parallel due to row/ column scatter |
817 | > | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
818 | > | } |
819 | > | } |
820 | > | } |
821 | > | |
822 | > | fill(pot_temp.begin(), pot_temp.end(), |
823 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
824 | > | fill(expot_temp.begin(), expot_temp.end(), |
825 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
826 | > | |
827 | > | AtomPlanPotColumn->scatter(pot_col, pot_temp); |
828 | > | AtomPlanPotColumn->scatter(expot_col, expot_temp); |
829 | > | |
830 | > | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
831 | > | pairwisePot += pot_temp[ii]; |
832 | > | |
833 | > | for (int ii = 0; ii < expot_temp.size(); ii++ ) |
834 | > | excludedPot += expot_temp[ii]; |
835 | > | |
836 | > | if (storageLayout_ & DataStorage::dslParticlePot) { |
837 | > | // This is the pairwise contribution to the particle pot. The |
838 | > | // embedding contribution is added in each of the low level |
839 | > | // non-bonded routines. In single processor, this is done in |
840 | > | // unpackInteractionData, not in collectData. |
841 | > | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
842 | > | for (int i = 0; i < nLocal_; i++) { |
843 | > | // factor of two is because the total potential terms are divided |
844 | > | // by 2 in parallel due to row/ column scatter |
845 | > | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
846 | > | } |
847 | > | } |
848 | > | } |
849 | > | |
850 | > | if (storageLayout_ & DataStorage::dslParticlePot) { |
851 | > | int npp = snap_->atomData.particlePot.size(); |
852 | > | vector<RealType> ppot_temp(npp, 0.0); |
853 | > | |
854 | > | // This is the direct or embedding contribution to the particle |
855 | > | // pot. |
856 | > | |
857 | > | AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); |
858 | > | for (int i = 0; i < npp; i++) { |
859 | > | snap_->atomData.particlePot[i] += ppot_temp[i]; |
860 | > | } |
861 | > | |
862 | > | fill(ppot_temp.begin(), ppot_temp.end(), 0.0); |
863 | > | |
864 | > | AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); |
865 | > | for (int i = 0; i < npp; i++) { |
866 | > | snap_->atomData.particlePot[i] += ppot_temp[i]; |
867 | > | } |
868 | > | } |
869 | > | |
870 | > | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
871 | > | RealType ploc1 = pairwisePot[ii]; |
872 | > | RealType ploc2 = 0.0; |
873 | > | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
874 | > | pairwisePot[ii] = ploc2; |
875 | > | } |
876 | > | |
877 | > | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
878 | > | RealType ploc1 = excludedPot[ii]; |
879 | > | RealType ploc2 = 0.0; |
880 | > | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
881 | > | excludedPot[ii] = ploc2; |
882 | > | } |
883 | > | |
884 | > | // Here be dragons. |
885 | > | MPI::Intracomm col = colComm.getComm(); |
886 | > | |
887 | > | col.Allreduce(MPI::IN_PLACE, |
888 | > | &snap_->frameData.conductiveHeatFlux[0], 3, |
889 | > | MPI::REALTYPE, MPI::SUM); |
890 | > | |
891 | > | |
892 | > | #endif |
893 | > | |
894 | > | } |
895 | > | |
896 | > | /** |
897 | > | * Collects information obtained during the post-pair (and embedding |
898 | > | * functional) loops onto local data structures. |
899 | > | */ |
900 | > | void ForceMatrixDecomposition::collectSelfData() { |
901 | > | snap_ = sman_->getCurrentSnapshot(); |
902 | > | storageLayout_ = sman_->getStorageLayout(); |
903 | > | |
904 | #ifdef IS_MPI | |
905 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
906 | + | RealType ploc1 = embeddingPot[ii]; |
907 | + | RealType ploc2 = 0.0; |
908 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
909 | + | embeddingPot[ii] = ploc2; |
910 | + | } |
911 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
912 | + | RealType ploc1 = excludedSelfPot[ii]; |
913 | + | RealType ploc2 = 0.0; |
914 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
915 | + | excludedSelfPot[ii] = ploc2; |
916 | + | } |
917 | + | #endif |
918 | + | |
919 | + | } |
920 | + | |
921 | + | |
922 | + | |
923 | + | int ForceMatrixDecomposition::getNAtomsInRow() { |
924 | + | #ifdef IS_MPI |
925 | + | return nAtomsInRow_; |
926 | + | #else |
927 | + | return nLocal_; |
928 | + | #endif |
929 | + | } |
930 | + | |
931 | + | /** |
932 | + | * returns the list of atoms belonging to this group. |
933 | + | */ |
934 | + | vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
935 | + | #ifdef IS_MPI |
936 | + | return groupListRow_[cg1]; |
937 | + | #else |
938 | + | return groupList_[cg1]; |
939 | + | #endif |
940 | + | } |
941 | + | |
942 | + | vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
943 | + | #ifdef IS_MPI |
944 | + | return groupListCol_[cg2]; |
945 | + | #else |
946 | + | return groupList_[cg2]; |
947 | + | #endif |
948 | + | } |
949 | + | |
950 | + | Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ |
951 | + | Vector3d d; |
952 | + | |
953 | + | #ifdef IS_MPI |
954 | + | d = cgColData.position[cg2] - cgRowData.position[cg1]; |
955 | + | #else |
956 | + | d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; |
957 | + | #endif |
958 | + | |
959 | + | snap_->wrapVector(d); |
960 | + | return d; |
961 | + | } |
962 | + | |
963 | + | Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ |
964 | + | #ifdef IS_MPI |
965 | + | return cgColData.velocity[cg2]; |
966 | + | #else |
967 | + | return snap_->cgData.velocity[cg2]; |
968 | + | #endif |
969 | + | } |
970 | + | |
971 | + | Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ |
972 | + | #ifdef IS_MPI |
973 | + | return atomColData.velocity[atom2]; |
974 | + | #else |
975 | + | return snap_->atomData.velocity[atom2]; |
976 | + | #endif |
977 | + | } |
978 | + | |
979 | + | |
980 | + | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ |
981 | + | |
982 | + | Vector3d d; |
983 | + | |
984 | + | #ifdef IS_MPI |
985 | + | d = cgRowData.position[cg1] - atomRowData.position[atom1]; |
986 | + | #else |
987 | + | d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; |
988 | + | #endif |
989 | + | |
990 | + | snap_->wrapVector(d); |
991 | + | return d; |
992 | + | } |
993 | + | |
994 | + | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){ |
995 | + | Vector3d d; |
996 | + | |
997 | + | #ifdef IS_MPI |
998 | + | d = cgColData.position[cg2] - atomColData.position[atom2]; |
999 | + | #else |
1000 | + | d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; |
1001 | + | #endif |
1002 | + | |
1003 | + | snap_->wrapVector(d); |
1004 | + | return d; |
1005 | + | } |
1006 | + | |
1007 | + | RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
1008 | + | #ifdef IS_MPI |
1009 | + | return massFactorsRow[atom1]; |
1010 | + | #else |
1011 | + | return massFactors[atom1]; |
1012 | + | #endif |
1013 | + | } |
1014 | + | |
1015 | + | RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
1016 | + | #ifdef IS_MPI |
1017 | + | return massFactorsCol[atom2]; |
1018 | + | #else |
1019 | + | return massFactors[atom2]; |
1020 | + | #endif |
1021 | + | |
1022 | + | } |
1023 | + | |
1024 | + | Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ |
1025 | + | Vector3d d; |
1026 | + | |
1027 | + | #ifdef IS_MPI |
1028 | + | d = atomColData.position[atom2] - atomRowData.position[atom1]; |
1029 | + | #else |
1030 | + | d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; |
1031 | + | #endif |
1032 | + | |
1033 | + | snap_->wrapVector(d); |
1034 | + | return d; |
1035 | + | } |
1036 | + | |
1037 | + | vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
1038 | + | return excludesForAtom[atom1]; |
1039 | + | } |
1040 | + | |
1041 | + | /** |
1042 | + | * We need to exclude some overcounted interactions that result from |
1043 | + | * the parallel decomposition. |
1044 | + | */ |
1045 | + | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { |
1046 | + | int unique_id_1, unique_id_2, group1, group2; |
1047 | + | |
1048 | + | #ifdef IS_MPI |
1049 | + | // in MPI, we have to look up the unique IDs for each atom |
1050 | + | unique_id_1 = AtomRowToGlobal[atom1]; |
1051 | + | unique_id_2 = AtomColToGlobal[atom2]; |
1052 | + | group1 = cgRowToGlobal[cg1]; |
1053 | + | group2 = cgColToGlobal[cg2]; |
1054 | + | #else |
1055 | + | unique_id_1 = AtomLocalToGlobal[atom1]; |
1056 | + | unique_id_2 = AtomLocalToGlobal[atom2]; |
1057 | + | group1 = cgLocalToGlobal[cg1]; |
1058 | + | group2 = cgLocalToGlobal[cg2]; |
1059 | + | #endif |
1060 | + | |
1061 | + | if (unique_id_1 == unique_id_2) return true; |
1062 | + | |
1063 | + | #ifdef IS_MPI |
1064 | + | // this prevents us from doing the pair on multiple processors |
1065 | + | if (unique_id_1 < unique_id_2) { |
1066 | + | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
1067 | + | } else { |
1068 | + | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
1069 | + | } |
1070 | + | #endif |
1071 | + | |
1072 | + | #ifndef IS_MPI |
1073 | + | if (group1 == group2) { |
1074 | + | if (unique_id_1 < unique_id_2) return true; |
1075 | + | } |
1076 | + | #endif |
1077 | + | |
1078 | + | return false; |
1079 | + | } |
1080 | + | |
1081 | + | /** |
1082 | + | * We need to handle the interactions for atoms who are involved in |
1083 | + | * the same rigid body as well as some short range interactions |
1084 | + | * (bonds, bends, torsions) differently from other interactions. |
1085 | + | * We'll still visit the pairwise routines, but with a flag that |
1086 | + | * tells those routines to exclude the pair from direct long range |
1087 | + | * interactions. Some indirect interactions (notably reaction |
1088 | + | * field) must still be handled for these pairs. |
1089 | + | */ |
1090 | + | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
1091 | + | |
1092 | + | // excludesForAtom was constructed to use row/column indices in the MPI |
1093 | + | // version, and to use local IDs in the non-MPI version: |
1094 | + | |
1095 | + | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
1096 | + | i != excludesForAtom[atom1].end(); ++i) { |
1097 | + | if ( (*i) == atom2 ) return true; |
1098 | + | } |
1099 | + | |
1100 | + | return false; |
1101 | + | } |
1102 | + | |
1103 | + | |
1104 | + | void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ |
1105 | + | #ifdef IS_MPI |
1106 | + | atomRowData.force[atom1] += fg; |
1107 | + | #else |
1108 | + | snap_->atomData.force[atom1] += fg; |
1109 | + | #endif |
1110 | + | } |
1111 | + | |
1112 | + | void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){ |
1113 | + | #ifdef IS_MPI |
1114 | + | atomColData.force[atom2] += fg; |
1115 | + | #else |
1116 | + | snap_->atomData.force[atom2] += fg; |
1117 | + | #endif |
1118 | + | } |
1119 | + | |
1120 | + | // filling interaction blocks with pointers |
1121 | + | void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
1122 | + | int atom1, int atom2) { |
1123 | + | |
1124 | + | idat.excluded = excludeAtomPair(atom1, atom2); |
1125 | + | |
1126 | + | #ifdef IS_MPI |
1127 | + | idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
1128 | + | //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
1129 | + | // ff_->getAtomType(identsCol[atom2]) ); |
1130 | + | |
1131 | + | if (storageLayout_ & DataStorage::dslAmat) { |
1132 | + | idat.A1 = &(atomRowData.aMat[atom1]); |
1133 | + | idat.A2 = &(atomColData.aMat[atom2]); |
1134 | + | } |
1135 | + | |
1136 | + | if (storageLayout_ & DataStorage::dslElectroFrame) { |
1137 | + | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
1138 | + | idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
1139 | + | } |
1140 | + | |
1141 | + | if (storageLayout_ & DataStorage::dslTorque) { |
1142 | + | idat.t1 = &(atomRowData.torque[atom1]); |
1143 | + | idat.t2 = &(atomColData.torque[atom2]); |
1144 | + | } |
1145 | + | |
1146 | + | if (storageLayout_ & DataStorage::dslDensity) { |
1147 | + | idat.rho1 = &(atomRowData.density[atom1]); |
1148 | + | idat.rho2 = &(atomColData.density[atom2]); |
1149 | + | } |
1150 | + | |
1151 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
1152 | + | idat.frho1 = &(atomRowData.functional[atom1]); |
1153 | + | idat.frho2 = &(atomColData.functional[atom2]); |
1154 | + | } |
1155 | + | |
1156 | + | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
1157 | + | idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); |
1158 | + | idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); |
1159 | + | } |
1160 | + | |
1161 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
1162 | + | idat.particlePot1 = &(atomRowData.particlePot[atom1]); |
1163 | + | idat.particlePot2 = &(atomColData.particlePot[atom2]); |
1164 | + | } |
1165 | + | |
1166 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
1167 | + | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
1168 | + | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
1169 | + | } |
1170 | + | |
1171 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1172 | + | idat.flucQ1 = &(atomRowData.flucQPos[atom1]); |
1173 | + | idat.flucQ2 = &(atomColData.flucQPos[atom2]); |
1174 | + | } |
1175 | + | |
1176 | + | #else |
1177 | + | |
1178 | + | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
1179 | + | |
1180 | + | if (storageLayout_ & DataStorage::dslAmat) { |
1181 | + | idat.A1 = &(snap_->atomData.aMat[atom1]); |
1182 | + | idat.A2 = &(snap_->atomData.aMat[atom2]); |
1183 | + | } |
1184 | + | |
1185 | + | if (storageLayout_ & DataStorage::dslElectroFrame) { |
1186 | + | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
1187 | + | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
1188 | + | } |
1189 | + | |
1190 | + | if (storageLayout_ & DataStorage::dslTorque) { |
1191 | + | idat.t1 = &(snap_->atomData.torque[atom1]); |
1192 | + | idat.t2 = &(snap_->atomData.torque[atom2]); |
1193 | + | } |
1194 | + | |
1195 | + | if (storageLayout_ & DataStorage::dslDensity) { |
1196 | + | idat.rho1 = &(snap_->atomData.density[atom1]); |
1197 | + | idat.rho2 = &(snap_->atomData.density[atom2]); |
1198 | + | } |
1199 | + | |
1200 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
1201 | + | idat.frho1 = &(snap_->atomData.functional[atom1]); |
1202 | + | idat.frho2 = &(snap_->atomData.functional[atom2]); |
1203 | + | } |
1204 | + | |
1205 | + | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
1206 | + | idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); |
1207 | + | idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); |
1208 | + | } |
1209 | + | |
1210 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
1211 | + | idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); |
1212 | + | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
1213 | + | } |
1214 | + | |
1215 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
1216 | + | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
1217 | + | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
1218 | + | } |
1219 | + | |
1220 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1221 | + | idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); |
1222 | + | idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); |
1223 | + | } |
1224 | + | |
1225 | #endif | |
1226 | } | |
1227 | + | |
1228 | ||
1229 | + | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
1230 | + | #ifdef IS_MPI |
1231 | + | pot_row[atom1] += RealType(0.5) * *(idat.pot); |
1232 | + | pot_col[atom2] += RealType(0.5) * *(idat.pot); |
1233 | + | expot_row[atom1] += RealType(0.5) * *(idat.excludedPot); |
1234 | + | expot_col[atom2] += RealType(0.5) * *(idat.excludedPot); |
1235 | + | |
1236 | + | atomRowData.force[atom1] += *(idat.f1); |
1237 | + | atomColData.force[atom2] -= *(idat.f1); |
1238 | + | |
1239 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
1240 | + | atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1241 | + | atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1242 | + | } |
1243 | + | |
1244 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
1245 | + | atomRowData.electricField[atom1] += *(idat.eField1); |
1246 | + | atomColData.electricField[atom2] += *(idat.eField2); |
1247 | + | } |
1248 | + | |
1249 | + | #else |
1250 | + | pairwisePot += *(idat.pot); |
1251 | + | excludedPot += *(idat.excludedPot); |
1252 | + | |
1253 | + | snap_->atomData.force[atom1] += *(idat.f1); |
1254 | + | snap_->atomData.force[atom2] -= *(idat.f1); |
1255 | + | |
1256 | + | if (idat.doParticlePot) { |
1257 | + | // This is the pairwise contribution to the particle pot. The |
1258 | + | // embedding contribution is added in each of the low level |
1259 | + | // non-bonded routines. In parallel, this calculation is done |
1260 | + | // in collectData, not in unpackInteractionData. |
1261 | + | snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); |
1262 | + | snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); |
1263 | + | } |
1264 | + | |
1265 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
1266 | + | snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1267 | + | snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1268 | + | } |
1269 | + | |
1270 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
1271 | + | snap_->atomData.electricField[atom1] += *(idat.eField1); |
1272 | + | snap_->atomData.electricField[atom2] += *(idat.eField2); |
1273 | + | } |
1274 | + | |
1275 | + | #endif |
1276 | + | |
1277 | + | } |
1278 | + | |
1279 | + | /* |
1280 | + | * buildNeighborList |
1281 | + | * |
1282 | + | * first element of pair is row-indexed CutoffGroup |
1283 | + | * second element of pair is column-indexed CutoffGroup |
1284 | + | */ |
1285 | + | vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { |
1286 | + | |
1287 | + | vector<pair<int, int> > neighborList; |
1288 | + | groupCutoffs cuts; |
1289 | + | bool doAllPairs = false; |
1290 | + | |
1291 | + | #ifdef IS_MPI |
1292 | + | cellListRow_.clear(); |
1293 | + | cellListCol_.clear(); |
1294 | + | #else |
1295 | + | cellList_.clear(); |
1296 | + | #endif |
1297 | + | |
1298 | + | RealType rList_ = (largestRcut_ + skinThickness_); |
1299 | + | RealType rl2 = rList_ * rList_; |
1300 | + | Snapshot* snap_ = sman_->getCurrentSnapshot(); |
1301 | + | Mat3x3d Hmat = snap_->getHmat(); |
1302 | + | Vector3d Hx = Hmat.getColumn(0); |
1303 | + | Vector3d Hy = Hmat.getColumn(1); |
1304 | + | Vector3d Hz = Hmat.getColumn(2); |
1305 | + | |
1306 | + | nCells_.x() = (int) ( Hx.length() )/ rList_; |
1307 | + | nCells_.y() = (int) ( Hy.length() )/ rList_; |
1308 | + | nCells_.z() = (int) ( Hz.length() )/ rList_; |
1309 | + | |
1310 | + | // handle small boxes where the cell offsets can end up repeating cells |
1311 | + | |
1312 | + | if (nCells_.x() < 3) doAllPairs = true; |
1313 | + | if (nCells_.y() < 3) doAllPairs = true; |
1314 | + | if (nCells_.z() < 3) doAllPairs = true; |
1315 | + | |
1316 | + | Mat3x3d invHmat = snap_->getInvHmat(); |
1317 | + | Vector3d rs, scaled, dr; |
1318 | + | Vector3i whichCell; |
1319 | + | int cellIndex; |
1320 | + | int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
1321 | + | |
1322 | + | #ifdef IS_MPI |
1323 | + | cellListRow_.resize(nCtot); |
1324 | + | cellListCol_.resize(nCtot); |
1325 | + | #else |
1326 | + | cellList_.resize(nCtot); |
1327 | + | #endif |
1328 | + | |
1329 | + | if (!doAllPairs) { |
1330 | + | #ifdef IS_MPI |
1331 | + | |
1332 | + | for (int i = 0; i < nGroupsInRow_; i++) { |
1333 | + | rs = cgRowData.position[i]; |
1334 | + | |
1335 | + | // scaled positions relative to the box vectors |
1336 | + | scaled = invHmat * rs; |
1337 | + | |
1338 | + | // wrap the vector back into the unit box by subtracting integer box |
1339 | + | // numbers |
1340 | + | for (int j = 0; j < 3; j++) { |
1341 | + | scaled[j] -= roundMe(scaled[j]); |
1342 | + | scaled[j] += 0.5; |
1343 | + | } |
1344 | + | |
1345 | + | // find xyz-indices of cell that cutoffGroup is in. |
1346 | + | whichCell.x() = nCells_.x() * scaled.x(); |
1347 | + | whichCell.y() = nCells_.y() * scaled.y(); |
1348 | + | whichCell.z() = nCells_.z() * scaled.z(); |
1349 | + | |
1350 | + | // find single index of this cell: |
1351 | + | cellIndex = Vlinear(whichCell, nCells_); |
1352 | + | |
1353 | + | // add this cutoff group to the list of groups in this cell; |
1354 | + | cellListRow_[cellIndex].push_back(i); |
1355 | + | } |
1356 | + | for (int i = 0; i < nGroupsInCol_; i++) { |
1357 | + | rs = cgColData.position[i]; |
1358 | + | |
1359 | + | // scaled positions relative to the box vectors |
1360 | + | scaled = invHmat * rs; |
1361 | + | |
1362 | + | // wrap the vector back into the unit box by subtracting integer box |
1363 | + | // numbers |
1364 | + | for (int j = 0; j < 3; j++) { |
1365 | + | scaled[j] -= roundMe(scaled[j]); |
1366 | + | scaled[j] += 0.5; |
1367 | + | } |
1368 | + | |
1369 | + | // find xyz-indices of cell that cutoffGroup is in. |
1370 | + | whichCell.x() = nCells_.x() * scaled.x(); |
1371 | + | whichCell.y() = nCells_.y() * scaled.y(); |
1372 | + | whichCell.z() = nCells_.z() * scaled.z(); |
1373 | + | |
1374 | + | // find single index of this cell: |
1375 | + | cellIndex = Vlinear(whichCell, nCells_); |
1376 | + | |
1377 | + | // add this cutoff group to the list of groups in this cell; |
1378 | + | cellListCol_[cellIndex].push_back(i); |
1379 | + | } |
1380 | + | |
1381 | + | #else |
1382 | + | for (int i = 0; i < nGroups_; i++) { |
1383 | + | rs = snap_->cgData.position[i]; |
1384 | + | |
1385 | + | // scaled positions relative to the box vectors |
1386 | + | scaled = invHmat * rs; |
1387 | + | |
1388 | + | // wrap the vector back into the unit box by subtracting integer box |
1389 | + | // numbers |
1390 | + | for (int j = 0; j < 3; j++) { |
1391 | + | scaled[j] -= roundMe(scaled[j]); |
1392 | + | scaled[j] += 0.5; |
1393 | + | } |
1394 | + | |
1395 | + | // find xyz-indices of cell that cutoffGroup is in. |
1396 | + | whichCell.x() = nCells_.x() * scaled.x(); |
1397 | + | whichCell.y() = nCells_.y() * scaled.y(); |
1398 | + | whichCell.z() = nCells_.z() * scaled.z(); |
1399 | + | |
1400 | + | // find single index of this cell: |
1401 | + | cellIndex = Vlinear(whichCell, nCells_); |
1402 | + | |
1403 | + | // add this cutoff group to the list of groups in this cell; |
1404 | + | cellList_[cellIndex].push_back(i); |
1405 | + | } |
1406 | + | |
1407 | + | #endif |
1408 | + | |
1409 | + | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1410 | + | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1411 | + | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1412 | + | Vector3i m1v(m1x, m1y, m1z); |
1413 | + | int m1 = Vlinear(m1v, nCells_); |
1414 | + | |
1415 | + | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1416 | + | os != cellOffsets_.end(); ++os) { |
1417 | + | |
1418 | + | Vector3i m2v = m1v + (*os); |
1419 | + | |
1420 | + | |
1421 | + | if (m2v.x() >= nCells_.x()) { |
1422 | + | m2v.x() = 0; |
1423 | + | } else if (m2v.x() < 0) { |
1424 | + | m2v.x() = nCells_.x() - 1; |
1425 | + | } |
1426 | + | |
1427 | + | if (m2v.y() >= nCells_.y()) { |
1428 | + | m2v.y() = 0; |
1429 | + | } else if (m2v.y() < 0) { |
1430 | + | m2v.y() = nCells_.y() - 1; |
1431 | + | } |
1432 | + | |
1433 | + | if (m2v.z() >= nCells_.z()) { |
1434 | + | m2v.z() = 0; |
1435 | + | } else if (m2v.z() < 0) { |
1436 | + | m2v.z() = nCells_.z() - 1; |
1437 | + | } |
1438 | + | |
1439 | + | int m2 = Vlinear (m2v, nCells_); |
1440 | + | |
1441 | + | #ifdef IS_MPI |
1442 | + | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1443 | + | j1 != cellListRow_[m1].end(); ++j1) { |
1444 | + | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1445 | + | j2 != cellListCol_[m2].end(); ++j2) { |
1446 | + | |
1447 | + | // In parallel, we need to visit *all* pairs of row |
1448 | + | // & column indicies and will divide labor in the |
1449 | + | // force evaluation later. |
1450 | + | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1451 | + | snap_->wrapVector(dr); |
1452 | + | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1453 | + | if (dr.lengthSquare() < cuts.third) { |
1454 | + | neighborList.push_back(make_pair((*j1), (*j2))); |
1455 | + | } |
1456 | + | } |
1457 | + | } |
1458 | + | #else |
1459 | + | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1460 | + | j1 != cellList_[m1].end(); ++j1) { |
1461 | + | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1462 | + | j2 != cellList_[m2].end(); ++j2) { |
1463 | + | |
1464 | + | // Always do this if we're in different cells or if |
1465 | + | // we're in the same cell and the global index of |
1466 | + | // the j2 cutoff group is greater than or equal to |
1467 | + | // the j1 cutoff group. Note that Rappaport's code |
1468 | + | // has a "less than" conditional here, but that |
1469 | + | // deals with atom-by-atom computation. OpenMD |
1470 | + | // allows atoms within a single cutoff group to |
1471 | + | // interact with each other. |
1472 | + | |
1473 | + | |
1474 | + | |
1475 | + | if (m2 != m1 || (*j2) >= (*j1) ) { |
1476 | + | |
1477 | + | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1478 | + | snap_->wrapVector(dr); |
1479 | + | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1480 | + | if (dr.lengthSquare() < cuts.third) { |
1481 | + | neighborList.push_back(make_pair((*j1), (*j2))); |
1482 | + | } |
1483 | + | } |
1484 | + | } |
1485 | + | } |
1486 | + | #endif |
1487 | + | } |
1488 | + | } |
1489 | + | } |
1490 | + | } |
1491 | + | } else { |
1492 | + | // branch to do all cutoff group pairs |
1493 | + | #ifdef IS_MPI |
1494 | + | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1495 | + | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1496 | + | dr = cgColData.position[j2] - cgRowData.position[j1]; |
1497 | + | snap_->wrapVector(dr); |
1498 | + | cuts = getGroupCutoffs( j1, j2 ); |
1499 | + | if (dr.lengthSquare() < cuts.third) { |
1500 | + | neighborList.push_back(make_pair(j1, j2)); |
1501 | + | } |
1502 | + | } |
1503 | + | } |
1504 | + | #else |
1505 | + | // include all groups here. |
1506 | + | for (int j1 = 0; j1 < nGroups_; j1++) { |
1507 | + | // include self group interactions j2 == j1 |
1508 | + | for (int j2 = j1; j2 < nGroups_; j2++) { |
1509 | + | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1510 | + | snap_->wrapVector(dr); |
1511 | + | cuts = getGroupCutoffs( j1, j2 ); |
1512 | + | if (dr.lengthSquare() < cuts.third) { |
1513 | + | neighborList.push_back(make_pair(j1, j2)); |
1514 | + | } |
1515 | + | } |
1516 | + | } |
1517 | + | #endif |
1518 | + | } |
1519 | + | |
1520 | + | // save the local cutoff group positions for the check that is |
1521 | + | // done on each loop: |
1522 | + | saved_CG_positions_.clear(); |
1523 | + | for (int i = 0; i < nGroups_; i++) |
1524 | + | saved_CG_positions_.push_back(snap_->cgData.position[i]); |
1525 | + | |
1526 | + | return neighborList; |
1527 | + | } |
1528 | } //end namespace OpenMD |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |