# | Line 35 | Line 35 | |
---|---|---|
35 | * | |
36 | * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | |
37 | * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | |
38 | < | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 | < | * [4] Vardeman & Gezelter, in progress (2009). |
38 | > | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 | > | * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 | > | * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 | */ | |
42 | #include "parallel/ForceMatrixDecomposition.hpp" | |
43 | #include "math/SquareMatrix3.hpp" | |
44 | #include "nonbonded/NonBondedInteraction.hpp" | |
45 | #include "brains/SnapshotManager.hpp" | |
46 | + | #include "brains/PairList.hpp" |
47 | ||
48 | using namespace std; | |
49 | namespace OpenMD { | |
50 | ||
51 | + | ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { |
52 | + | |
53 | + | // In a parallel computation, row and colum scans must visit all |
54 | + | // surrounding cells (not just the 14 upper triangular blocks that |
55 | + | // are used when the processor can see all pairs) |
56 | + | #ifdef IS_MPI |
57 | + | cellOffsets_.clear(); |
58 | + | cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
59 | + | cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
60 | + | cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
61 | + | cellOffsets_.push_back( Vector3i(-1, 0,-1) ); |
62 | + | cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
63 | + | cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
64 | + | cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
65 | + | cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
66 | + | cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
67 | + | cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
68 | + | cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
69 | + | cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
70 | + | cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
71 | + | cellOffsets_.push_back( Vector3i( 0, 0, 0) ); |
72 | + | cellOffsets_.push_back( Vector3i( 1, 0, 0) ); |
73 | + | cellOffsets_.push_back( Vector3i(-1, 1, 0) ); |
74 | + | cellOffsets_.push_back( Vector3i( 0, 1, 0) ); |
75 | + | cellOffsets_.push_back( Vector3i( 1, 1, 0) ); |
76 | + | cellOffsets_.push_back( Vector3i(-1,-1, 1) ); |
77 | + | cellOffsets_.push_back( Vector3i( 0,-1, 1) ); |
78 | + | cellOffsets_.push_back( Vector3i( 1,-1, 1) ); |
79 | + | cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
80 | + | cellOffsets_.push_back( Vector3i( 0, 0, 1) ); |
81 | + | cellOffsets_.push_back( Vector3i( 1, 0, 1) ); |
82 | + | cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
83 | + | cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
84 | + | cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
85 | + | #endif |
86 | + | } |
87 | + | |
88 | + | |
89 | /** | |
90 | * distributeInitialData is essentially a copy of the older fortran | |
91 | * SimulationSetup | |
92 | */ | |
53 | – | |
93 | void ForceMatrixDecomposition::distributeInitialData() { | |
94 | snap_ = sman_->getCurrentSnapshot(); | |
95 | storageLayout_ = sman_->getStorageLayout(); | |
96 | + | ff_ = info_->getForceField(); |
97 | nLocal_ = snap_->getNumberOfAtoms(); | |
98 | < | nGroups_ = snap_->getNumberOfCutoffGroups(); |
98 | > | |
99 | > | nGroups_ = info_->getNLocalCutoffGroups(); |
100 | > | // gather the information for atomtype IDs (atids): |
101 | > | idents = info_->getIdentArray(); |
102 | > | AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
103 | > | cgLocalToGlobal = info_->getGlobalGroupIndices(); |
104 | > | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
105 | ||
106 | + | massFactors = info_->getMassFactors(); |
107 | + | |
108 | + | PairList* excludes = info_->getExcludedInteractions(); |
109 | + | PairList* oneTwo = info_->getOneTwoInteractions(); |
110 | + | PairList* oneThree = info_->getOneThreeInteractions(); |
111 | + | PairList* oneFour = info_->getOneFourInteractions(); |
112 | + | |
113 | + | if (needVelocities_) |
114 | + | snap_->cgData.setStorageLayout(DataStorage::dslPosition | |
115 | + | DataStorage::dslVelocity); |
116 | + | else |
117 | + | snap_->cgData.setStorageLayout(DataStorage::dslPosition); |
118 | + | |
119 | #ifdef IS_MPI | |
120 | ||
121 | < | AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
122 | < | AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
64 | < | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
65 | < | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
121 | > | MPI::Intracomm row = rowComm.getComm(); |
122 | > | MPI::Intracomm col = colComm.getComm(); |
123 | ||
124 | < | AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
125 | < | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
126 | < | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
127 | < | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
124 | > | AtomPlanIntRow = new Plan<int>(row, nLocal_); |
125 | > | AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
126 | > | AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); |
127 | > | AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); |
128 | > | AtomPlanPotRow = new Plan<potVec>(row, nLocal_); |
129 | ||
130 | < | cgCommIntRow = new Communicator<Row,int>(nGroups_); |
131 | < | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
132 | < | cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
133 | < | cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
130 | > | AtomPlanIntColumn = new Plan<int>(col, nLocal_); |
131 | > | AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); |
132 | > | AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); |
133 | > | AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); |
134 | > | AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); |
135 | ||
136 | < | nAtomsInRow_ = AtomCommIntRow->getSize(); |
137 | < | nAtomsInCol_ = AtomCommIntColumn->getSize(); |
138 | < | nGroupsInRow_ = cgCommIntRow->getSize(); |
139 | < | nGroupsInCol_ = cgCommIntColumn->getSize(); |
136 | > | cgPlanIntRow = new Plan<int>(row, nGroups_); |
137 | > | cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); |
138 | > | cgPlanIntColumn = new Plan<int>(col, nGroups_); |
139 | > | cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); |
140 | ||
141 | + | nAtomsInRow_ = AtomPlanIntRow->getSize(); |
142 | + | nAtomsInCol_ = AtomPlanIntColumn->getSize(); |
143 | + | nGroupsInRow_ = cgPlanIntRow->getSize(); |
144 | + | nGroupsInCol_ = cgPlanIntColumn->getSize(); |
145 | + | |
146 | // Modify the data storage objects with the correct layouts and sizes: | |
147 | atomRowData.resize(nAtomsInRow_); | |
148 | atomRowData.setStorageLayout(storageLayout_); | |
# | Line 87 | Line 151 | namespace OpenMD { | |
151 | cgRowData.resize(nGroupsInRow_); | |
152 | cgRowData.setStorageLayout(DataStorage::dslPosition); | |
153 | cgColData.resize(nGroupsInCol_); | |
154 | < | cgColData.setStorageLayout(DataStorage::dslPosition); |
154 | > | if (needVelocities_) |
155 | > | // we only need column velocities if we need them. |
156 | > | cgColData.setStorageLayout(DataStorage::dslPosition | |
157 | > | DataStorage::dslVelocity); |
158 | > | else |
159 | > | cgColData.setStorageLayout(DataStorage::dslPosition); |
160 | > | |
161 | > | identsRow.resize(nAtomsInRow_); |
162 | > | identsCol.resize(nAtomsInCol_); |
163 | ||
164 | < | vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES, |
165 | < | vector<RealType> (nAtomsInRow_, 0.0)); |
166 | < | vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES, |
167 | < | vector<RealType> (nAtomsInCol_, 0.0)); |
164 | > | AtomPlanIntRow->gather(idents, identsRow); |
165 | > | AtomPlanIntColumn->gather(idents, identsCol); |
166 | > | |
167 | > | // allocate memory for the parallel objects |
168 | > | atypesRow.resize(nAtomsInRow_); |
169 | > | atypesCol.resize(nAtomsInCol_); |
170 | ||
171 | + | for (int i = 0; i < nAtomsInRow_; i++) |
172 | + | atypesRow[i] = ff_->getAtomType(identsRow[i]); |
173 | + | for (int i = 0; i < nAtomsInCol_; i++) |
174 | + | atypesCol[i] = ff_->getAtomType(identsCol[i]); |
175 | ||
176 | < | vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0); |
177 | < | |
100 | < | // gather the information for atomtype IDs (atids): |
101 | < | vector<int> identsLocal = info_->getIdentArray(); |
102 | < | identsRow.reserve(nAtomsInRow_); |
103 | < | identsCol.reserve(nAtomsInCol_); |
104 | < | |
105 | < | AtomCommIntRow->gather(identsLocal, identsRow); |
106 | < | AtomCommIntColumn->gather(identsLocal, identsCol); |
107 | < | |
108 | < | AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
109 | < | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
110 | < | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
111 | < | |
112 | < | cgLocalToGlobal = info_->getGlobalGroupIndices(); |
113 | < | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
114 | < | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
176 | > | pot_row.resize(nAtomsInRow_); |
177 | > | pot_col.resize(nAtomsInCol_); |
178 | ||
179 | < | // still need: |
180 | < | // topoDist |
181 | < | // exclude |
179 | > | expot_row.resize(nAtomsInRow_); |
180 | > | expot_col.resize(nAtomsInCol_); |
181 | > | |
182 | > | AtomRowToGlobal.resize(nAtomsInRow_); |
183 | > | AtomColToGlobal.resize(nAtomsInCol_); |
184 | > | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
185 | > | AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
186 | > | |
187 | > | cgRowToGlobal.resize(nGroupsInRow_); |
188 | > | cgColToGlobal.resize(nGroupsInCol_); |
189 | > | cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
190 | > | cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
191 | > | |
192 | > | massFactorsRow.resize(nAtomsInRow_); |
193 | > | massFactorsCol.resize(nAtomsInCol_); |
194 | > | AtomPlanRealRow->gather(massFactors, massFactorsRow); |
195 | > | AtomPlanRealColumn->gather(massFactors, massFactorsCol); |
196 | > | |
197 | > | groupListRow_.clear(); |
198 | > | groupListRow_.resize(nGroupsInRow_); |
199 | > | for (int i = 0; i < nGroupsInRow_; i++) { |
200 | > | int gid = cgRowToGlobal[i]; |
201 | > | for (int j = 0; j < nAtomsInRow_; j++) { |
202 | > | int aid = AtomRowToGlobal[j]; |
203 | > | if (globalGroupMembership[aid] == gid) |
204 | > | groupListRow_[i].push_back(j); |
205 | > | } |
206 | > | } |
207 | > | |
208 | > | groupListCol_.clear(); |
209 | > | groupListCol_.resize(nGroupsInCol_); |
210 | > | for (int i = 0; i < nGroupsInCol_; i++) { |
211 | > | int gid = cgColToGlobal[i]; |
212 | > | for (int j = 0; j < nAtomsInCol_; j++) { |
213 | > | int aid = AtomColToGlobal[j]; |
214 | > | if (globalGroupMembership[aid] == gid) |
215 | > | groupListCol_[i].push_back(j); |
216 | > | } |
217 | > | } |
218 | > | |
219 | > | excludesForAtom.clear(); |
220 | > | excludesForAtom.resize(nAtomsInRow_); |
221 | > | toposForAtom.clear(); |
222 | > | toposForAtom.resize(nAtomsInRow_); |
223 | > | topoDist.clear(); |
224 | > | topoDist.resize(nAtomsInRow_); |
225 | > | for (int i = 0; i < nAtomsInRow_; i++) { |
226 | > | int iglob = AtomRowToGlobal[i]; |
227 | > | |
228 | > | for (int j = 0; j < nAtomsInCol_; j++) { |
229 | > | int jglob = AtomColToGlobal[j]; |
230 | > | |
231 | > | if (excludes->hasPair(iglob, jglob)) |
232 | > | excludesForAtom[i].push_back(j); |
233 | > | |
234 | > | if (oneTwo->hasPair(iglob, jglob)) { |
235 | > | toposForAtom[i].push_back(j); |
236 | > | topoDist[i].push_back(1); |
237 | > | } else { |
238 | > | if (oneThree->hasPair(iglob, jglob)) { |
239 | > | toposForAtom[i].push_back(j); |
240 | > | topoDist[i].push_back(2); |
241 | > | } else { |
242 | > | if (oneFour->hasPair(iglob, jglob)) { |
243 | > | toposForAtom[i].push_back(j); |
244 | > | topoDist[i].push_back(3); |
245 | > | } |
246 | > | } |
247 | > | } |
248 | > | } |
249 | > | } |
250 | > | |
251 | > | #else |
252 | > | excludesForAtom.clear(); |
253 | > | excludesForAtom.resize(nLocal_); |
254 | > | toposForAtom.clear(); |
255 | > | toposForAtom.resize(nLocal_); |
256 | > | topoDist.clear(); |
257 | > | topoDist.resize(nLocal_); |
258 | > | |
259 | > | for (int i = 0; i < nLocal_; i++) { |
260 | > | int iglob = AtomLocalToGlobal[i]; |
261 | > | |
262 | > | for (int j = 0; j < nLocal_; j++) { |
263 | > | int jglob = AtomLocalToGlobal[j]; |
264 | > | |
265 | > | if (excludes->hasPair(iglob, jglob)) |
266 | > | excludesForAtom[i].push_back(j); |
267 | > | |
268 | > | if (oneTwo->hasPair(iglob, jglob)) { |
269 | > | toposForAtom[i].push_back(j); |
270 | > | topoDist[i].push_back(1); |
271 | > | } else { |
272 | > | if (oneThree->hasPair(iglob, jglob)) { |
273 | > | toposForAtom[i].push_back(j); |
274 | > | topoDist[i].push_back(2); |
275 | > | } else { |
276 | > | if (oneFour->hasPair(iglob, jglob)) { |
277 | > | toposForAtom[i].push_back(j); |
278 | > | topoDist[i].push_back(3); |
279 | > | } |
280 | > | } |
281 | > | } |
282 | > | } |
283 | > | } |
284 | #endif | |
285 | + | |
286 | + | // allocate memory for the parallel objects |
287 | + | atypesLocal.resize(nLocal_); |
288 | + | |
289 | + | for (int i = 0; i < nLocal_; i++) |
290 | + | atypesLocal[i] = ff_->getAtomType(idents[i]); |
291 | + | |
292 | + | groupList_.clear(); |
293 | + | groupList_.resize(nGroups_); |
294 | + | for (int i = 0; i < nGroups_; i++) { |
295 | + | int gid = cgLocalToGlobal[i]; |
296 | + | for (int j = 0; j < nLocal_; j++) { |
297 | + | int aid = AtomLocalToGlobal[j]; |
298 | + | if (globalGroupMembership[aid] == gid) { |
299 | + | groupList_[i].push_back(j); |
300 | + | } |
301 | + | } |
302 | + | } |
303 | + | |
304 | + | |
305 | + | createGtypeCutoffMap(); |
306 | + | |
307 | + | } |
308 | + | |
309 | + | void ForceMatrixDecomposition::createGtypeCutoffMap() { |
310 | + | |
311 | + | RealType tol = 1e-6; |
312 | + | largestRcut_ = 0.0; |
313 | + | int atid; |
314 | + | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
315 | + | |
316 | + | map<int, RealType> atypeCutoff; |
317 | + | |
318 | + | for (set<AtomType*>::iterator at = atypes.begin(); |
319 | + | at != atypes.end(); ++at){ |
320 | + | atid = (*at)->getIdent(); |
321 | + | if (userChoseCutoff_) |
322 | + | atypeCutoff[atid] = userCutoff_; |
323 | + | else |
324 | + | atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
325 | + | } |
326 | + | |
327 | + | vector<RealType> gTypeCutoffs; |
328 | + | // first we do a single loop over the cutoff groups to find the |
329 | + | // largest cutoff for any atypes present in this group. |
330 | + | #ifdef IS_MPI |
331 | + | vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); |
332 | + | groupRowToGtype.resize(nGroupsInRow_); |
333 | + | for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { |
334 | + | vector<int> atomListRow = getAtomsInGroupRow(cg1); |
335 | + | for (vector<int>::iterator ia = atomListRow.begin(); |
336 | + | ia != atomListRow.end(); ++ia) { |
337 | + | int atom1 = (*ia); |
338 | + | atid = identsRow[atom1]; |
339 | + | if (atypeCutoff[atid] > groupCutoffRow[cg1]) { |
340 | + | groupCutoffRow[cg1] = atypeCutoff[atid]; |
341 | + | } |
342 | + | } |
343 | + | |
344 | + | bool gTypeFound = false; |
345 | + | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
346 | + | if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) { |
347 | + | groupRowToGtype[cg1] = gt; |
348 | + | gTypeFound = true; |
349 | + | } |
350 | + | } |
351 | + | if (!gTypeFound) { |
352 | + | gTypeCutoffs.push_back( groupCutoffRow[cg1] ); |
353 | + | groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; |
354 | + | } |
355 | + | |
356 | + | } |
357 | + | vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); |
358 | + | groupColToGtype.resize(nGroupsInCol_); |
359 | + | for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { |
360 | + | vector<int> atomListCol = getAtomsInGroupColumn(cg2); |
361 | + | for (vector<int>::iterator jb = atomListCol.begin(); |
362 | + | jb != atomListCol.end(); ++jb) { |
363 | + | int atom2 = (*jb); |
364 | + | atid = identsCol[atom2]; |
365 | + | if (atypeCutoff[atid] > groupCutoffCol[cg2]) { |
366 | + | groupCutoffCol[cg2] = atypeCutoff[atid]; |
367 | + | } |
368 | + | } |
369 | + | bool gTypeFound = false; |
370 | + | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
371 | + | if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) { |
372 | + | groupColToGtype[cg2] = gt; |
373 | + | gTypeFound = true; |
374 | + | } |
375 | + | } |
376 | + | if (!gTypeFound) { |
377 | + | gTypeCutoffs.push_back( groupCutoffCol[cg2] ); |
378 | + | groupColToGtype[cg2] = gTypeCutoffs.size() - 1; |
379 | + | } |
380 | + | } |
381 | + | #else |
382 | + | |
383 | + | vector<RealType> groupCutoff(nGroups_, 0.0); |
384 | + | groupToGtype.resize(nGroups_); |
385 | + | for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
386 | + | groupCutoff[cg1] = 0.0; |
387 | + | vector<int> atomList = getAtomsInGroupRow(cg1); |
388 | + | for (vector<int>::iterator ia = atomList.begin(); |
389 | + | ia != atomList.end(); ++ia) { |
390 | + | int atom1 = (*ia); |
391 | + | atid = idents[atom1]; |
392 | + | if (atypeCutoff[atid] > groupCutoff[cg1]) |
393 | + | groupCutoff[cg1] = atypeCutoff[atid]; |
394 | + | } |
395 | + | |
396 | + | bool gTypeFound = false; |
397 | + | for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
398 | + | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
399 | + | groupToGtype[cg1] = gt; |
400 | + | gTypeFound = true; |
401 | + | } |
402 | + | } |
403 | + | if (!gTypeFound) { |
404 | + | gTypeCutoffs.push_back( groupCutoff[cg1] ); |
405 | + | groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
406 | + | } |
407 | + | } |
408 | + | #endif |
409 | + | |
410 | + | // Now we find the maximum group cutoff value present in the simulation |
411 | + | |
412 | + | RealType groupMax = *max_element(gTypeCutoffs.begin(), |
413 | + | gTypeCutoffs.end()); |
414 | + | |
415 | + | #ifdef IS_MPI |
416 | + | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, |
417 | + | MPI::MAX); |
418 | + | #endif |
419 | + | |
420 | + | RealType tradRcut = groupMax; |
421 | + | |
422 | + | for (unsigned int i = 0; i < gTypeCutoffs.size(); i++) { |
423 | + | for (unsigned int j = 0; j < gTypeCutoffs.size(); j++) { |
424 | + | RealType thisRcut; |
425 | + | switch(cutoffPolicy_) { |
426 | + | case TRADITIONAL: |
427 | + | thisRcut = tradRcut; |
428 | + | break; |
429 | + | case MIX: |
430 | + | thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); |
431 | + | break; |
432 | + | case MAX: |
433 | + | thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); |
434 | + | break; |
435 | + | default: |
436 | + | sprintf(painCave.errMsg, |
437 | + | "ForceMatrixDecomposition::createGtypeCutoffMap " |
438 | + | "hit an unknown cutoff policy!\n"); |
439 | + | painCave.severity = OPENMD_ERROR; |
440 | + | painCave.isFatal = 1; |
441 | + | simError(); |
442 | + | break; |
443 | + | } |
444 | + | |
445 | + | pair<int,int> key = make_pair(i,j); |
446 | + | gTypeCutoffMap[key].first = thisRcut; |
447 | + | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
448 | + | gTypeCutoffMap[key].second = thisRcut*thisRcut; |
449 | + | gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
450 | + | // sanity check |
451 | + | |
452 | + | if (userChoseCutoff_) { |
453 | + | if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
454 | + | sprintf(painCave.errMsg, |
455 | + | "ForceMatrixDecomposition::createGtypeCutoffMap " |
456 | + | "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
457 | + | painCave.severity = OPENMD_ERROR; |
458 | + | painCave.isFatal = 1; |
459 | + | simError(); |
460 | + | } |
461 | + | } |
462 | + | } |
463 | + | } |
464 | } | |
465 | + | |
466 | + | groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
467 | + | int i, j; |
468 | + | #ifdef IS_MPI |
469 | + | i = groupRowToGtype[cg1]; |
470 | + | j = groupColToGtype[cg2]; |
471 | + | #else |
472 | + | i = groupToGtype[cg1]; |
473 | + | j = groupToGtype[cg2]; |
474 | + | #endif |
475 | + | return gTypeCutoffMap[make_pair(i,j)]; |
476 | + | } |
477 | + | |
478 | + | int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
479 | + | for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) { |
480 | + | if (toposForAtom[atom1][j] == atom2) |
481 | + | return topoDist[atom1][j]; |
482 | + | } |
483 | + | return 0; |
484 | + | } |
485 | + | |
486 | + | void ForceMatrixDecomposition::zeroWorkArrays() { |
487 | + | pairwisePot = 0.0; |
488 | + | embeddingPot = 0.0; |
489 | + | excludedPot = 0.0; |
490 | + | excludedSelfPot = 0.0; |
491 | + | |
492 | + | #ifdef IS_MPI |
493 | + | if (storageLayout_ & DataStorage::dslForce) { |
494 | + | fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); |
495 | + | fill(atomColData.force.begin(), atomColData.force.end(), V3Zero); |
496 | + | } |
497 | + | |
498 | + | if (storageLayout_ & DataStorage::dslTorque) { |
499 | + | fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero); |
500 | + | fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero); |
501 | + | } |
502 | ||
503 | + | fill(pot_row.begin(), pot_row.end(), |
504 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
505 | ||
506 | + | fill(pot_col.begin(), pot_col.end(), |
507 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
508 | ||
509 | + | fill(expot_row.begin(), expot_row.end(), |
510 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
511 | + | |
512 | + | fill(expot_col.begin(), expot_col.end(), |
513 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
514 | + | |
515 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
516 | + | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
517 | + | 0.0); |
518 | + | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), |
519 | + | 0.0); |
520 | + | } |
521 | + | |
522 | + | if (storageLayout_ & DataStorage::dslDensity) { |
523 | + | fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0); |
524 | + | fill(atomColData.density.begin(), atomColData.density.end(), 0.0); |
525 | + | } |
526 | + | |
527 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
528 | + | fill(atomRowData.functional.begin(), atomRowData.functional.end(), |
529 | + | 0.0); |
530 | + | fill(atomColData.functional.begin(), atomColData.functional.end(), |
531 | + | 0.0); |
532 | + | } |
533 | + | |
534 | + | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
535 | + | fill(atomRowData.functionalDerivative.begin(), |
536 | + | atomRowData.functionalDerivative.end(), 0.0); |
537 | + | fill(atomColData.functionalDerivative.begin(), |
538 | + | atomColData.functionalDerivative.end(), 0.0); |
539 | + | } |
540 | + | |
541 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
542 | + | fill(atomRowData.skippedCharge.begin(), |
543 | + | atomRowData.skippedCharge.end(), 0.0); |
544 | + | fill(atomColData.skippedCharge.begin(), |
545 | + | atomColData.skippedCharge.end(), 0.0); |
546 | + | } |
547 | + | |
548 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
549 | + | fill(atomRowData.flucQFrc.begin(), |
550 | + | atomRowData.flucQFrc.end(), 0.0); |
551 | + | fill(atomColData.flucQFrc.begin(), |
552 | + | atomColData.flucQFrc.end(), 0.0); |
553 | + | } |
554 | + | |
555 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
556 | + | fill(atomRowData.electricField.begin(), |
557 | + | atomRowData.electricField.end(), V3Zero); |
558 | + | fill(atomColData.electricField.begin(), |
559 | + | atomColData.electricField.end(), V3Zero); |
560 | + | } |
561 | + | |
562 | + | #endif |
563 | + | // even in parallel, we need to zero out the local arrays: |
564 | + | |
565 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
566 | + | fill(snap_->atomData.particlePot.begin(), |
567 | + | snap_->atomData.particlePot.end(), 0.0); |
568 | + | } |
569 | + | |
570 | + | if (storageLayout_ & DataStorage::dslDensity) { |
571 | + | fill(snap_->atomData.density.begin(), |
572 | + | snap_->atomData.density.end(), 0.0); |
573 | + | } |
574 | + | |
575 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
576 | + | fill(snap_->atomData.functional.begin(), |
577 | + | snap_->atomData.functional.end(), 0.0); |
578 | + | } |
579 | + | |
580 | + | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
581 | + | fill(snap_->atomData.functionalDerivative.begin(), |
582 | + | snap_->atomData.functionalDerivative.end(), 0.0); |
583 | + | } |
584 | + | |
585 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
586 | + | fill(snap_->atomData.skippedCharge.begin(), |
587 | + | snap_->atomData.skippedCharge.end(), 0.0); |
588 | + | } |
589 | + | |
590 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
591 | + | fill(snap_->atomData.electricField.begin(), |
592 | + | snap_->atomData.electricField.end(), V3Zero); |
593 | + | } |
594 | + | } |
595 | + | |
596 | + | |
597 | void ForceMatrixDecomposition::distributeData() { | |
598 | snap_ = sman_->getCurrentSnapshot(); | |
599 | storageLayout_ = sman_->getStorageLayout(); | |
600 | #ifdef IS_MPI | |
601 | ||
602 | // gather up the atomic positions | |
603 | < | AtomCommVectorRow->gather(snap_->atomData.position, |
603 | > | AtomPlanVectorRow->gather(snap_->atomData.position, |
604 | atomRowData.position); | |
605 | < | AtomCommVectorColumn->gather(snap_->atomData.position, |
605 | > | AtomPlanVectorColumn->gather(snap_->atomData.position, |
606 | atomColData.position); | |
607 | ||
608 | // gather up the cutoff group positions | |
609 | < | cgCommVectorRow->gather(snap_->cgData.position, |
609 | > | |
610 | > | cgPlanVectorRow->gather(snap_->cgData.position, |
611 | cgRowData.position); | |
612 | < | cgCommVectorColumn->gather(snap_->cgData.position, |
612 | > | |
613 | > | cgPlanVectorColumn->gather(snap_->cgData.position, |
614 | cgColData.position); | |
615 | + | |
616 | + | |
617 | + | |
618 | + | if (needVelocities_) { |
619 | + | // gather up the atomic velocities |
620 | + | AtomPlanVectorColumn->gather(snap_->atomData.velocity, |
621 | + | atomColData.velocity); |
622 | + | |
623 | + | cgPlanVectorColumn->gather(snap_->cgData.velocity, |
624 | + | cgColData.velocity); |
625 | + | } |
626 | + | |
627 | ||
628 | // if needed, gather the atomic rotation matrices | |
629 | if (storageLayout_ & DataStorage::dslAmat) { | |
630 | < | AtomCommMatrixRow->gather(snap_->atomData.aMat, |
630 | > | AtomPlanMatrixRow->gather(snap_->atomData.aMat, |
631 | atomRowData.aMat); | |
632 | < | AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
632 | > | AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
633 | atomColData.aMat); | |
634 | } | |
635 | < | |
636 | < | // if needed, gather the atomic eletrostatic frames |
637 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { |
638 | < | AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
639 | < | atomRowData.electroFrame); |
640 | < | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
641 | < | atomColData.electroFrame); |
635 | > | |
636 | > | // if needed, gather the atomic eletrostatic information |
637 | > | if (storageLayout_ & DataStorage::dslDipole) { |
638 | > | AtomPlanVectorRow->gather(snap_->atomData.dipole, |
639 | > | atomRowData.dipole); |
640 | > | AtomPlanVectorColumn->gather(snap_->atomData.dipole, |
641 | > | atomColData.dipole); |
642 | > | } |
643 | > | |
644 | > | if (storageLayout_ & DataStorage::dslQuadrupole) { |
645 | > | AtomPlanMatrixRow->gather(snap_->atomData.quadrupole, |
646 | > | atomRowData.quadrupole); |
647 | > | AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole, |
648 | > | atomColData.quadrupole); |
649 | > | } |
650 | > | |
651 | > | // if needed, gather the atomic fluctuating charge values |
652 | > | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
653 | > | AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
654 | > | atomRowData.flucQPos); |
655 | > | AtomPlanRealColumn->gather(snap_->atomData.flucQPos, |
656 | > | atomColData.flucQPos); |
657 | } | |
658 | + | |
659 | #endif | |
660 | } | |
661 | ||
662 | + | /* collects information obtained during the pre-pair loop onto local |
663 | + | * data structures. |
664 | + | */ |
665 | void ForceMatrixDecomposition::collectIntermediateData() { | |
666 | snap_ = sman_->getCurrentSnapshot(); | |
667 | storageLayout_ = sman_->getStorageLayout(); | |
# | Line 163 | Line 669 | namespace OpenMD { | |
669 | ||
670 | if (storageLayout_ & DataStorage::dslDensity) { | |
671 | ||
672 | < | AtomCommRealRow->scatter(atomRowData.density, |
672 | > | AtomPlanRealRow->scatter(atomRowData.density, |
673 | snap_->atomData.density); | |
674 | ||
675 | int n = snap_->atomData.density.size(); | |
676 | < | std::vector<RealType> rho_tmp(n, 0.0); |
677 | < | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
676 | > | vector<RealType> rho_tmp(n, 0.0); |
677 | > | AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); |
678 | for (int i = 0; i < n; i++) | |
679 | snap_->atomData.density[i] += rho_tmp[i]; | |
680 | } | |
681 | + | |
682 | + | // this isn't necessary if we don't have polarizable atoms, but |
683 | + | // we'll leave it here for now. |
684 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
685 | + | |
686 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, |
687 | + | snap_->atomData.electricField); |
688 | + | |
689 | + | int n = snap_->atomData.electricField.size(); |
690 | + | vector<Vector3d> field_tmp(n, V3Zero); |
691 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, |
692 | + | field_tmp); |
693 | + | for (int i = 0; i < n; i++) |
694 | + | snap_->atomData.electricField[i] += field_tmp[i]; |
695 | + | } |
696 | #endif | |
697 | } | |
698 | < | |
698 | > | |
699 | > | /* |
700 | > | * redistributes information obtained during the pre-pair loop out to |
701 | > | * row and column-indexed data structures |
702 | > | */ |
703 | void ForceMatrixDecomposition::distributeIntermediateData() { | |
704 | snap_ = sman_->getCurrentSnapshot(); | |
705 | storageLayout_ = sman_->getStorageLayout(); | |
706 | #ifdef IS_MPI | |
707 | if (storageLayout_ & DataStorage::dslFunctional) { | |
708 | < | AtomCommRealRow->gather(snap_->atomData.functional, |
708 | > | AtomPlanRealRow->gather(snap_->atomData.functional, |
709 | atomRowData.functional); | |
710 | < | AtomCommRealColumn->gather(snap_->atomData.functional, |
710 | > | AtomPlanRealColumn->gather(snap_->atomData.functional, |
711 | atomColData.functional); | |
712 | } | |
713 | ||
714 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
715 | < | AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
715 | > | AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, |
716 | atomRowData.functionalDerivative); | |
717 | < | AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
717 | > | AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, |
718 | atomColData.functionalDerivative); | |
719 | } | |
720 | #endif | |
# | Line 203 | Line 728 | namespace OpenMD { | |
728 | int n = snap_->atomData.force.size(); | |
729 | vector<Vector3d> frc_tmp(n, V3Zero); | |
730 | ||
731 | < | AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
731 | > | AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); |
732 | for (int i = 0; i < n; i++) { | |
733 | snap_->atomData.force[i] += frc_tmp[i]; | |
734 | frc_tmp[i] = 0.0; | |
735 | } | |
736 | ||
737 | < | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
738 | < | for (int i = 0; i < n; i++) |
737 | > | AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); |
738 | > | for (int i = 0; i < n; i++) { |
739 | snap_->atomData.force[i] += frc_tmp[i]; | |
740 | < | |
741 | < | |
740 | > | } |
741 | > | |
742 | if (storageLayout_ & DataStorage::dslTorque) { | |
743 | ||
744 | < | int nt = snap_->atomData.force.size(); |
744 | > | int nt = snap_->atomData.torque.size(); |
745 | vector<Vector3d> trq_tmp(nt, V3Zero); | |
746 | ||
747 | < | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
748 | < | for (int i = 0; i < n; i++) { |
747 | > | AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); |
748 | > | for (int i = 0; i < nt; i++) { |
749 | snap_->atomData.torque[i] += trq_tmp[i]; | |
750 | trq_tmp[i] = 0.0; | |
751 | } | |
752 | ||
753 | < | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
754 | < | for (int i = 0; i < n; i++) |
753 | > | AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); |
754 | > | for (int i = 0; i < nt; i++) |
755 | snap_->atomData.torque[i] += trq_tmp[i]; | |
756 | } | |
757 | + | |
758 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
759 | + | |
760 | + | int ns = snap_->atomData.skippedCharge.size(); |
761 | + | vector<RealType> skch_tmp(ns, 0.0); |
762 | + | |
763 | + | AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
764 | + | for (int i = 0; i < ns; i++) { |
765 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
766 | + | skch_tmp[i] = 0.0; |
767 | + | } |
768 | + | |
769 | + | AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
770 | + | for (int i = 0; i < ns; i++) |
771 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
772 | + | |
773 | + | } |
774 | ||
775 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
776 | + | |
777 | + | int nq = snap_->atomData.flucQFrc.size(); |
778 | + | vector<RealType> fqfrc_tmp(nq, 0.0); |
779 | + | |
780 | + | AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); |
781 | + | for (int i = 0; i < nq; i++) { |
782 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
783 | + | fqfrc_tmp[i] = 0.0; |
784 | + | } |
785 | + | |
786 | + | AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); |
787 | + | for (int i = 0; i < nq; i++) |
788 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
789 | + | |
790 | + | } |
791 | + | |
792 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
793 | + | |
794 | + | int nef = snap_->atomData.electricField.size(); |
795 | + | vector<Vector3d> efield_tmp(nef, V3Zero); |
796 | + | |
797 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp); |
798 | + | for (int i = 0; i < nef; i++) { |
799 | + | snap_->atomData.electricField[i] += efield_tmp[i]; |
800 | + | efield_tmp[i] = 0.0; |
801 | + | } |
802 | + | |
803 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp); |
804 | + | for (int i = 0; i < nef; i++) |
805 | + | snap_->atomData.electricField[i] += efield_tmp[i]; |
806 | + | } |
807 | + | |
808 | + | |
809 | nLocal_ = snap_->getNumberOfAtoms(); | |
810 | ||
811 | < | vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES, |
812 | < | vector<RealType> (nLocal_, 0.0)); |
811 | > | vector<potVec> pot_temp(nLocal_, |
812 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
813 | > | vector<potVec> expot_temp(nLocal_, |
814 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
815 | > | |
816 | > | // scatter/gather pot_row into the members of my column |
817 | > | |
818 | > | AtomPlanPotRow->scatter(pot_row, pot_temp); |
819 | > | AtomPlanPotRow->scatter(expot_row, expot_temp); |
820 | > | |
821 | > | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
822 | > | pairwisePot += pot_temp[ii]; |
823 | > | |
824 | > | for (int ii = 0; ii < expot_temp.size(); ii++ ) |
825 | > | excludedPot += expot_temp[ii]; |
826 | > | |
827 | > | if (storageLayout_ & DataStorage::dslParticlePot) { |
828 | > | // This is the pairwise contribution to the particle pot. The |
829 | > | // embedding contribution is added in each of the low level |
830 | > | // non-bonded routines. In single processor, this is done in |
831 | > | // unpackInteractionData, not in collectData. |
832 | > | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
833 | > | for (int i = 0; i < nLocal_; i++) { |
834 | > | // factor of two is because the total potential terms are divided |
835 | > | // by 2 in parallel due to row/ column scatter |
836 | > | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
837 | > | } |
838 | > | } |
839 | > | } |
840 | > | |
841 | > | fill(pot_temp.begin(), pot_temp.end(), |
842 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
843 | > | fill(expot_temp.begin(), expot_temp.end(), |
844 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
845 | > | |
846 | > | AtomPlanPotColumn->scatter(pot_col, pot_temp); |
847 | > | AtomPlanPotColumn->scatter(expot_col, expot_temp); |
848 | ||
849 | < | for (int i = 0; i < N_INTERACTION_FAMILIES; i++) { |
850 | < | AtomCommRealRow->scatter(pot_row[i], pot_temp[i]); |
851 | < | for (int ii = 0; ii < pot_temp[i].size(); ii++ ) { |
852 | < | pot_local[i] += pot_temp[i][ii]; |
849 | > | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
850 | > | pairwisePot += pot_temp[ii]; |
851 | > | |
852 | > | for (int ii = 0; ii < expot_temp.size(); ii++ ) |
853 | > | excludedPot += expot_temp[ii]; |
854 | > | |
855 | > | if (storageLayout_ & DataStorage::dslParticlePot) { |
856 | > | // This is the pairwise contribution to the particle pot. The |
857 | > | // embedding contribution is added in each of the low level |
858 | > | // non-bonded routines. In single processor, this is done in |
859 | > | // unpackInteractionData, not in collectData. |
860 | > | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
861 | > | for (int i = 0; i < nLocal_; i++) { |
862 | > | // factor of two is because the total potential terms are divided |
863 | > | // by 2 in parallel due to row/ column scatter |
864 | > | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
865 | > | } |
866 | } | |
867 | } | |
868 | + | |
869 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
870 | + | int npp = snap_->atomData.particlePot.size(); |
871 | + | vector<RealType> ppot_temp(npp, 0.0); |
872 | + | |
873 | + | // This is the direct or embedding contribution to the particle |
874 | + | // pot. |
875 | + | |
876 | + | AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); |
877 | + | for (int i = 0; i < npp; i++) { |
878 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; |
879 | + | } |
880 | + | |
881 | + | fill(ppot_temp.begin(), ppot_temp.end(), 0.0); |
882 | + | |
883 | + | AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); |
884 | + | for (int i = 0; i < npp; i++) { |
885 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; |
886 | + | } |
887 | + | } |
888 | + | |
889 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
890 | + | RealType ploc1 = pairwisePot[ii]; |
891 | + | RealType ploc2 = 0.0; |
892 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
893 | + | pairwisePot[ii] = ploc2; |
894 | + | } |
895 | + | |
896 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
897 | + | RealType ploc1 = excludedPot[ii]; |
898 | + | RealType ploc2 = 0.0; |
899 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
900 | + | excludedPot[ii] = ploc2; |
901 | + | } |
902 | + | |
903 | + | // Here be dragons. |
904 | + | MPI::Intracomm col = colComm.getComm(); |
905 | + | |
906 | + | col.Allreduce(MPI::IN_PLACE, |
907 | + | &snap_->frameData.conductiveHeatFlux[0], 3, |
908 | + | MPI::REALTYPE, MPI::SUM); |
909 | + | |
910 | + | |
911 | #endif | |
912 | + | |
913 | } | |
914 | ||
915 | + | /** |
916 | + | * Collects information obtained during the post-pair (and embedding |
917 | + | * functional) loops onto local data structures. |
918 | + | */ |
919 | + | void ForceMatrixDecomposition::collectSelfData() { |
920 | + | snap_ = sman_->getCurrentSnapshot(); |
921 | + | storageLayout_ = sman_->getStorageLayout(); |
922 | + | |
923 | + | #ifdef IS_MPI |
924 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
925 | + | RealType ploc1 = embeddingPot[ii]; |
926 | + | RealType ploc2 = 0.0; |
927 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
928 | + | embeddingPot[ii] = ploc2; |
929 | + | } |
930 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
931 | + | RealType ploc1 = excludedSelfPot[ii]; |
932 | + | RealType ploc2 = 0.0; |
933 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
934 | + | excludedSelfPot[ii] = ploc2; |
935 | + | } |
936 | + | #endif |
937 | + | |
938 | + | } |
939 | + | |
940 | + | |
941 | + | |
942 | + | int& ForceMatrixDecomposition::getNAtomsInRow() { |
943 | + | #ifdef IS_MPI |
944 | + | return nAtomsInRow_; |
945 | + | #else |
946 | + | return nLocal_; |
947 | + | #endif |
948 | + | } |
949 | + | |
950 | + | /** |
951 | + | * returns the list of atoms belonging to this group. |
952 | + | */ |
953 | + | vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
954 | + | #ifdef IS_MPI |
955 | + | return groupListRow_[cg1]; |
956 | + | #else |
957 | + | return groupList_[cg1]; |
958 | + | #endif |
959 | + | } |
960 | + | |
961 | + | vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
962 | + | #ifdef IS_MPI |
963 | + | return groupListCol_[cg2]; |
964 | + | #else |
965 | + | return groupList_[cg2]; |
966 | + | #endif |
967 | + | } |
968 | ||
969 | Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ | |
970 | Vector3d d; | |
# | Line 254 | Line 975 | namespace OpenMD { | |
975 | d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; | |
976 | #endif | |
977 | ||
978 | < | snap_->wrapVector(d); |
978 | > | if (usePeriodicBoundaryConditions_) { |
979 | > | snap_->wrapVector(d); |
980 | > | } |
981 | return d; | |
982 | } | |
983 | ||
984 | + | Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ |
985 | + | #ifdef IS_MPI |
986 | + | return cgColData.velocity[cg2]; |
987 | + | #else |
988 | + | return snap_->cgData.velocity[cg2]; |
989 | + | #endif |
990 | + | } |
991 | ||
992 | + | Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ |
993 | + | #ifdef IS_MPI |
994 | + | return atomColData.velocity[atom2]; |
995 | + | #else |
996 | + | return snap_->atomData.velocity[atom2]; |
997 | + | #endif |
998 | + | } |
999 | + | |
1000 | + | |
1001 | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ | |
1002 | ||
1003 | Vector3d d; | |
# | Line 268 | Line 1007 | namespace OpenMD { | |
1007 | #else | |
1008 | d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; | |
1009 | #endif | |
1010 | < | |
1011 | < | snap_->wrapVector(d); |
1010 | > | if (usePeriodicBoundaryConditions_) { |
1011 | > | snap_->wrapVector(d); |
1012 | > | } |
1013 | return d; | |
1014 | } | |
1015 | ||
# | Line 281 | Line 1021 | namespace OpenMD { | |
1021 | #else | |
1022 | d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; | |
1023 | #endif | |
1024 | < | |
1025 | < | snap_->wrapVector(d); |
1024 | > | if (usePeriodicBoundaryConditions_) { |
1025 | > | snap_->wrapVector(d); |
1026 | > | } |
1027 | return d; | |
1028 | } | |
1029 | + | |
1030 | + | RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
1031 | + | #ifdef IS_MPI |
1032 | + | return massFactorsRow[atom1]; |
1033 | + | #else |
1034 | + | return massFactors[atom1]; |
1035 | + | #endif |
1036 | + | } |
1037 | + | |
1038 | + | RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
1039 | + | #ifdef IS_MPI |
1040 | + | return massFactorsCol[atom2]; |
1041 | + | #else |
1042 | + | return massFactors[atom2]; |
1043 | + | #endif |
1044 | + | |
1045 | + | } |
1046 | ||
1047 | Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ | |
1048 | Vector3d d; | |
# | Line 294 | Line 1052 | namespace OpenMD { | |
1052 | #else | |
1053 | d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; | |
1054 | #endif | |
1055 | < | |
1056 | < | snap_->wrapVector(d); |
1055 | > | if (usePeriodicBoundaryConditions_) { |
1056 | > | snap_->wrapVector(d); |
1057 | > | } |
1058 | return d; | |
1059 | } | |
1060 | + | |
1061 | + | vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
1062 | + | return excludesForAtom[atom1]; |
1063 | + | } |
1064 | + | |
1065 | + | /** |
1066 | + | * We need to exclude some overcounted interactions that result from |
1067 | + | * the parallel decomposition. |
1068 | + | */ |
1069 | + | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { |
1070 | + | int unique_id_1, unique_id_2; |
1071 | + | |
1072 | + | #ifdef IS_MPI |
1073 | + | // in MPI, we have to look up the unique IDs for each atom |
1074 | + | unique_id_1 = AtomRowToGlobal[atom1]; |
1075 | + | unique_id_2 = AtomColToGlobal[atom2]; |
1076 | + | // group1 = cgRowToGlobal[cg1]; |
1077 | + | // group2 = cgColToGlobal[cg2]; |
1078 | + | #else |
1079 | + | unique_id_1 = AtomLocalToGlobal[atom1]; |
1080 | + | unique_id_2 = AtomLocalToGlobal[atom2]; |
1081 | + | int group1 = cgLocalToGlobal[cg1]; |
1082 | + | int group2 = cgLocalToGlobal[cg2]; |
1083 | + | #endif |
1084 | + | |
1085 | + | if (unique_id_1 == unique_id_2) return true; |
1086 | + | |
1087 | + | #ifdef IS_MPI |
1088 | + | // this prevents us from doing the pair on multiple processors |
1089 | + | if (unique_id_1 < unique_id_2) { |
1090 | + | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
1091 | + | } else { |
1092 | + | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
1093 | + | } |
1094 | + | #endif |
1095 | + | |
1096 | + | #ifndef IS_MPI |
1097 | + | if (group1 == group2) { |
1098 | + | if (unique_id_1 < unique_id_2) return true; |
1099 | + | } |
1100 | + | #endif |
1101 | + | |
1102 | + | return false; |
1103 | + | } |
1104 | + | |
1105 | + | /** |
1106 | + | * We need to handle the interactions for atoms who are involved in |
1107 | + | * the same rigid body as well as some short range interactions |
1108 | + | * (bonds, bends, torsions) differently from other interactions. |
1109 | + | * We'll still visit the pairwise routines, but with a flag that |
1110 | + | * tells those routines to exclude the pair from direct long range |
1111 | + | * interactions. Some indirect interactions (notably reaction |
1112 | + | * field) must still be handled for these pairs. |
1113 | + | */ |
1114 | + | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
1115 | + | |
1116 | + | // excludesForAtom was constructed to use row/column indices in the MPI |
1117 | + | // version, and to use local IDs in the non-MPI version: |
1118 | + | |
1119 | + | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
1120 | + | i != excludesForAtom[atom1].end(); ++i) { |
1121 | + | if ( (*i) == atom2 ) return true; |
1122 | + | } |
1123 | + | |
1124 | + | return false; |
1125 | + | } |
1126 | + | |
1127 | ||
1128 | void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ | |
1129 | #ifdef IS_MPI | |
# | Line 316 | Line 1142 | namespace OpenMD { | |
1142 | } | |
1143 | ||
1144 | // filling interaction blocks with pointers | |
1145 | < | InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) { |
1146 | < | InteractionData idat; |
1145 | > | void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
1146 | > | int atom1, int atom2) { |
1147 | ||
1148 | + | idat.excluded = excludeAtomPair(atom1, atom2); |
1149 | + | |
1150 | #ifdef IS_MPI | |
1151 | + | idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
1152 | + | idat.atid1 = identsRow[atom1]; |
1153 | + | idat.atid2 = identsCol[atom2]; |
1154 | + | //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
1155 | + | // ff_->getAtomType(identsCol[atom2]) ); |
1156 | + | |
1157 | if (storageLayout_ & DataStorage::dslAmat) { | |
1158 | idat.A1 = &(atomRowData.aMat[atom1]); | |
1159 | idat.A2 = &(atomColData.aMat[atom2]); | |
1160 | } | |
1161 | ||
328 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { |
329 | – | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
330 | – | idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
331 | – | } |
332 | – | |
1162 | if (storageLayout_ & DataStorage::dslTorque) { | |
1163 | idat.t1 = &(atomRowData.torque[atom1]); | |
1164 | idat.t2 = &(atomColData.torque[atom2]); | |
1165 | } | |
1166 | ||
1167 | + | if (storageLayout_ & DataStorage::dslDipole) { |
1168 | + | idat.dipole1 = &(atomRowData.dipole[atom1]); |
1169 | + | idat.dipole2 = &(atomColData.dipole[atom2]); |
1170 | + | } |
1171 | + | |
1172 | + | if (storageLayout_ & DataStorage::dslQuadrupole) { |
1173 | + | idat.quadrupole1 = &(atomRowData.quadrupole[atom1]); |
1174 | + | idat.quadrupole2 = &(atomColData.quadrupole[atom2]); |
1175 | + | } |
1176 | + | |
1177 | if (storageLayout_ & DataStorage::dslDensity) { | |
1178 | idat.rho1 = &(atomRowData.density[atom1]); | |
1179 | idat.rho2 = &(atomColData.density[atom2]); | |
1180 | } | |
1181 | ||
1182 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
1183 | + | idat.frho1 = &(atomRowData.functional[atom1]); |
1184 | + | idat.frho2 = &(atomColData.functional[atom2]); |
1185 | + | } |
1186 | + | |
1187 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
1188 | idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); | |
1189 | idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); | |
1190 | } | |
1191 | + | |
1192 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
1193 | + | idat.particlePot1 = &(atomRowData.particlePot[atom1]); |
1194 | + | idat.particlePot2 = &(atomColData.particlePot[atom2]); |
1195 | + | } |
1196 | + | |
1197 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
1198 | + | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
1199 | + | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
1200 | + | } |
1201 | + | |
1202 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1203 | + | idat.flucQ1 = &(atomRowData.flucQPos[atom1]); |
1204 | + | idat.flucQ2 = &(atomColData.flucQPos[atom2]); |
1205 | + | } |
1206 | + | |
1207 | #else | |
1208 | + | |
1209 | + | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
1210 | + | idat.atid1 = idents[atom1]; |
1211 | + | idat.atid2 = idents[atom2]; |
1212 | + | |
1213 | if (storageLayout_ & DataStorage::dslAmat) { | |
1214 | idat.A1 = &(snap_->atomData.aMat[atom1]); | |
1215 | idat.A2 = &(snap_->atomData.aMat[atom2]); | |
1216 | } | |
1217 | ||
353 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { |
354 | – | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
355 | – | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
356 | – | } |
357 | – | |
1218 | if (storageLayout_ & DataStorage::dslTorque) { | |
1219 | idat.t1 = &(snap_->atomData.torque[atom1]); | |
1220 | idat.t2 = &(snap_->atomData.torque[atom2]); | |
1221 | } | |
1222 | ||
1223 | < | if (storageLayout_ & DataStorage::dslDensity) { |
1223 | > | if (storageLayout_ & DataStorage::dslDipole) { |
1224 | > | idat.dipole1 = &(snap_->atomData.dipole[atom1]); |
1225 | > | idat.dipole2 = &(snap_->atomData.dipole[atom2]); |
1226 | > | } |
1227 | > | |
1228 | > | if (storageLayout_ & DataStorage::dslQuadrupole) { |
1229 | > | idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]); |
1230 | > | idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]); |
1231 | > | } |
1232 | > | |
1233 | > | if (storageLayout_ & DataStorage::dslDensity) { |
1234 | idat.rho1 = &(snap_->atomData.density[atom1]); | |
1235 | idat.rho2 = &(snap_->atomData.density[atom2]); | |
1236 | } | |
1237 | ||
1238 | + | if (storageLayout_ & DataStorage::dslFunctional) { |
1239 | + | idat.frho1 = &(snap_->atomData.functional[atom1]); |
1240 | + | idat.frho2 = &(snap_->atomData.functional[atom2]); |
1241 | + | } |
1242 | + | |
1243 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
1244 | idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); | |
1245 | idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); | |
1246 | } | |
372 | – | #endif |
373 | – | return idat; |
374 | – | } |
1247 | ||
1248 | < | InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ |
1248 | > | if (storageLayout_ & DataStorage::dslParticlePot) { |
1249 | > | idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); |
1250 | > | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
1251 | > | } |
1252 | ||
1253 | < | InteractionData idat; |
1254 | < | #ifdef IS_MPI |
1255 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { |
381 | < | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
382 | < | idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
1253 | > | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
1254 | > | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
1255 | > | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
1256 | } | |
1257 | < | if (storageLayout_ & DataStorage::dslTorque) { |
1258 | < | idat.t1 = &(atomRowData.torque[atom1]); |
1259 | < | idat.t2 = &(atomColData.torque[atom2]); |
1257 | > | |
1258 | > | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1259 | > | idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); |
1260 | > | idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); |
1261 | } | |
1262 | < | if (storageLayout_ & DataStorage::dslForce) { |
389 | < | idat.t1 = &(atomRowData.force[atom1]); |
390 | < | idat.t2 = &(atomColData.force[atom2]); |
391 | < | } |
392 | < | #else |
393 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { |
394 | < | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
395 | < | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
396 | < | } |
397 | < | if (storageLayout_ & DataStorage::dslTorque) { |
398 | < | idat.t1 = &(snap_->atomData.torque[atom1]); |
399 | < | idat.t2 = &(snap_->atomData.torque[atom2]); |
400 | < | } |
401 | < | if (storageLayout_ & DataStorage::dslForce) { |
402 | < | idat.t1 = &(snap_->atomData.force[atom1]); |
403 | < | idat.t2 = &(snap_->atomData.force[atom2]); |
404 | < | } |
1262 | > | |
1263 | #endif | |
406 | – | |
1264 | } | |
1265 | ||
1266 | < | SelfData ForceMatrixDecomposition::fillSelfData(int atom1) { |
1267 | < | SelfData sdat; |
1268 | < | // Still Missing atype, skippedCharge, potVec pot, |
1269 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { |
1270 | < | sdat.eFrame = &(snap_->atomData.electroFrame[atom1]); |
1266 | > | |
1267 | > | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
1268 | > | #ifdef IS_MPI |
1269 | > | pot_row[atom1] += RealType(0.5) * *(idat.pot); |
1270 | > | pot_col[atom2] += RealType(0.5) * *(idat.pot); |
1271 | > | expot_row[atom1] += RealType(0.5) * *(idat.excludedPot); |
1272 | > | expot_col[atom2] += RealType(0.5) * *(idat.excludedPot); |
1273 | > | |
1274 | > | atomRowData.force[atom1] += *(idat.f1); |
1275 | > | atomColData.force[atom2] -= *(idat.f1); |
1276 | > | |
1277 | > | if (storageLayout_ & DataStorage::dslFlucQForce) { |
1278 | > | atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1279 | > | atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1280 | } | |
1281 | < | |
1282 | < | if (storageLayout_ & DataStorage::dslTorque) { |
1283 | < | sdat.t = &(snap_->atomData.torque[atom1]); |
1281 | > | |
1282 | > | if (storageLayout_ & DataStorage::dslElectricField) { |
1283 | > | atomRowData.electricField[atom1] += *(idat.eField1); |
1284 | > | atomColData.electricField[atom2] += *(idat.eField2); |
1285 | } | |
1286 | < | |
1287 | < | if (storageLayout_ & DataStorage::dslDensity) { |
1288 | < | sdat.rho = &(snap_->atomData.density[atom1]); |
1286 | > | |
1287 | > | #else |
1288 | > | pairwisePot += *(idat.pot); |
1289 | > | excludedPot += *(idat.excludedPot); |
1290 | > | |
1291 | > | snap_->atomData.force[atom1] += *(idat.f1); |
1292 | > | snap_->atomData.force[atom2] -= *(idat.f1); |
1293 | > | |
1294 | > | if (idat.doParticlePot) { |
1295 | > | // This is the pairwise contribution to the particle pot. The |
1296 | > | // embedding contribution is added in each of the low level |
1297 | > | // non-bonded routines. In parallel, this calculation is done |
1298 | > | // in collectData, not in unpackInteractionData. |
1299 | > | snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); |
1300 | > | snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); |
1301 | } | |
1302 | ||
1303 | < | if (storageLayout_ & DataStorage::dslFunctional) { |
1304 | < | sdat.frho = &(snap_->atomData.functional[atom1]); |
1303 | > | if (storageLayout_ & DataStorage::dslFlucQForce) { |
1304 | > | snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1305 | > | snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1306 | } | |
1307 | < | |
1308 | < | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
1309 | < | sdat.dfrhodrho = &(snap_->atomData.functionalDerivative[atom1]); |
1307 | > | |
1308 | > | if (storageLayout_ & DataStorage::dslElectricField) { |
1309 | > | snap_->atomData.electricField[atom1] += *(idat.eField1); |
1310 | > | snap_->atomData.electricField[atom2] += *(idat.eField2); |
1311 | } | |
1312 | ||
1313 | < | return sdat; |
1313 | > | #endif |
1314 | > | |
1315 | } | |
1316 | ||
435 | – | |
436 | – | |
1317 | /* | |
1318 | * buildNeighborList | |
1319 | * | |
1320 | * first element of pair is row-indexed CutoffGroup | |
1321 | * second element of pair is column-indexed CutoffGroup | |
1322 | */ | |
1323 | < | vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { |
1324 | < | |
1325 | < | vector<pair<int, int> > neighborList; |
1326 | < | #ifdef IS_MPI |
1327 | < | CellListRow.clear(); |
448 | < | CellListCol.clear(); |
449 | < | #else |
450 | < | CellList.clear(); |
451 | < | #endif |
1323 | > | void ForceMatrixDecomposition::buildNeighborList(vector<pair<int,int> >& neighborList) { |
1324 | > | |
1325 | > | neighborList.clear(); |
1326 | > | groupCutoffs cuts; |
1327 | > | bool doAllPairs = false; |
1328 | ||
1329 | < | // dangerous to not do error checking. |
454 | < | RealType skinThickness_ = info_->getSimParams()->getSkinThickness(); |
455 | < | RealType rCut_; |
456 | < | |
457 | < | RealType rList_ = (rCut_ + skinThickness_); |
458 | < | RealType rl2 = rList_ * rList_; |
1329 | > | RealType rList_ = (largestRcut_ + skinThickness_); |
1330 | Snapshot* snap_ = sman_->getCurrentSnapshot(); | |
1331 | < | Mat3x3d Hmat = snap_->getHmat(); |
1332 | < | Vector3d Hx = Hmat.getColumn(0); |
462 | < | Vector3d Hy = Hmat.getColumn(1); |
463 | < | Vector3d Hz = Hmat.getColumn(2); |
464 | < | Vector3i nCells; |
1331 | > | Mat3x3d box; |
1332 | > | Mat3x3d invBox; |
1333 | ||
466 | – | nCells.x() = (int) ( Hx.length() )/ rList_; |
467 | – | nCells.y() = (int) ( Hy.length() )/ rList_; |
468 | – | nCells.z() = (int) ( Hz.length() )/ rList_; |
469 | – | |
470 | – | Mat3x3d invHmat = snap_->getInvHmat(); |
1334 | Vector3d rs, scaled, dr; | |
1335 | Vector3i whichCell; | |
1336 | int cellIndex; | |
1337 | ||
1338 | #ifdef IS_MPI | |
1339 | < | for (int i = 0; i < nGroupsInRow_; i++) { |
1340 | < | rs = cgRowData.position[i]; |
1341 | < | // scaled positions relative to the box vectors |
1342 | < | scaled = invHmat * rs; |
1343 | < | // wrap the vector back into the unit box by subtracting integer box |
1344 | < | // numbers |
1345 | < | for (int j = 0; j < 3; j++) |
1346 | < | scaled[j] -= roundMe(scaled[j]); |
1347 | < | |
1348 | < | // find xyz-indices of cell that cutoffGroup is in. |
1349 | < | whichCell.x() = nCells.x() * scaled.x(); |
1350 | < | whichCell.y() = nCells.y() * scaled.y(); |
488 | < | whichCell.z() = nCells.z() * scaled.z(); |
489 | < | |
490 | < | // find single index of this cell: |
491 | < | cellIndex = Vlinear(whichCell, nCells); |
492 | < | // add this cutoff group to the list of groups in this cell; |
493 | < | CellListRow[cellIndex].push_back(i); |
1339 | > | cellListRow_.clear(); |
1340 | > | cellListCol_.clear(); |
1341 | > | #else |
1342 | > | cellList_.clear(); |
1343 | > | #endif |
1344 | > | |
1345 | > | if (!usePeriodicBoundaryConditions_) { |
1346 | > | box = snap_->getBoundingBox(); |
1347 | > | invBox = snap_->getInvBoundingBox(); |
1348 | > | } else { |
1349 | > | box = snap_->getHmat(); |
1350 | > | invBox = snap_->getInvHmat(); |
1351 | } | |
1352 | < | |
1353 | < | for (int i = 0; i < nGroupsInCol_; i++) { |
1354 | < | rs = cgColData.position[i]; |
1355 | < | // scaled positions relative to the box vectors |
1356 | < | scaled = invHmat * rs; |
1357 | < | // wrap the vector back into the unit box by subtracting integer box |
1358 | < | // numbers |
1359 | < | for (int j = 0; j < 3; j++) |
1360 | < | scaled[j] -= roundMe(scaled[j]); |
1361 | < | |
1362 | < | // find xyz-indices of cell that cutoffGroup is in. |
1363 | < | whichCell.x() = nCells.x() * scaled.x(); |
1364 | < | whichCell.y() = nCells.y() * scaled.y(); |
1365 | < | whichCell.z() = nCells.z() * scaled.z(); |
1366 | < | |
1367 | < | // find single index of this cell: |
1368 | < | cellIndex = Vlinear(whichCell, nCells); |
1369 | < | // add this cutoff group to the list of groups in this cell; |
1370 | < | CellListCol[cellIndex].push_back(i); |
1371 | < | } |
1352 | > | |
1353 | > | Vector3d boxX = box.getColumn(0); |
1354 | > | Vector3d boxY = box.getColumn(1); |
1355 | > | Vector3d boxZ = box.getColumn(2); |
1356 | > | |
1357 | > | nCells_.x() = (int) ( boxX.length() )/ rList_; |
1358 | > | nCells_.y() = (int) ( boxY.length() )/ rList_; |
1359 | > | nCells_.z() = (int) ( boxZ.length() )/ rList_; |
1360 | > | |
1361 | > | // handle small boxes where the cell offsets can end up repeating cells |
1362 | > | |
1363 | > | if (nCells_.x() < 3) doAllPairs = true; |
1364 | > | if (nCells_.y() < 3) doAllPairs = true; |
1365 | > | if (nCells_.z() < 3) doAllPairs = true; |
1366 | > | |
1367 | > | int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
1368 | > | |
1369 | > | #ifdef IS_MPI |
1370 | > | cellListRow_.resize(nCtot); |
1371 | > | cellListCol_.resize(nCtot); |
1372 | #else | |
1373 | < | for (int i = 0; i < nGroups_; i++) { |
1374 | < | rs = snap_->cgData.position[i]; |
1375 | < | // scaled positions relative to the box vectors |
1376 | < | scaled = invHmat * rs; |
1377 | < | // wrap the vector back into the unit box by subtracting integer box |
1378 | < | // numbers |
1379 | < | for (int j = 0; j < 3; j++) |
1380 | < | scaled[j] -= roundMe(scaled[j]); |
1373 | > | cellList_.resize(nCtot); |
1374 | > | #endif |
1375 | > | |
1376 | > | if (!doAllPairs) { |
1377 | > | #ifdef IS_MPI |
1378 | > | |
1379 | > | for (int i = 0; i < nGroupsInRow_; i++) { |
1380 | > | rs = cgRowData.position[i]; |
1381 | > | |
1382 | > | // scaled positions relative to the box vectors |
1383 | > | scaled = invBox * rs; |
1384 | > | |
1385 | > | // wrap the vector back into the unit box by subtracting integer box |
1386 | > | // numbers |
1387 | > | for (int j = 0; j < 3; j++) { |
1388 | > | scaled[j] -= roundMe(scaled[j]); |
1389 | > | scaled[j] += 0.5; |
1390 | > | // Handle the special case when an object is exactly on the |
1391 | > | // boundary (a scaled coordinate of 1.0 is the same as |
1392 | > | // scaled coordinate of 0.0) |
1393 | > | if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1394 | > | } |
1395 | > | |
1396 | > | // find xyz-indices of cell that cutoffGroup is in. |
1397 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1398 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1399 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1400 | > | |
1401 | > | // find single index of this cell: |
1402 | > | cellIndex = Vlinear(whichCell, nCells_); |
1403 | > | |
1404 | > | // add this cutoff group to the list of groups in this cell; |
1405 | > | cellListRow_[cellIndex].push_back(i); |
1406 | > | } |
1407 | > | for (int i = 0; i < nGroupsInCol_; i++) { |
1408 | > | rs = cgColData.position[i]; |
1409 | > | |
1410 | > | // scaled positions relative to the box vectors |
1411 | > | scaled = invBox * rs; |
1412 | > | |
1413 | > | // wrap the vector back into the unit box by subtracting integer box |
1414 | > | // numbers |
1415 | > | for (int j = 0; j < 3; j++) { |
1416 | > | scaled[j] -= roundMe(scaled[j]); |
1417 | > | scaled[j] += 0.5; |
1418 | > | // Handle the special case when an object is exactly on the |
1419 | > | // boundary (a scaled coordinate of 1.0 is the same as |
1420 | > | // scaled coordinate of 0.0) |
1421 | > | if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1422 | > | } |
1423 | > | |
1424 | > | // find xyz-indices of cell that cutoffGroup is in. |
1425 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1426 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1427 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1428 | > | |
1429 | > | // find single index of this cell: |
1430 | > | cellIndex = Vlinear(whichCell, nCells_); |
1431 | > | |
1432 | > | // add this cutoff group to the list of groups in this cell; |
1433 | > | cellListCol_[cellIndex].push_back(i); |
1434 | > | } |
1435 | > | |
1436 | > | #else |
1437 | > | for (int i = 0; i < nGroups_; i++) { |
1438 | > | rs = snap_->cgData.position[i]; |
1439 | > | |
1440 | > | // scaled positions relative to the box vectors |
1441 | > | scaled = invBox * rs; |
1442 | > | |
1443 | > | // wrap the vector back into the unit box by subtracting integer box |
1444 | > | // numbers |
1445 | > | for (int j = 0; j < 3; j++) { |
1446 | > | scaled[j] -= roundMe(scaled[j]); |
1447 | > | scaled[j] += 0.5; |
1448 | > | // Handle the special case when an object is exactly on the |
1449 | > | // boundary (a scaled coordinate of 1.0 is the same as |
1450 | > | // scaled coordinate of 0.0) |
1451 | > | if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1452 | > | } |
1453 | > | |
1454 | > | // find xyz-indices of cell that cutoffGroup is in. |
1455 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1456 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1457 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1458 | > | |
1459 | > | // find single index of this cell: |
1460 | > | cellIndex = Vlinear(whichCell, nCells_); |
1461 | > | |
1462 | > | // add this cutoff group to the list of groups in this cell; |
1463 | > | cellList_[cellIndex].push_back(i); |
1464 | > | } |
1465 | ||
525 | – | // find xyz-indices of cell that cutoffGroup is in. |
526 | – | whichCell.x() = nCells.x() * scaled.x(); |
527 | – | whichCell.y() = nCells.y() * scaled.y(); |
528 | – | whichCell.z() = nCells.z() * scaled.z(); |
529 | – | |
530 | – | // find single index of this cell: |
531 | – | cellIndex = Vlinear(whichCell, nCells); |
532 | – | // add this cutoff group to the list of groups in this cell; |
533 | – | CellList[cellIndex].push_back(i); |
534 | – | } |
1466 | #endif | |
1467 | ||
1468 | + | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1469 | + | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1470 | + | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1471 | + | Vector3i m1v(m1x, m1y, m1z); |
1472 | + | int m1 = Vlinear(m1v, nCells_); |
1473 | + | |
1474 | + | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1475 | + | os != cellOffsets_.end(); ++os) { |
1476 | + | |
1477 | + | Vector3i m2v = m1v + (*os); |
1478 | + | |
1479 | ||
1480 | + | if (m2v.x() >= nCells_.x()) { |
1481 | + | m2v.x() = 0; |
1482 | + | } else if (m2v.x() < 0) { |
1483 | + | m2v.x() = nCells_.x() - 1; |
1484 | + | } |
1485 | + | |
1486 | + | if (m2v.y() >= nCells_.y()) { |
1487 | + | m2v.y() = 0; |
1488 | + | } else if (m2v.y() < 0) { |
1489 | + | m2v.y() = nCells_.y() - 1; |
1490 | + | } |
1491 | + | |
1492 | + | if (m2v.z() >= nCells_.z()) { |
1493 | + | m2v.z() = 0; |
1494 | + | } else if (m2v.z() < 0) { |
1495 | + | m2v.z() = nCells_.z() - 1; |
1496 | + | } |
1497 | ||
1498 | < | for (int m1z = 0; m1z < nCells.z(); m1z++) { |
1499 | < | for (int m1y = 0; m1y < nCells.y(); m1y++) { |
541 | < | for (int m1x = 0; m1x < nCells.x(); m1x++) { |
542 | < | Vector3i m1v(m1x, m1y, m1z); |
543 | < | int m1 = Vlinear(m1v, nCells); |
544 | < | for (int offset = 0; offset < nOffset_; offset++) { |
545 | < | Vector3i m2v = m1v + cellOffsets_[offset]; |
546 | < | |
547 | < | if (m2v.x() >= nCells.x()) { |
548 | < | m2v.x() = 0; |
549 | < | } else if (m2v.x() < 0) { |
550 | < | m2v.x() = nCells.x() - 1; |
551 | < | } |
552 | < | |
553 | < | if (m2v.y() >= nCells.y()) { |
554 | < | m2v.y() = 0; |
555 | < | } else if (m2v.y() < 0) { |
556 | < | m2v.y() = nCells.y() - 1; |
557 | < | } |
558 | < | |
559 | < | if (m2v.z() >= nCells.z()) { |
560 | < | m2v.z() = 0; |
561 | < | } else if (m2v.z() < 0) { |
562 | < | m2v.z() = nCells.z() - 1; |
563 | < | } |
564 | < | |
565 | < | int m2 = Vlinear (m2v, nCells); |
566 | < | |
1498 | > | int m2 = Vlinear (m2v, nCells_); |
1499 | > | |
1500 | #ifdef IS_MPI | |
1501 | < | for (vector<int>::iterator j1 = CellListRow[m1].begin(); |
1502 | < | j1 != CellListRow[m1].end(); ++j1) { |
1503 | < | for (vector<int>::iterator j2 = CellListCol[m2].begin(); |
1504 | < | j2 != CellListCol[m2].end(); ++j2) { |
1505 | < | |
1506 | < | // Always do this if we're in different cells or if |
1507 | < | // we're in the same cell and the global index of the |
1508 | < | // j2 cutoff group is less than the j1 cutoff group |
576 | < | |
577 | < | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1501 | > | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1502 | > | j1 != cellListRow_[m1].end(); ++j1) { |
1503 | > | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1504 | > | j2 != cellListCol_[m2].end(); ++j2) { |
1505 | > | |
1506 | > | // In parallel, we need to visit *all* pairs of row |
1507 | > | // & column indicies and will divide labor in the |
1508 | > | // force evaluation later. |
1509 | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | |
1510 | < | snap_->wrapVector(dr); |
1511 | < | if (dr.lengthSquare() < rl2) { |
581 | < | neighborList.push_back(make_pair((*j1), (*j2))); |
1510 | > | if (usePeriodicBoundaryConditions_) { |
1511 | > | snap_->wrapVector(dr); |
1512 | } | |
1513 | + | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1514 | + | if (dr.lengthSquare() < cuts.third) { |
1515 | + | neighborList.push_back(make_pair((*j1), (*j2))); |
1516 | + | } |
1517 | } | |
1518 | } | |
585 | – | } |
1519 | #else | |
1520 | < | for (vector<int>::iterator j1 = CellList[m1].begin(); |
1521 | < | j1 != CellList[m1].end(); ++j1) { |
1522 | < | for (vector<int>::iterator j2 = CellList[m2].begin(); |
1523 | < | j2 != CellList[m2].end(); ++j2) { |
1524 | < | |
1525 | < | // Always do this if we're in different cells or if |
1526 | < | // we're in the same cell and the global index of the |
1527 | < | // j2 cutoff group is less than the j1 cutoff group |
1520 | > | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1521 | > | j1 != cellList_[m1].end(); ++j1) { |
1522 | > | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1523 | > | j2 != cellList_[m2].end(); ++j2) { |
1524 | > | |
1525 | > | // Always do this if we're in different cells or if |
1526 | > | // we're in the same cell and the global index of |
1527 | > | // the j2 cutoff group is greater than or equal to |
1528 | > | // the j1 cutoff group. Note that Rappaport's code |
1529 | > | // has a "less than" conditional here, but that |
1530 | > | // deals with atom-by-atom computation. OpenMD |
1531 | > | // allows atoms within a single cutoff group to |
1532 | > | // interact with each other. |
1533 | ||
1534 | < | if (m2 != m1 || (*j2) < (*j1)) { |
1535 | < | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1536 | < | snap_->wrapVector(dr); |
1537 | < | if (dr.lengthSquare() < rl2) { |
1538 | < | neighborList.push_back(make_pair((*j1), (*j2))); |
1534 | > | if (m2 != m1 || (*j2) >= (*j1) ) { |
1535 | > | |
1536 | > | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1537 | > | if (usePeriodicBoundaryConditions_) { |
1538 | > | snap_->wrapVector(dr); |
1539 | > | } |
1540 | > | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1541 | > | if (dr.lengthSquare() < cuts.third) { |
1542 | > | neighborList.push_back(make_pair((*j1), (*j2))); |
1543 | > | } |
1544 | } | |
1545 | } | |
1546 | } | |
604 | – | } |
1547 | #endif | |
1548 | + | } |
1549 | } | |
1550 | } | |
1551 | } | |
1552 | + | } else { |
1553 | + | // branch to do all cutoff group pairs |
1554 | + | #ifdef IS_MPI |
1555 | + | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1556 | + | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1557 | + | dr = cgColData.position[j2] - cgRowData.position[j1]; |
1558 | + | if (usePeriodicBoundaryConditions_) { |
1559 | + | snap_->wrapVector(dr); |
1560 | + | } |
1561 | + | cuts = getGroupCutoffs( j1, j2 ); |
1562 | + | if (dr.lengthSquare() < cuts.third) { |
1563 | + | neighborList.push_back(make_pair(j1, j2)); |
1564 | + | } |
1565 | + | } |
1566 | + | } |
1567 | + | #else |
1568 | + | // include all groups here. |
1569 | + | for (int j1 = 0; j1 < nGroups_; j1++) { |
1570 | + | // include self group interactions j2 == j1 |
1571 | + | for (int j2 = j1; j2 < nGroups_; j2++) { |
1572 | + | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1573 | + | if (usePeriodicBoundaryConditions_) { |
1574 | + | snap_->wrapVector(dr); |
1575 | + | } |
1576 | + | cuts = getGroupCutoffs( j1, j2 ); |
1577 | + | if (dr.lengthSquare() < cuts.third) { |
1578 | + | neighborList.push_back(make_pair(j1, j2)); |
1579 | + | } |
1580 | + | } |
1581 | + | } |
1582 | + | #endif |
1583 | } | |
1584 | < | return neighborList; |
1584 | > | |
1585 | > | // save the local cutoff group positions for the check that is |
1586 | > | // done on each loop: |
1587 | > | saved_CG_positions_.clear(); |
1588 | > | for (int i = 0; i < nGroups_; i++) |
1589 | > | saved_CG_positions_.push_back(snap_->cgData.position[i]); |
1590 | } | |
1591 | } //end namespace OpenMD |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |