| 95 |
|
storageLayout_ = sman_->getStorageLayout(); |
| 96 |
|
ff_ = info_->getForceField(); |
| 97 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
| 98 |
< |
|
| 98 |
> |
|
| 99 |
|
nGroups_ = info_->getNLocalCutoffGroups(); |
| 100 |
|
// gather the information for atomtype IDs (atids): |
| 101 |
|
idents = info_->getIdentArray(); |
| 109 |
|
PairList* oneTwo = info_->getOneTwoInteractions(); |
| 110 |
|
PairList* oneThree = info_->getOneThreeInteractions(); |
| 111 |
|
PairList* oneFour = info_->getOneFourInteractions(); |
| 112 |
< |
|
| 112 |
> |
|
| 113 |
> |
if (needVelocities_) |
| 114 |
> |
snap_->cgData.setStorageLayout(DataStorage::dslPosition | |
| 115 |
> |
DataStorage::dslVelocity); |
| 116 |
> |
else |
| 117 |
> |
snap_->cgData.setStorageLayout(DataStorage::dslPosition); |
| 118 |
> |
|
| 119 |
|
#ifdef IS_MPI |
| 120 |
|
|
| 121 |
|
MPI::Intracomm row = rowComm.getComm(); |
| 151 |
|
cgRowData.resize(nGroupsInRow_); |
| 152 |
|
cgRowData.setStorageLayout(DataStorage::dslPosition); |
| 153 |
|
cgColData.resize(nGroupsInCol_); |
| 154 |
< |
cgColData.setStorageLayout(DataStorage::dslPosition); |
| 155 |
< |
|
| 154 |
> |
if (needVelocities_) |
| 155 |
> |
// we only need column velocities if we need them. |
| 156 |
> |
cgColData.setStorageLayout(DataStorage::dslPosition | |
| 157 |
> |
DataStorage::dslVelocity); |
| 158 |
> |
else |
| 159 |
> |
cgColData.setStorageLayout(DataStorage::dslPosition); |
| 160 |
> |
|
| 161 |
|
identsRow.resize(nAtomsInRow_); |
| 162 |
|
identsCol.resize(nAtomsInCol_); |
| 163 |
|
|
| 175 |
|
|
| 176 |
|
pot_row.resize(nAtomsInRow_); |
| 177 |
|
pot_col.resize(nAtomsInCol_); |
| 178 |
+ |
|
| 179 |
+ |
expot_row.resize(nAtomsInRow_); |
| 180 |
+ |
expot_col.resize(nAtomsInCol_); |
| 181 |
|
|
| 182 |
|
AtomRowToGlobal.resize(nAtomsInRow_); |
| 183 |
|
AtomColToGlobal.resize(nAtomsInCol_); |
| 310 |
|
|
| 311 |
|
RealType tol = 1e-6; |
| 312 |
|
largestRcut_ = 0.0; |
| 299 |
– |
RealType rc; |
| 313 |
|
int atid; |
| 314 |
|
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
| 315 |
|
|
| 394 |
|
} |
| 395 |
|
|
| 396 |
|
bool gTypeFound = false; |
| 397 |
< |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
| 397 |
> |
for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
| 398 |
|
if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
| 399 |
|
groupToGtype[cg1] = gt; |
| 400 |
|
gTypeFound = true; |
| 419 |
|
|
| 420 |
|
RealType tradRcut = groupMax; |
| 421 |
|
|
| 422 |
< |
for (int i = 0; i < gTypeCutoffs.size(); i++) { |
| 423 |
< |
for (int j = 0; j < gTypeCutoffs.size(); j++) { |
| 422 |
> |
for (unsigned int i = 0; i < gTypeCutoffs.size(); i++) { |
| 423 |
> |
for (unsigned int j = 0; j < gTypeCutoffs.size(); j++) { |
| 424 |
|
RealType thisRcut; |
| 425 |
|
switch(cutoffPolicy_) { |
| 426 |
|
case TRADITIONAL: |
| 463 |
|
} |
| 464 |
|
} |
| 465 |
|
|
| 453 |
– |
|
| 466 |
|
groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
| 467 |
|
int i, j; |
| 468 |
|
#ifdef IS_MPI |
| 476 |
|
} |
| 477 |
|
|
| 478 |
|
int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
| 479 |
< |
for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
| 479 |
> |
for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) { |
| 480 |
|
if (toposForAtom[atom1][j] == atom2) |
| 481 |
|
return topoDist[atom1][j]; |
| 482 |
|
} |
| 486 |
|
void ForceMatrixDecomposition::zeroWorkArrays() { |
| 487 |
|
pairwisePot = 0.0; |
| 488 |
|
embeddingPot = 0.0; |
| 489 |
+ |
excludedPot = 0.0; |
| 490 |
+ |
excludedSelfPot = 0.0; |
| 491 |
|
|
| 492 |
|
#ifdef IS_MPI |
| 493 |
|
if (storageLayout_ & DataStorage::dslForce) { |
| 506 |
|
fill(pot_col.begin(), pot_col.end(), |
| 507 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
| 508 |
|
|
| 509 |
+ |
fill(expot_row.begin(), expot_row.end(), |
| 510 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
| 511 |
+ |
|
| 512 |
+ |
fill(expot_col.begin(), expot_col.end(), |
| 513 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
| 514 |
+ |
|
| 515 |
|
if (storageLayout_ & DataStorage::dslParticlePot) { |
| 516 |
|
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
| 517 |
|
0.0); |
| 545 |
|
atomColData.skippedCharge.end(), 0.0); |
| 546 |
|
} |
| 547 |
|
|
| 548 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
| 549 |
+ |
fill(atomRowData.flucQFrc.begin(), |
| 550 |
+ |
atomRowData.flucQFrc.end(), 0.0); |
| 551 |
+ |
fill(atomColData.flucQFrc.begin(), |
| 552 |
+ |
atomColData.flucQFrc.end(), 0.0); |
| 553 |
+ |
} |
| 554 |
+ |
|
| 555 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
| 556 |
+ |
fill(atomRowData.electricField.begin(), |
| 557 |
+ |
atomRowData.electricField.end(), V3Zero); |
| 558 |
+ |
fill(atomColData.electricField.begin(), |
| 559 |
+ |
atomColData.electricField.end(), V3Zero); |
| 560 |
+ |
} |
| 561 |
+ |
|
| 562 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
| 563 |
+ |
fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), |
| 564 |
+ |
0.0); |
| 565 |
+ |
fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), |
| 566 |
+ |
0.0); |
| 567 |
+ |
} |
| 568 |
+ |
|
| 569 |
|
#endif |
| 570 |
|
// even in parallel, we need to zero out the local arrays: |
| 571 |
|
|
| 578 |
|
fill(snap_->atomData.density.begin(), |
| 579 |
|
snap_->atomData.density.end(), 0.0); |
| 580 |
|
} |
| 581 |
+ |
|
| 582 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
| 583 |
|
fill(snap_->atomData.functional.begin(), |
| 584 |
|
snap_->atomData.functional.end(), 0.0); |
| 585 |
|
} |
| 586 |
+ |
|
| 587 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
| 588 |
|
fill(snap_->atomData.functionalDerivative.begin(), |
| 589 |
|
snap_->atomData.functionalDerivative.end(), 0.0); |
| 590 |
|
} |
| 591 |
+ |
|
| 592 |
|
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
| 593 |
|
fill(snap_->atomData.skippedCharge.begin(), |
| 594 |
|
snap_->atomData.skippedCharge.end(), 0.0); |
| 595 |
|
} |
| 596 |
< |
|
| 596 |
> |
|
| 597 |
> |
if (storageLayout_ & DataStorage::dslElectricField) { |
| 598 |
> |
fill(snap_->atomData.electricField.begin(), |
| 599 |
> |
snap_->atomData.electricField.end(), V3Zero); |
| 600 |
> |
} |
| 601 |
|
} |
| 602 |
|
|
| 603 |
|
|
| 620 |
|
cgPlanVectorColumn->gather(snap_->cgData.position, |
| 621 |
|
cgColData.position); |
| 622 |
|
|
| 623 |
+ |
|
| 624 |
+ |
|
| 625 |
+ |
if (needVelocities_) { |
| 626 |
+ |
// gather up the atomic velocities |
| 627 |
+ |
AtomPlanVectorColumn->gather(snap_->atomData.velocity, |
| 628 |
+ |
atomColData.velocity); |
| 629 |
+ |
|
| 630 |
+ |
cgPlanVectorColumn->gather(snap_->cgData.velocity, |
| 631 |
+ |
cgColData.velocity); |
| 632 |
+ |
} |
| 633 |
+ |
|
| 634 |
|
|
| 635 |
|
// if needed, gather the atomic rotation matrices |
| 636 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
| 648 |
|
atomColData.electroFrame); |
| 649 |
|
} |
| 650 |
|
|
| 651 |
+ |
// if needed, gather the atomic fluctuating charge values |
| 652 |
+ |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
| 653 |
+ |
AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
| 654 |
+ |
atomRowData.flucQPos); |
| 655 |
+ |
AtomPlanRealColumn->gather(snap_->atomData.flucQPos, |
| 656 |
+ |
atomColData.flucQPos); |
| 657 |
+ |
} |
| 658 |
+ |
|
| 659 |
|
#endif |
| 660 |
|
} |
| 661 |
|
|
| 678 |
|
for (int i = 0; i < n; i++) |
| 679 |
|
snap_->atomData.density[i] += rho_tmp[i]; |
| 680 |
|
} |
| 681 |
+ |
|
| 682 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
| 683 |
+ |
|
| 684 |
+ |
AtomPlanVectorRow->scatter(atomRowData.electricField, |
| 685 |
+ |
snap_->atomData.electricField); |
| 686 |
+ |
|
| 687 |
+ |
int n = snap_->atomData.electricField.size(); |
| 688 |
+ |
vector<Vector3d> field_tmp(n, V3Zero); |
| 689 |
+ |
AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); |
| 690 |
+ |
for (int i = 0; i < n; i++) |
| 691 |
+ |
snap_->atomData.electricField[i] += field_tmp[i]; |
| 692 |
+ |
} |
| 693 |
|
#endif |
| 694 |
|
} |
| 695 |
|
|
| 769 |
|
|
| 770 |
|
} |
| 771 |
|
|
| 772 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
| 773 |
+ |
|
| 774 |
+ |
int nq = snap_->atomData.flucQFrc.size(); |
| 775 |
+ |
vector<RealType> fqfrc_tmp(nq, 0.0); |
| 776 |
+ |
|
| 777 |
+ |
AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); |
| 778 |
+ |
for (int i = 0; i < nq; i++) { |
| 779 |
+ |
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
| 780 |
+ |
fqfrc_tmp[i] = 0.0; |
| 781 |
+ |
} |
| 782 |
+ |
|
| 783 |
+ |
AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); |
| 784 |
+ |
for (int i = 0; i < nq; i++) |
| 785 |
+ |
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
| 786 |
+ |
|
| 787 |
+ |
} |
| 788 |
+ |
|
| 789 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
| 790 |
|
|
| 791 |
|
vector<potVec> pot_temp(nLocal_, |
| 792 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
| 793 |
+ |
vector<potVec> expot_temp(nLocal_, |
| 794 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
| 795 |
|
|
| 796 |
|
// scatter/gather pot_row into the members of my column |
| 797 |
|
|
| 798 |
|
AtomPlanPotRow->scatter(pot_row, pot_temp); |
| 799 |
+ |
AtomPlanPotRow->scatter(expot_row, expot_temp); |
| 800 |
|
|
| 801 |
< |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
| 801 |
> |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
| 802 |
|
pairwisePot += pot_temp[ii]; |
| 803 |
< |
|
| 803 |
> |
|
| 804 |
> |
for (int ii = 0; ii < expot_temp.size(); ii++ ) |
| 805 |
> |
excludedPot += expot_temp[ii]; |
| 806 |
> |
|
| 807 |
> |
if (storageLayout_ & DataStorage::dslParticlePot) { |
| 808 |
> |
// This is the pairwise contribution to the particle pot. The |
| 809 |
> |
// embedding contribution is added in each of the low level |
| 810 |
> |
// non-bonded routines. In single processor, this is done in |
| 811 |
> |
// unpackInteractionData, not in collectData. |
| 812 |
> |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
| 813 |
> |
for (int i = 0; i < nLocal_; i++) { |
| 814 |
> |
// factor of two is because the total potential terms are divided |
| 815 |
> |
// by 2 in parallel due to row/ column scatter |
| 816 |
> |
snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
| 817 |
> |
} |
| 818 |
> |
} |
| 819 |
> |
} |
| 820 |
> |
|
| 821 |
|
fill(pot_temp.begin(), pot_temp.end(), |
| 822 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
| 823 |
+ |
fill(expot_temp.begin(), expot_temp.end(), |
| 824 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
| 825 |
|
|
| 826 |
|
AtomPlanPotColumn->scatter(pot_col, pot_temp); |
| 827 |
+ |
AtomPlanPotColumn->scatter(expot_col, expot_temp); |
| 828 |
|
|
| 829 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
| 830 |
|
pairwisePot += pot_temp[ii]; |
| 831 |
+ |
|
| 832 |
+ |
for (int ii = 0; ii < expot_temp.size(); ii++ ) |
| 833 |
+ |
excludedPot += expot_temp[ii]; |
| 834 |
+ |
|
| 835 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
| 836 |
+ |
// This is the pairwise contribution to the particle pot. The |
| 837 |
+ |
// embedding contribution is added in each of the low level |
| 838 |
+ |
// non-bonded routines. In single processor, this is done in |
| 839 |
+ |
// unpackInteractionData, not in collectData. |
| 840 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
| 841 |
+ |
for (int i = 0; i < nLocal_; i++) { |
| 842 |
+ |
// factor of two is because the total potential terms are divided |
| 843 |
+ |
// by 2 in parallel due to row/ column scatter |
| 844 |
+ |
snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
| 845 |
+ |
} |
| 846 |
+ |
} |
| 847 |
+ |
} |
| 848 |
|
|
| 849 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
| 850 |
+ |
int npp = snap_->atomData.particlePot.size(); |
| 851 |
+ |
vector<RealType> ppot_temp(npp, 0.0); |
| 852 |
+ |
|
| 853 |
+ |
// This is the direct or embedding contribution to the particle |
| 854 |
+ |
// pot. |
| 855 |
+ |
|
| 856 |
+ |
AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); |
| 857 |
+ |
for (int i = 0; i < npp; i++) { |
| 858 |
+ |
snap_->atomData.particlePot[i] += ppot_temp[i]; |
| 859 |
+ |
} |
| 860 |
+ |
|
| 861 |
+ |
fill(ppot_temp.begin(), ppot_temp.end(), 0.0); |
| 862 |
+ |
|
| 863 |
+ |
AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); |
| 864 |
+ |
for (int i = 0; i < npp; i++) { |
| 865 |
+ |
snap_->atomData.particlePot[i] += ppot_temp[i]; |
| 866 |
+ |
} |
| 867 |
+ |
} |
| 868 |
+ |
|
| 869 |
|
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
| 870 |
|
RealType ploc1 = pairwisePot[ii]; |
| 871 |
|
RealType ploc2 = 0.0; |
| 874 |
|
} |
| 875 |
|
|
| 876 |
|
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
| 877 |
< |
RealType ploc1 = embeddingPot[ii]; |
| 877 |
> |
RealType ploc1 = excludedPot[ii]; |
| 878 |
|
RealType ploc2 = 0.0; |
| 879 |
|
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
| 880 |
< |
embeddingPot[ii] = ploc2; |
| 880 |
> |
excludedPot[ii] = ploc2; |
| 881 |
|
} |
| 882 |
|
|
| 883 |
+ |
// Here be dragons. |
| 884 |
+ |
MPI::Intracomm col = colComm.getComm(); |
| 885 |
+ |
|
| 886 |
+ |
col.Allreduce(MPI::IN_PLACE, |
| 887 |
+ |
&snap_->frameData.conductiveHeatFlux[0], 3, |
| 888 |
+ |
MPI::REALTYPE, MPI::SUM); |
| 889 |
+ |
|
| 890 |
+ |
|
| 891 |
|
#endif |
| 892 |
|
|
| 893 |
|
} |
| 894 |
|
|
| 895 |
+ |
/** |
| 896 |
+ |
* Collects information obtained during the post-pair (and embedding |
| 897 |
+ |
* functional) loops onto local data structures. |
| 898 |
+ |
*/ |
| 899 |
+ |
void ForceMatrixDecomposition::collectSelfData() { |
| 900 |
+ |
snap_ = sman_->getCurrentSnapshot(); |
| 901 |
+ |
storageLayout_ = sman_->getStorageLayout(); |
| 902 |
+ |
|
| 903 |
+ |
#ifdef IS_MPI |
| 904 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
| 905 |
+ |
RealType ploc1 = embeddingPot[ii]; |
| 906 |
+ |
RealType ploc2 = 0.0; |
| 907 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
| 908 |
+ |
embeddingPot[ii] = ploc2; |
| 909 |
+ |
} |
| 910 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
| 911 |
+ |
RealType ploc1 = excludedSelfPot[ii]; |
| 912 |
+ |
RealType ploc2 = 0.0; |
| 913 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
| 914 |
+ |
excludedSelfPot[ii] = ploc2; |
| 915 |
+ |
} |
| 916 |
+ |
#endif |
| 917 |
+ |
|
| 918 |
+ |
} |
| 919 |
+ |
|
| 920 |
+ |
|
| 921 |
+ |
|
| 922 |
|
int ForceMatrixDecomposition::getNAtomsInRow() { |
| 923 |
|
#ifdef IS_MPI |
| 924 |
|
return nAtomsInRow_; |
| 959 |
|
return d; |
| 960 |
|
} |
| 961 |
|
|
| 962 |
+ |
Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ |
| 963 |
+ |
#ifdef IS_MPI |
| 964 |
+ |
return cgColData.velocity[cg2]; |
| 965 |
+ |
#else |
| 966 |
+ |
return snap_->cgData.velocity[cg2]; |
| 967 |
+ |
#endif |
| 968 |
+ |
} |
| 969 |
|
|
| 970 |
+ |
Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ |
| 971 |
+ |
#ifdef IS_MPI |
| 972 |
+ |
return atomColData.velocity[atom2]; |
| 973 |
+ |
#else |
| 974 |
+ |
return snap_->atomData.velocity[atom2]; |
| 975 |
+ |
#endif |
| 976 |
+ |
} |
| 977 |
+ |
|
| 978 |
+ |
|
| 979 |
|
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ |
| 980 |
|
|
| 981 |
|
Vector3d d; |
| 1041 |
|
* We need to exclude some overcounted interactions that result from |
| 1042 |
|
* the parallel decomposition. |
| 1043 |
|
*/ |
| 1044 |
< |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
| 1044 |
> |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { |
| 1045 |
|
int unique_id_1, unique_id_2; |
| 1046 |
|
|
| 1047 |
|
#ifdef IS_MPI |
| 1048 |
|
// in MPI, we have to look up the unique IDs for each atom |
| 1049 |
|
unique_id_1 = AtomRowToGlobal[atom1]; |
| 1050 |
|
unique_id_2 = AtomColToGlobal[atom2]; |
| 1051 |
+ |
// group1 = cgRowToGlobal[cg1]; |
| 1052 |
+ |
// group2 = cgColToGlobal[cg2]; |
| 1053 |
|
#else |
| 1054 |
|
unique_id_1 = AtomLocalToGlobal[atom1]; |
| 1055 |
|
unique_id_2 = AtomLocalToGlobal[atom2]; |
| 1056 |
+ |
int group1 = cgLocalToGlobal[cg1]; |
| 1057 |
+ |
int group2 = cgLocalToGlobal[cg2]; |
| 1058 |
|
#endif |
| 1059 |
|
|
| 1060 |
|
if (unique_id_1 == unique_id_2) return true; |
| 1066 |
|
} else { |
| 1067 |
|
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
| 1068 |
|
} |
| 1069 |
+ |
#endif |
| 1070 |
+ |
|
| 1071 |
+ |
#ifndef IS_MPI |
| 1072 |
+ |
if (group1 == group2) { |
| 1073 |
+ |
if (unique_id_1 < unique_id_2) return true; |
| 1074 |
+ |
} |
| 1075 |
|
#endif |
| 1076 |
|
|
| 1077 |
|
return false; |
| 1167 |
|
idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
| 1168 |
|
} |
| 1169 |
|
|
| 1170 |
< |
#else |
| 1170 |
> |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
| 1171 |
> |
idat.flucQ1 = &(atomRowData.flucQPos[atom1]); |
| 1172 |
> |
idat.flucQ2 = &(atomColData.flucQPos[atom2]); |
| 1173 |
> |
} |
| 1174 |
|
|
| 1175 |
+ |
#else |
| 1176 |
+ |
|
| 1177 |
|
idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
| 956 |
– |
//idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
| 957 |
– |
// ff_->getAtomType(idents[atom2]) ); |
| 1178 |
|
|
| 1179 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
| 1180 |
|
idat.A1 = &(snap_->atomData.aMat[atom1]); |
| 1215 |
|
idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
| 1216 |
|
idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
| 1217 |
|
} |
| 1218 |
+ |
|
| 1219 |
+ |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
| 1220 |
+ |
idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); |
| 1221 |
+ |
idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); |
| 1222 |
+ |
} |
| 1223 |
+ |
|
| 1224 |
|
#endif |
| 1225 |
|
} |
| 1226 |
|
|
| 1229 |
|
#ifdef IS_MPI |
| 1230 |
|
pot_row[atom1] += RealType(0.5) * *(idat.pot); |
| 1231 |
|
pot_col[atom2] += RealType(0.5) * *(idat.pot); |
| 1232 |
+ |
expot_row[atom1] += RealType(0.5) * *(idat.excludedPot); |
| 1233 |
+ |
expot_col[atom2] += RealType(0.5) * *(idat.excludedPot); |
| 1234 |
|
|
| 1235 |
|
atomRowData.force[atom1] += *(idat.f1); |
| 1236 |
|
atomColData.force[atom2] -= *(idat.f1); |
| 1237 |
+ |
|
| 1238 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
| 1239 |
+ |
atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
| 1240 |
+ |
atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
| 1241 |
+ |
} |
| 1242 |
+ |
|
| 1243 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
| 1244 |
+ |
atomRowData.electricField[atom1] += *(idat.eField1); |
| 1245 |
+ |
atomColData.electricField[atom2] += *(idat.eField2); |
| 1246 |
+ |
} |
| 1247 |
+ |
|
| 1248 |
|
#else |
| 1249 |
|
pairwisePot += *(idat.pot); |
| 1250 |
+ |
excludedPot += *(idat.excludedPot); |
| 1251 |
|
|
| 1252 |
|
snap_->atomData.force[atom1] += *(idat.f1); |
| 1253 |
|
snap_->atomData.force[atom2] -= *(idat.f1); |
| 1254 |
+ |
|
| 1255 |
+ |
if (idat.doParticlePot) { |
| 1256 |
+ |
// This is the pairwise contribution to the particle pot. The |
| 1257 |
+ |
// embedding contribution is added in each of the low level |
| 1258 |
+ |
// non-bonded routines. In parallel, this calculation is done |
| 1259 |
+ |
// in collectData, not in unpackInteractionData. |
| 1260 |
+ |
snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); |
| 1261 |
+ |
snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); |
| 1262 |
+ |
} |
| 1263 |
+ |
|
| 1264 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
| 1265 |
+ |
snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
| 1266 |
+ |
snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
| 1267 |
+ |
} |
| 1268 |
+ |
|
| 1269 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
| 1270 |
+ |
snap_->atomData.electricField[atom1] += *(idat.eField1); |
| 1271 |
+ |
snap_->atomData.electricField[atom2] += *(idat.eField2); |
| 1272 |
+ |
} |
| 1273 |
+ |
|
| 1274 |
|
#endif |
| 1275 |
|
|
| 1276 |
|
} |
| 1295 |
|
#endif |
| 1296 |
|
|
| 1297 |
|
RealType rList_ = (largestRcut_ + skinThickness_); |
| 1038 |
– |
RealType rl2 = rList_ * rList_; |
| 1298 |
|
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
| 1299 |
|
Mat3x3d Hmat = snap_->getHmat(); |
| 1300 |
|
Vector3d Hx = Hmat.getColumn(0); |
| 1338 |
|
for (int j = 0; j < 3; j++) { |
| 1339 |
|
scaled[j] -= roundMe(scaled[j]); |
| 1340 |
|
scaled[j] += 0.5; |
| 1341 |
+ |
// Handle the special case when an object is exactly on the |
| 1342 |
+ |
// boundary (a scaled coordinate of 1.0 is the same as |
| 1343 |
+ |
// scaled coordinate of 0.0) |
| 1344 |
+ |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
| 1345 |
|
} |
| 1346 |
|
|
| 1347 |
|
// find xyz-indices of cell that cutoffGroup is in. |
| 1366 |
|
for (int j = 0; j < 3; j++) { |
| 1367 |
|
scaled[j] -= roundMe(scaled[j]); |
| 1368 |
|
scaled[j] += 0.5; |
| 1369 |
+ |
// Handle the special case when an object is exactly on the |
| 1370 |
+ |
// boundary (a scaled coordinate of 1.0 is the same as |
| 1371 |
+ |
// scaled coordinate of 0.0) |
| 1372 |
+ |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
| 1373 |
|
} |
| 1374 |
|
|
| 1375 |
|
// find xyz-indices of cell that cutoffGroup is in. |
| 1396 |
|
for (int j = 0; j < 3; j++) { |
| 1397 |
|
scaled[j] -= roundMe(scaled[j]); |
| 1398 |
|
scaled[j] += 0.5; |
| 1399 |
+ |
// Handle the special case when an object is exactly on the |
| 1400 |
+ |
// boundary (a scaled coordinate of 1.0 is the same as |
| 1401 |
+ |
// scaled coordinate of 0.0) |
| 1402 |
+ |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
| 1403 |
|
} |
| 1404 |
|
|
| 1405 |
|
// find xyz-indices of cell that cutoffGroup is in. |