# | Line 35 | Line 35 | |
---|---|---|
35 | * | |
36 | * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | |
37 | * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | |
38 | < | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 | < | * [4] Vardeman & Gezelter, in progress (2009). |
38 | > | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 | > | * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 | > | * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 | */ | |
42 | #include "parallel/ForceMatrixDecomposition.hpp" | |
43 | #include "math/SquareMatrix3.hpp" | |
# | Line 47 | Line 48 | namespace OpenMD { | |
48 | using namespace std; | |
49 | namespace OpenMD { | |
50 | ||
51 | + | ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { |
52 | + | |
53 | + | // In a parallel computation, row and colum scans must visit all |
54 | + | // surrounding cells (not just the 14 upper triangular blocks that |
55 | + | // are used when the processor can see all pairs) |
56 | + | #ifdef IS_MPI |
57 | + | cellOffsets_.clear(); |
58 | + | cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
59 | + | cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
60 | + | cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
61 | + | cellOffsets_.push_back( Vector3i(-1, 0,-1) ); |
62 | + | cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
63 | + | cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
64 | + | cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
65 | + | cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
66 | + | cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
67 | + | cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
68 | + | cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
69 | + | cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
70 | + | cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
71 | + | cellOffsets_.push_back( Vector3i( 0, 0, 0) ); |
72 | + | cellOffsets_.push_back( Vector3i( 1, 0, 0) ); |
73 | + | cellOffsets_.push_back( Vector3i(-1, 1, 0) ); |
74 | + | cellOffsets_.push_back( Vector3i( 0, 1, 0) ); |
75 | + | cellOffsets_.push_back( Vector3i( 1, 1, 0) ); |
76 | + | cellOffsets_.push_back( Vector3i(-1,-1, 1) ); |
77 | + | cellOffsets_.push_back( Vector3i( 0,-1, 1) ); |
78 | + | cellOffsets_.push_back( Vector3i( 1,-1, 1) ); |
79 | + | cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
80 | + | cellOffsets_.push_back( Vector3i( 0, 0, 1) ); |
81 | + | cellOffsets_.push_back( Vector3i( 1, 0, 1) ); |
82 | + | cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
83 | + | cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
84 | + | cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
85 | + | #endif |
86 | + | } |
87 | + | |
88 | + | |
89 | /** | |
90 | * distributeInitialData is essentially a copy of the older fortran | |
91 | * SimulationSetup | |
92 | */ | |
54 | – | |
93 | void ForceMatrixDecomposition::distributeInitialData() { | |
94 | snap_ = sman_->getCurrentSnapshot(); | |
95 | storageLayout_ = sman_->getStorageLayout(); | |
96 | ff_ = info_->getForceField(); | |
97 | nLocal_ = snap_->getNumberOfAtoms(); | |
98 | < | |
98 | > | |
99 | nGroups_ = info_->getNLocalCutoffGroups(); | |
100 | // gather the information for atomtype IDs (atids): | |
101 | idents = info_->getIdentArray(); | |
102 | + | regions = info_->getRegions(); |
103 | AtomLocalToGlobal = info_->getGlobalAtomIndices(); | |
104 | cgLocalToGlobal = info_->getGlobalGroupIndices(); | |
105 | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); | |
106 | ||
107 | massFactors = info_->getMassFactors(); | |
108 | ||
109 | < | PairList excludes = info_->getExcludedInteractions(); |
110 | < | PairList oneTwo = info_->getOneTwoInteractions(); |
111 | < | PairList oneThree = info_->getOneThreeInteractions(); |
112 | < | PairList oneFour = info_->getOneFourInteractions(); |
113 | < | |
109 | > | PairList* excludes = info_->getExcludedInteractions(); |
110 | > | PairList* oneTwo = info_->getOneTwoInteractions(); |
111 | > | PairList* oneThree = info_->getOneThreeInteractions(); |
112 | > | PairList* oneFour = info_->getOneFourInteractions(); |
113 | > | |
114 | > | if (needVelocities_) |
115 | > | snap_->cgData.setStorageLayout(DataStorage::dslPosition | |
116 | > | DataStorage::dslVelocity); |
117 | > | else |
118 | > | snap_->cgData.setStorageLayout(DataStorage::dslPosition); |
119 | > | |
120 | #ifdef IS_MPI | |
121 | ||
122 | < | AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
123 | < | AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
79 | < | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
80 | < | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
81 | < | AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
122 | > | MPI_Comm row = rowComm.getComm(); |
123 | > | MPI_Comm col = colComm.getComm(); |
124 | ||
125 | < | AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
126 | < | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
127 | < | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
128 | < | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
129 | < | AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
125 | > | AtomPlanIntRow = new Plan<int>(row, nLocal_); |
126 | > | AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
127 | > | AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); |
128 | > | AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); |
129 | > | AtomPlanPotRow = new Plan<potVec>(row, nLocal_); |
130 | ||
131 | < | cgCommIntRow = new Communicator<Row,int>(nGroups_); |
132 | < | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
133 | < | cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
134 | < | cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
131 | > | AtomPlanIntColumn = new Plan<int>(col, nLocal_); |
132 | > | AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); |
133 | > | AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); |
134 | > | AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); |
135 | > | AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); |
136 | ||
137 | < | nAtomsInRow_ = AtomCommIntRow->getSize(); |
138 | < | nAtomsInCol_ = AtomCommIntColumn->getSize(); |
139 | < | nGroupsInRow_ = cgCommIntRow->getSize(); |
140 | < | nGroupsInCol_ = cgCommIntColumn->getSize(); |
137 | > | cgPlanIntRow = new Plan<int>(row, nGroups_); |
138 | > | cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); |
139 | > | cgPlanIntColumn = new Plan<int>(col, nGroups_); |
140 | > | cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); |
141 | ||
142 | + | nAtomsInRow_ = AtomPlanIntRow->getSize(); |
143 | + | nAtomsInCol_ = AtomPlanIntColumn->getSize(); |
144 | + | nGroupsInRow_ = cgPlanIntRow->getSize(); |
145 | + | nGroupsInCol_ = cgPlanIntColumn->getSize(); |
146 | + | |
147 | // Modify the data storage objects with the correct layouts and sizes: | |
148 | atomRowData.resize(nAtomsInRow_); | |
149 | atomRowData.setStorageLayout(storageLayout_); | |
# | Line 104 | Line 152 | namespace OpenMD { | |
152 | cgRowData.resize(nGroupsInRow_); | |
153 | cgRowData.setStorageLayout(DataStorage::dslPosition); | |
154 | cgColData.resize(nGroupsInCol_); | |
155 | < | cgColData.setStorageLayout(DataStorage::dslPosition); |
156 | < | |
155 | > | if (needVelocities_) |
156 | > | // we only need column velocities if we need them. |
157 | > | cgColData.setStorageLayout(DataStorage::dslPosition | |
158 | > | DataStorage::dslVelocity); |
159 | > | else |
160 | > | cgColData.setStorageLayout(DataStorage::dslPosition); |
161 | > | |
162 | identsRow.resize(nAtomsInRow_); | |
163 | identsCol.resize(nAtomsInCol_); | |
164 | ||
165 | < | AtomCommIntRow->gather(idents, identsRow); |
166 | < | AtomCommIntColumn->gather(idents, identsCol); |
165 | > | AtomPlanIntRow->gather(idents, identsRow); |
166 | > | AtomPlanIntColumn->gather(idents, identsCol); |
167 | > | |
168 | > | regionsRow.resize(nAtomsInRow_); |
169 | > | regionsCol.resize(nAtomsInCol_); |
170 | ||
171 | < | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
172 | < | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
171 | > | AtomPlanIntRow->gather(regions, regionsRow); |
172 | > | AtomPlanIntColumn->gather(regions, regionsCol); |
173 | ||
174 | < | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
175 | < | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
174 | > | // allocate memory for the parallel objects |
175 | > | atypesRow.resize(nAtomsInRow_); |
176 | > | atypesCol.resize(nAtomsInCol_); |
177 | ||
178 | < | AtomCommRealRow->gather(massFactors, massFactorsRow); |
179 | < | AtomCommRealColumn->gather(massFactors, massFactorsCol); |
178 | > | for (int i = 0; i < nAtomsInRow_; i++) |
179 | > | atypesRow[i] = ff_->getAtomType(identsRow[i]); |
180 | > | for (int i = 0; i < nAtomsInCol_; i++) |
181 | > | atypesCol[i] = ff_->getAtomType(identsCol[i]); |
182 | ||
183 | + | pot_row.resize(nAtomsInRow_); |
184 | + | pot_col.resize(nAtomsInCol_); |
185 | + | |
186 | + | expot_row.resize(nAtomsInRow_); |
187 | + | expot_col.resize(nAtomsInCol_); |
188 | + | |
189 | + | AtomRowToGlobal.resize(nAtomsInRow_); |
190 | + | AtomColToGlobal.resize(nAtomsInCol_); |
191 | + | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
192 | + | AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
193 | + | |
194 | + | cgRowToGlobal.resize(nGroupsInRow_); |
195 | + | cgColToGlobal.resize(nGroupsInCol_); |
196 | + | cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
197 | + | cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
198 | + | |
199 | + | massFactorsRow.resize(nAtomsInRow_); |
200 | + | massFactorsCol.resize(nAtomsInCol_); |
201 | + | AtomPlanRealRow->gather(massFactors, massFactorsRow); |
202 | + | AtomPlanRealColumn->gather(massFactors, massFactorsCol); |
203 | + | |
204 | groupListRow_.clear(); | |
205 | groupListRow_.resize(nGroupsInRow_); | |
206 | for (int i = 0; i < nGroupsInRow_; i++) { | |
# | Line 143 | Line 223 | namespace OpenMD { | |
223 | } | |
224 | } | |
225 | ||
226 | < | skipsForAtom.clear(); |
227 | < | skipsForAtom.resize(nAtomsInRow_); |
226 | > | excludesForAtom.clear(); |
227 | > | excludesForAtom.resize(nAtomsInRow_); |
228 | toposForAtom.clear(); | |
229 | toposForAtom.resize(nAtomsInRow_); | |
230 | topoDist.clear(); | |
# | Line 155 | Line 235 | namespace OpenMD { | |
235 | for (int j = 0; j < nAtomsInCol_; j++) { | |
236 | int jglob = AtomColToGlobal[j]; | |
237 | ||
238 | < | if (excludes.hasPair(iglob, jglob)) |
239 | < | skipsForAtom[i].push_back(j); |
238 | > | if (excludes->hasPair(iglob, jglob)) |
239 | > | excludesForAtom[i].push_back(j); |
240 | ||
241 | < | if (oneTwo.hasPair(iglob, jglob)) { |
241 | > | if (oneTwo->hasPair(iglob, jglob)) { |
242 | toposForAtom[i].push_back(j); | |
243 | topoDist[i].push_back(1); | |
244 | } else { | |
245 | < | if (oneThree.hasPair(iglob, jglob)) { |
245 | > | if (oneThree->hasPair(iglob, jglob)) { |
246 | toposForAtom[i].push_back(j); | |
247 | topoDist[i].push_back(2); | |
248 | } else { | |
249 | < | if (oneFour.hasPair(iglob, jglob)) { |
249 | > | if (oneFour->hasPair(iglob, jglob)) { |
250 | toposForAtom[i].push_back(j); | |
251 | topoDist[i].push_back(3); | |
252 | } | |
253 | } | |
174 | – | } |
175 | – | } |
176 | – | } |
177 | – | |
178 | – | #endif |
179 | – | |
180 | – | groupList_.clear(); |
181 | – | groupList_.resize(nGroups_); |
182 | – | for (int i = 0; i < nGroups_; i++) { |
183 | – | int gid = cgLocalToGlobal[i]; |
184 | – | for (int j = 0; j < nLocal_; j++) { |
185 | – | int aid = AtomLocalToGlobal[j]; |
186 | – | if (globalGroupMembership[aid] == gid) { |
187 | – | groupList_[i].push_back(j); |
254 | } | |
255 | } | |
256 | } | |
257 | ||
258 | < | skipsForAtom.clear(); |
259 | < | skipsForAtom.resize(nLocal_); |
258 | > | #else |
259 | > | excludesForAtom.clear(); |
260 | > | excludesForAtom.resize(nLocal_); |
261 | toposForAtom.clear(); | |
262 | toposForAtom.resize(nLocal_); | |
263 | topoDist.clear(); | |
# | Line 202 | Line 269 | namespace OpenMD { | |
269 | for (int j = 0; j < nLocal_; j++) { | |
270 | int jglob = AtomLocalToGlobal[j]; | |
271 | ||
272 | < | if (excludes.hasPair(iglob, jglob)) |
273 | < | skipsForAtom[i].push_back(j); |
272 | > | if (excludes->hasPair(iglob, jglob)) |
273 | > | excludesForAtom[i].push_back(j); |
274 | ||
275 | < | if (oneTwo.hasPair(iglob, jglob)) { |
275 | > | if (oneTwo->hasPair(iglob, jglob)) { |
276 | toposForAtom[i].push_back(j); | |
277 | topoDist[i].push_back(1); | |
278 | } else { | |
279 | < | if (oneThree.hasPair(iglob, jglob)) { |
279 | > | if (oneThree->hasPair(iglob, jglob)) { |
280 | toposForAtom[i].push_back(j); | |
281 | topoDist[i].push_back(2); | |
282 | } else { | |
283 | < | if (oneFour.hasPair(iglob, jglob)) { |
283 | > | if (oneFour->hasPair(iglob, jglob)) { |
284 | toposForAtom[i].push_back(j); | |
285 | topoDist[i].push_back(3); | |
286 | } | |
# | Line 221 | Line 288 | namespace OpenMD { | |
288 | } | |
289 | } | |
290 | } | |
291 | < | |
291 | > | #endif |
292 | > | |
293 | > | // allocate memory for the parallel objects |
294 | > | atypesLocal.resize(nLocal_); |
295 | > | |
296 | > | for (int i = 0; i < nLocal_; i++) |
297 | > | atypesLocal[i] = ff_->getAtomType(idents[i]); |
298 | > | |
299 | > | groupList_.clear(); |
300 | > | groupList_.resize(nGroups_); |
301 | > | for (int i = 0; i < nGroups_; i++) { |
302 | > | int gid = cgLocalToGlobal[i]; |
303 | > | for (int j = 0; j < nLocal_; j++) { |
304 | > | int aid = AtomLocalToGlobal[j]; |
305 | > | if (globalGroupMembership[aid] == gid) { |
306 | > | groupList_[i].push_back(j); |
307 | > | } |
308 | > | } |
309 | > | } |
310 | > | |
311 | > | |
312 | createGtypeCutoffMap(); | |
313 | + | |
314 | } | |
315 | ||
316 | void ForceMatrixDecomposition::createGtypeCutoffMap() { | |
317 | ||
318 | + | GrCut.clear(); |
319 | + | GrCutSq.clear(); |
320 | + | GrlistSq.clear(); |
321 | + | |
322 | RealType tol = 1e-6; | |
323 | < | RealType rc; |
323 | > | largestRcut_ = 0.0; |
324 | int atid; | |
325 | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); | |
326 | < | vector<RealType> atypeCutoff; |
327 | < | atypeCutoff.resize( atypes.size() ); |
326 | > | |
327 | > | map<int, RealType> atypeCutoff; |
328 | ||
329 | for (set<AtomType*>::iterator at = atypes.begin(); | |
330 | at != atypes.end(); ++at){ | |
331 | atid = (*at)->getIdent(); | |
332 | < | |
241 | < | if (userChoseCutoff_) |
332 | > | if (userChoseCutoff_) |
333 | atypeCutoff[atid] = userCutoff_; | |
334 | else | |
335 | atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); | |
336 | } | |
337 | < | |
337 | > | |
338 | vector<RealType> gTypeCutoffs; | |
248 | – | |
339 | // first we do a single loop over the cutoff groups to find the | |
340 | // largest cutoff for any atypes present in this group. | |
341 | #ifdef IS_MPI | |
# | Line 303 | Line 393 | namespace OpenMD { | |
393 | ||
394 | vector<RealType> groupCutoff(nGroups_, 0.0); | |
395 | groupToGtype.resize(nGroups_); | |
306 | – | |
396 | for (int cg1 = 0; cg1 < nGroups_; cg1++) { | |
308 | – | |
397 | groupCutoff[cg1] = 0.0; | |
398 | vector<int> atomList = getAtomsInGroupRow(cg1); | |
311 | – | |
399 | for (vector<int>::iterator ia = atomList.begin(); | |
400 | ia != atomList.end(); ++ia) { | |
401 | int atom1 = (*ia); | |
402 | atid = idents[atom1]; | |
403 | < | if (atypeCutoff[atid] > groupCutoff[cg1]) { |
403 | > | if (atypeCutoff[atid] > groupCutoff[cg1]) |
404 | groupCutoff[cg1] = atypeCutoff[atid]; | |
318 | – | } |
405 | } | |
406 | < | |
406 | > | |
407 | bool gTypeFound = false; | |
408 | < | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
408 | > | for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
409 | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { | |
410 | groupToGtype[cg1] = gt; | |
411 | gTypeFound = true; | |
412 | } | |
413 | } | |
414 | < | if (!gTypeFound) { |
414 | > | if (!gTypeFound) { |
415 | gTypeCutoffs.push_back( groupCutoff[cg1] ); | |
416 | groupToGtype[cg1] = gTypeCutoffs.size() - 1; | |
417 | } | |
# | Line 334 | Line 420 | namespace OpenMD { | |
420 | ||
421 | // Now we find the maximum group cutoff value present in the simulation | |
422 | ||
423 | < | RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); |
423 | > | RealType groupMax = *max_element(gTypeCutoffs.begin(), |
424 | > | gTypeCutoffs.end()); |
425 | ||
426 | #ifdef IS_MPI | |
427 | < | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); |
427 | > | MPI_Allreduce(&groupMax, &groupMax, 1, MPI_REALTYPE, |
428 | > | MPI_MAX, MPI_COMM_WORLD); |
429 | #endif | |
430 | ||
431 | RealType tradRcut = groupMax; | |
432 | ||
433 | < | for (int i = 0; i < gTypeCutoffs.size(); i++) { |
434 | < | for (int j = 0; j < gTypeCutoffs.size(); j++) { |
433 | > | GrCut.resize( gTypeCutoffs.size() ); |
434 | > | GrCutSq.resize( gTypeCutoffs.size() ); |
435 | > | GrlistSq.resize( gTypeCutoffs.size() ); |
436 | > | |
437 | > | |
438 | > | for (unsigned int i = 0; i < gTypeCutoffs.size(); i++) { |
439 | > | GrCut[i].resize( gTypeCutoffs.size() , 0.0); |
440 | > | GrCutSq[i].resize( gTypeCutoffs.size(), 0.0 ); |
441 | > | GrlistSq[i].resize( gTypeCutoffs.size(), 0.0 ); |
442 | > | |
443 | > | for (unsigned int j = 0; j < gTypeCutoffs.size(); j++) { |
444 | RealType thisRcut; | |
445 | switch(cutoffPolicy_) { | |
446 | case TRADITIONAL: | |
# | Line 365 | Line 462 | namespace OpenMD { | |
462 | break; | |
463 | } | |
464 | ||
465 | < | pair<int,int> key = make_pair(i,j); |
369 | < | gTypeCutoffMap[key].first = thisRcut; |
370 | < | |
465 | > | GrCut[i][j] = thisRcut; |
466 | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; | |
467 | + | GrCutSq[i][j] = thisRcut * thisRcut; |
468 | + | GrlistSq[i][j] = pow(thisRcut + skinThickness_, 2); |
469 | ||
470 | < | gTypeCutoffMap[key].second = thisRcut*thisRcut; |
471 | < | |
472 | < | gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
376 | < | |
470 | > | // pair<int,int> key = make_pair(i,j); |
471 | > | // gTypeCutoffMap[key].first = thisRcut; |
472 | > | // gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
473 | // sanity check | |
474 | ||
475 | if (userChoseCutoff_) { | |
476 | < | if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
476 | > | if (abs(GrCut[i][j] - userCutoff_) > 0.0001) { |
477 | sprintf(painCave.errMsg, | |
478 | "ForceMatrixDecomposition::createGtypeCutoffMap " | |
479 | "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); | |
# | Line 390 | Line 486 | namespace OpenMD { | |
486 | } | |
487 | } | |
488 | ||
489 | < | |
394 | < | groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
489 | > | void ForceMatrixDecomposition::getGroupCutoffs(int &cg1, int &cg2, RealType &rcut, RealType &rcutsq, RealType &rlistsq) { |
490 | int i, j; | |
491 | #ifdef IS_MPI | |
492 | i = groupRowToGtype[cg1]; | |
# | Line 400 | Line 495 | namespace OpenMD { | |
495 | i = groupToGtype[cg1]; | |
496 | j = groupToGtype[cg2]; | |
497 | #endif | |
498 | < | return gTypeCutoffMap[make_pair(i,j)]; |
498 | > | rcut = GrCut[i][j]; |
499 | > | rcutsq = GrCutSq[i][j]; |
500 | > | rlistsq = GrlistSq[i][j]; |
501 | > | return; |
502 | > | //return gTypeCutoffMap[make_pair(i,j)]; |
503 | } | |
504 | ||
505 | int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { | |
506 | < | for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
506 | > | for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) { |
507 | if (toposForAtom[atom1][j] == atom2) | |
508 | return topoDist[atom1][j]; | |
509 | < | } |
509 | > | } |
510 | return 0; | |
511 | } | |
512 | ||
513 | void ForceMatrixDecomposition::zeroWorkArrays() { | |
514 | pairwisePot = 0.0; | |
515 | embeddingPot = 0.0; | |
516 | + | excludedPot = 0.0; |
517 | + | excludedSelfPot = 0.0; |
518 | ||
519 | #ifdef IS_MPI | |
520 | if (storageLayout_ & DataStorage::dslForce) { | |
# | Line 432 | Line 533 | namespace OpenMD { | |
533 | fill(pot_col.begin(), pot_col.end(), | |
534 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
535 | ||
536 | + | fill(expot_row.begin(), expot_row.end(), |
537 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
538 | + | |
539 | + | fill(expot_col.begin(), expot_col.end(), |
540 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
541 | + | |
542 | if (storageLayout_ & DataStorage::dslParticlePot) { | |
543 | < | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); |
544 | < | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); |
543 | > | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
544 | > | 0.0); |
545 | > | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), |
546 | > | 0.0); |
547 | } | |
548 | ||
549 | if (storageLayout_ & DataStorage::dslDensity) { | |
# | Line 443 | Line 552 | namespace OpenMD { | |
552 | } | |
553 | ||
554 | if (storageLayout_ & DataStorage::dslFunctional) { | |
555 | < | fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); |
556 | < | fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); |
555 | > | fill(atomRowData.functional.begin(), atomRowData.functional.end(), |
556 | > | 0.0); |
557 | > | fill(atomColData.functional.begin(), atomColData.functional.end(), |
558 | > | 0.0); |
559 | } | |
560 | ||
561 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
# | Line 455 | Line 566 | namespace OpenMD { | |
566 | } | |
567 | ||
568 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | |
569 | < | fill(atomRowData.skippedCharge.begin(), atomRowData.skippedCharge.end(), 0.0); |
570 | < | fill(atomColData.skippedCharge.begin(), atomColData.skippedCharge.end(), 0.0); |
569 | > | fill(atomRowData.skippedCharge.begin(), |
570 | > | atomRowData.skippedCharge.end(), 0.0); |
571 | > | fill(atomColData.skippedCharge.begin(), |
572 | > | atomColData.skippedCharge.end(), 0.0); |
573 | } | |
574 | ||
575 | < | #else |
576 | < | |
575 | > | if (storageLayout_ & DataStorage::dslFlucQForce) { |
576 | > | fill(atomRowData.flucQFrc.begin(), |
577 | > | atomRowData.flucQFrc.end(), 0.0); |
578 | > | fill(atomColData.flucQFrc.begin(), |
579 | > | atomColData.flucQFrc.end(), 0.0); |
580 | > | } |
581 | > | |
582 | > | if (storageLayout_ & DataStorage::dslElectricField) { |
583 | > | fill(atomRowData.electricField.begin(), |
584 | > | atomRowData.electricField.end(), V3Zero); |
585 | > | fill(atomColData.electricField.begin(), |
586 | > | atomColData.electricField.end(), V3Zero); |
587 | > | } |
588 | > | |
589 | > | #endif |
590 | > | // even in parallel, we need to zero out the local arrays: |
591 | > | |
592 | if (storageLayout_ & DataStorage::dslParticlePot) { | |
593 | fill(snap_->atomData.particlePot.begin(), | |
594 | snap_->atomData.particlePot.end(), 0.0); | |
# | Line 470 | Line 598 | namespace OpenMD { | |
598 | fill(snap_->atomData.density.begin(), | |
599 | snap_->atomData.density.end(), 0.0); | |
600 | } | |
601 | + | |
602 | if (storageLayout_ & DataStorage::dslFunctional) { | |
603 | fill(snap_->atomData.functional.begin(), | |
604 | snap_->atomData.functional.end(), 0.0); | |
605 | } | |
606 | + | |
607 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
608 | fill(snap_->atomData.functionalDerivative.begin(), | |
609 | snap_->atomData.functionalDerivative.end(), 0.0); | |
610 | } | |
611 | + | |
612 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | |
613 | fill(snap_->atomData.skippedCharge.begin(), | |
614 | snap_->atomData.skippedCharge.end(), 0.0); | |
615 | } | |
616 | < | #endif |
617 | < | |
616 | > | |
617 | > | if (storageLayout_ & DataStorage::dslElectricField) { |
618 | > | fill(snap_->atomData.electricField.begin(), |
619 | > | snap_->atomData.electricField.end(), V3Zero); |
620 | > | } |
621 | } | |
622 | ||
623 | ||
# | Line 493 | Line 627 | namespace OpenMD { | |
627 | #ifdef IS_MPI | |
628 | ||
629 | // gather up the atomic positions | |
630 | < | AtomCommVectorRow->gather(snap_->atomData.position, |
630 | > | AtomPlanVectorRow->gather(snap_->atomData.position, |
631 | atomRowData.position); | |
632 | < | AtomCommVectorColumn->gather(snap_->atomData.position, |
632 | > | AtomPlanVectorColumn->gather(snap_->atomData.position, |
633 | atomColData.position); | |
634 | ||
635 | // gather up the cutoff group positions | |
636 | < | cgCommVectorRow->gather(snap_->cgData.position, |
636 | > | |
637 | > | cgPlanVectorRow->gather(snap_->cgData.position, |
638 | cgRowData.position); | |
639 | < | cgCommVectorColumn->gather(snap_->cgData.position, |
639 | > | |
640 | > | cgPlanVectorColumn->gather(snap_->cgData.position, |
641 | cgColData.position); | |
642 | + | |
643 | + | |
644 | + | |
645 | + | if (needVelocities_) { |
646 | + | // gather up the atomic velocities |
647 | + | AtomPlanVectorColumn->gather(snap_->atomData.velocity, |
648 | + | atomColData.velocity); |
649 | + | |
650 | + | cgPlanVectorColumn->gather(snap_->cgData.velocity, |
651 | + | cgColData.velocity); |
652 | + | } |
653 | + | |
654 | ||
655 | // if needed, gather the atomic rotation matrices | |
656 | if (storageLayout_ & DataStorage::dslAmat) { | |
657 | < | AtomCommMatrixRow->gather(snap_->atomData.aMat, |
657 | > | AtomPlanMatrixRow->gather(snap_->atomData.aMat, |
658 | atomRowData.aMat); | |
659 | < | AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
659 | > | AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
660 | atomColData.aMat); | |
661 | } | |
662 | < | |
663 | < | // if needed, gather the atomic eletrostatic frames |
664 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { |
665 | < | AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
666 | < | atomRowData.electroFrame); |
667 | < | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
668 | < | atomColData.electroFrame); |
662 | > | |
663 | > | // if needed, gather the atomic eletrostatic information |
664 | > | if (storageLayout_ & DataStorage::dslDipole) { |
665 | > | AtomPlanVectorRow->gather(snap_->atomData.dipole, |
666 | > | atomRowData.dipole); |
667 | > | AtomPlanVectorColumn->gather(snap_->atomData.dipole, |
668 | > | atomColData.dipole); |
669 | } | |
670 | + | |
671 | + | if (storageLayout_ & DataStorage::dslQuadrupole) { |
672 | + | AtomPlanMatrixRow->gather(snap_->atomData.quadrupole, |
673 | + | atomRowData.quadrupole); |
674 | + | AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole, |
675 | + | atomColData.quadrupole); |
676 | + | } |
677 | + | |
678 | + | // if needed, gather the atomic fluctuating charge values |
679 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
680 | + | AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
681 | + | atomRowData.flucQPos); |
682 | + | AtomPlanRealColumn->gather(snap_->atomData.flucQPos, |
683 | + | atomColData.flucQPos); |
684 | + | } |
685 | + | |
686 | #endif | |
687 | } | |
688 | ||
# | Line 532 | Line 696 | namespace OpenMD { | |
696 | ||
697 | if (storageLayout_ & DataStorage::dslDensity) { | |
698 | ||
699 | < | AtomCommRealRow->scatter(atomRowData.density, |
699 | > | AtomPlanRealRow->scatter(atomRowData.density, |
700 | snap_->atomData.density); | |
701 | ||
702 | int n = snap_->atomData.density.size(); | |
703 | vector<RealType> rho_tmp(n, 0.0); | |
704 | < | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
704 | > | AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); |
705 | for (int i = 0; i < n; i++) | |
706 | snap_->atomData.density[i] += rho_tmp[i]; | |
707 | } | |
708 | + | |
709 | + | // this isn't necessary if we don't have polarizable atoms, but |
710 | + | // we'll leave it here for now. |
711 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
712 | + | |
713 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, |
714 | + | snap_->atomData.electricField); |
715 | + | |
716 | + | int n = snap_->atomData.electricField.size(); |
717 | + | vector<Vector3d> field_tmp(n, V3Zero); |
718 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, |
719 | + | field_tmp); |
720 | + | for (int i = 0; i < n; i++) |
721 | + | snap_->atomData.electricField[i] += field_tmp[i]; |
722 | + | } |
723 | #endif | |
724 | } | |
725 | ||
# | Line 553 | Line 732 | namespace OpenMD { | |
732 | storageLayout_ = sman_->getStorageLayout(); | |
733 | #ifdef IS_MPI | |
734 | if (storageLayout_ & DataStorage::dslFunctional) { | |
735 | < | AtomCommRealRow->gather(snap_->atomData.functional, |
735 | > | AtomPlanRealRow->gather(snap_->atomData.functional, |
736 | atomRowData.functional); | |
737 | < | AtomCommRealColumn->gather(snap_->atomData.functional, |
737 | > | AtomPlanRealColumn->gather(snap_->atomData.functional, |
738 | atomColData.functional); | |
739 | } | |
740 | ||
741 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
742 | < | AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
742 | > | AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, |
743 | atomRowData.functionalDerivative); | |
744 | < | AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
744 | > | AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, |
745 | atomColData.functionalDerivative); | |
746 | } | |
747 | #endif | |
# | Line 576 | Line 755 | namespace OpenMD { | |
755 | int n = snap_->atomData.force.size(); | |
756 | vector<Vector3d> frc_tmp(n, V3Zero); | |
757 | ||
758 | < | AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
758 | > | AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); |
759 | for (int i = 0; i < n; i++) { | |
760 | snap_->atomData.force[i] += frc_tmp[i]; | |
761 | frc_tmp[i] = 0.0; | |
762 | } | |
763 | ||
764 | < | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
765 | < | for (int i = 0; i < n; i++) |
764 | > | AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); |
765 | > | for (int i = 0; i < n; i++) { |
766 | snap_->atomData.force[i] += frc_tmp[i]; | |
767 | < | |
768 | < | |
767 | > | } |
768 | > | |
769 | if (storageLayout_ & DataStorage::dslTorque) { | |
770 | ||
771 | < | int nt = snap_->atomData.force.size(); |
771 | > | int nt = snap_->atomData.torque.size(); |
772 | vector<Vector3d> trq_tmp(nt, V3Zero); | |
773 | ||
774 | < | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
775 | < | for (int i = 0; i < n; i++) { |
774 | > | AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); |
775 | > | for (int i = 0; i < nt; i++) { |
776 | snap_->atomData.torque[i] += trq_tmp[i]; | |
777 | trq_tmp[i] = 0.0; | |
778 | } | |
779 | ||
780 | < | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
781 | < | for (int i = 0; i < n; i++) |
780 | > | AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); |
781 | > | for (int i = 0; i < nt; i++) |
782 | snap_->atomData.torque[i] += trq_tmp[i]; | |
783 | } | |
784 | + | |
785 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
786 | + | |
787 | + | int ns = snap_->atomData.skippedCharge.size(); |
788 | + | vector<RealType> skch_tmp(ns, 0.0); |
789 | + | |
790 | + | AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
791 | + | for (int i = 0; i < ns; i++) { |
792 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
793 | + | skch_tmp[i] = 0.0; |
794 | + | } |
795 | + | |
796 | + | AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
797 | + | for (int i = 0; i < ns; i++) |
798 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
799 | + | |
800 | + | } |
801 | ||
802 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
803 | + | |
804 | + | int nq = snap_->atomData.flucQFrc.size(); |
805 | + | vector<RealType> fqfrc_tmp(nq, 0.0); |
806 | + | |
807 | + | AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); |
808 | + | for (int i = 0; i < nq; i++) { |
809 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
810 | + | fqfrc_tmp[i] = 0.0; |
811 | + | } |
812 | + | |
813 | + | AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); |
814 | + | for (int i = 0; i < nq; i++) |
815 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
816 | + | |
817 | + | } |
818 | + | |
819 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
820 | + | |
821 | + | int nef = snap_->atomData.electricField.size(); |
822 | + | vector<Vector3d> efield_tmp(nef, V3Zero); |
823 | + | |
824 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp); |
825 | + | for (int i = 0; i < nef; i++) { |
826 | + | snap_->atomData.electricField[i] += efield_tmp[i]; |
827 | + | efield_tmp[i] = 0.0; |
828 | + | } |
829 | + | |
830 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp); |
831 | + | for (int i = 0; i < nef; i++) |
832 | + | snap_->atomData.electricField[i] += efield_tmp[i]; |
833 | + | } |
834 | + | |
835 | + | |
836 | nLocal_ = snap_->getNumberOfAtoms(); | |
837 | ||
838 | vector<potVec> pot_temp(nLocal_, | |
839 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
840 | + | vector<potVec> expot_temp(nLocal_, |
841 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
842 | ||
843 | // scatter/gather pot_row into the members of my column | |
844 | ||
845 | < | AtomCommPotRow->scatter(pot_row, pot_temp); |
845 | > | AtomPlanPotRow->scatter(pot_row, pot_temp); |
846 | > | AtomPlanPotRow->scatter(expot_row, expot_temp); |
847 | ||
848 | < | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
848 | > | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
849 | pairwisePot += pot_temp[ii]; | |
850 | < | |
850 | > | |
851 | > | for (int ii = 0; ii < expot_temp.size(); ii++ ) |
852 | > | excludedPot += expot_temp[ii]; |
853 | > | |
854 | > | if (storageLayout_ & DataStorage::dslParticlePot) { |
855 | > | // This is the pairwise contribution to the particle pot. The |
856 | > | // embedding contribution is added in each of the low level |
857 | > | // non-bonded routines. In single processor, this is done in |
858 | > | // unpackInteractionData, not in collectData. |
859 | > | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
860 | > | for (int i = 0; i < nLocal_; i++) { |
861 | > | // factor of two is because the total potential terms are divided |
862 | > | // by 2 in parallel due to row/ column scatter |
863 | > | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
864 | > | } |
865 | > | } |
866 | > | } |
867 | > | |
868 | fill(pot_temp.begin(), pot_temp.end(), | |
869 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
870 | + | fill(expot_temp.begin(), expot_temp.end(), |
871 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
872 | ||
873 | < | AtomCommPotColumn->scatter(pot_col, pot_temp); |
873 | > | AtomPlanPotColumn->scatter(pot_col, pot_temp); |
874 | > | AtomPlanPotColumn->scatter(expot_col, expot_temp); |
875 | ||
876 | for (int ii = 0; ii < pot_temp.size(); ii++ ) | |
877 | pairwisePot += pot_temp[ii]; | |
878 | + | |
879 | + | for (int ii = 0; ii < expot_temp.size(); ii++ ) |
880 | + | excludedPot += expot_temp[ii]; |
881 | + | |
882 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
883 | + | // This is the pairwise contribution to the particle pot. The |
884 | + | // embedding contribution is added in each of the low level |
885 | + | // non-bonded routines. In single processor, this is done in |
886 | + | // unpackInteractionData, not in collectData. |
887 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
888 | + | for (int i = 0; i < nLocal_; i++) { |
889 | + | // factor of two is because the total potential terms are divided |
890 | + | // by 2 in parallel due to row/ column scatter |
891 | + | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
892 | + | } |
893 | + | } |
894 | + | } |
895 | + | |
896 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
897 | + | int npp = snap_->atomData.particlePot.size(); |
898 | + | vector<RealType> ppot_temp(npp, 0.0); |
899 | + | |
900 | + | // This is the direct or embedding contribution to the particle |
901 | + | // pot. |
902 | + | |
903 | + | AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); |
904 | + | for (int i = 0; i < npp; i++) { |
905 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; |
906 | + | } |
907 | + | |
908 | + | fill(ppot_temp.begin(), ppot_temp.end(), 0.0); |
909 | + | |
910 | + | AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); |
911 | + | for (int i = 0; i < npp; i++) { |
912 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; |
913 | + | } |
914 | + | } |
915 | + | |
916 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
917 | + | RealType ploc1 = pairwisePot[ii]; |
918 | + | RealType ploc2 = 0.0; |
919 | + | MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
920 | + | pairwisePot[ii] = ploc2; |
921 | + | } |
922 | + | |
923 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
924 | + | RealType ploc1 = excludedPot[ii]; |
925 | + | RealType ploc2 = 0.0; |
926 | + | MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
927 | + | excludedPot[ii] = ploc2; |
928 | + | } |
929 | + | |
930 | + | // Here be dragons. |
931 | + | MPI_Comm col = colComm.getComm(); |
932 | + | |
933 | + | MPI_Allreduce(MPI_IN_PLACE, |
934 | + | &snap_->frameData.conductiveHeatFlux[0], 3, |
935 | + | MPI_REALTYPE, MPI_SUM, col); |
936 | + | |
937 | + | |
938 | #endif | |
939 | ||
940 | } | |
941 | ||
942 | < | int ForceMatrixDecomposition::getNAtomsInRow() { |
942 | > | /** |
943 | > | * Collects information obtained during the post-pair (and embedding |
944 | > | * functional) loops onto local data structures. |
945 | > | */ |
946 | > | void ForceMatrixDecomposition::collectSelfData() { |
947 | > | snap_ = sman_->getCurrentSnapshot(); |
948 | > | storageLayout_ = sman_->getStorageLayout(); |
949 | > | |
950 | #ifdef IS_MPI | |
951 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
952 | + | RealType ploc1 = embeddingPot[ii]; |
953 | + | RealType ploc2 = 0.0; |
954 | + | MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
955 | + | embeddingPot[ii] = ploc2; |
956 | + | } |
957 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
958 | + | RealType ploc1 = excludedSelfPot[ii]; |
959 | + | RealType ploc2 = 0.0; |
960 | + | MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
961 | + | excludedSelfPot[ii] = ploc2; |
962 | + | } |
963 | + | #endif |
964 | + | |
965 | + | } |
966 | + | |
967 | + | |
968 | + | |
969 | + | int& ForceMatrixDecomposition::getNAtomsInRow() { |
970 | + | #ifdef IS_MPI |
971 | return nAtomsInRow_; | |
972 | #else | |
973 | return nLocal_; | |
# | Line 637 | Line 977 | namespace OpenMD { | |
977 | /** | |
978 | * returns the list of atoms belonging to this group. | |
979 | */ | |
980 | < | vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
980 | > | vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
981 | #ifdef IS_MPI | |
982 | return groupListRow_[cg1]; | |
983 | #else | |
# | Line 645 | Line 985 | namespace OpenMD { | |
985 | #endif | |
986 | } | |
987 | ||
988 | < | vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
988 | > | vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
989 | #ifdef IS_MPI | |
990 | return groupListCol_[cg2]; | |
991 | #else | |
# | Line 662 | Line 1002 | namespace OpenMD { | |
1002 | d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; | |
1003 | #endif | |
1004 | ||
1005 | < | snap_->wrapVector(d); |
1005 | > | if (usePeriodicBoundaryConditions_) { |
1006 | > | snap_->wrapVector(d); |
1007 | > | } |
1008 | return d; | |
1009 | } | |
1010 | ||
1011 | + | Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ |
1012 | + | #ifdef IS_MPI |
1013 | + | return cgColData.velocity[cg2]; |
1014 | + | #else |
1015 | + | return snap_->cgData.velocity[cg2]; |
1016 | + | #endif |
1017 | + | } |
1018 | ||
1019 | + | Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ |
1020 | + | #ifdef IS_MPI |
1021 | + | return atomColData.velocity[atom2]; |
1022 | + | #else |
1023 | + | return snap_->atomData.velocity[atom2]; |
1024 | + | #endif |
1025 | + | } |
1026 | + | |
1027 | + | |
1028 | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ | |
1029 | ||
1030 | Vector3d d; | |
# | Line 676 | Line 1034 | namespace OpenMD { | |
1034 | #else | |
1035 | d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; | |
1036 | #endif | |
1037 | < | |
1038 | < | snap_->wrapVector(d); |
1037 | > | if (usePeriodicBoundaryConditions_) { |
1038 | > | snap_->wrapVector(d); |
1039 | > | } |
1040 | return d; | |
1041 | } | |
1042 | ||
# | Line 689 | Line 1048 | namespace OpenMD { | |
1048 | #else | |
1049 | d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; | |
1050 | #endif | |
1051 | < | |
1052 | < | snap_->wrapVector(d); |
1051 | > | if (usePeriodicBoundaryConditions_) { |
1052 | > | snap_->wrapVector(d); |
1053 | > | } |
1054 | return d; | |
1055 | } | |
1056 | ||
1057 | < | RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
1057 | > | RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
1058 | #ifdef IS_MPI | |
1059 | return massFactorsRow[atom1]; | |
1060 | #else | |
# | Line 702 | Line 1062 | namespace OpenMD { | |
1062 | #endif | |
1063 | } | |
1064 | ||
1065 | < | RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
1065 | > | RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
1066 | #ifdef IS_MPI | |
1067 | return massFactorsCol[atom2]; | |
1068 | #else | |
# | Line 719 | Line 1079 | namespace OpenMD { | |
1079 | #else | |
1080 | d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; | |
1081 | #endif | |
1082 | < | |
1083 | < | snap_->wrapVector(d); |
1082 | > | if (usePeriodicBoundaryConditions_) { |
1083 | > | snap_->wrapVector(d); |
1084 | > | } |
1085 | return d; | |
1086 | } | |
1087 | ||
1088 | < | vector<int> ForceMatrixDecomposition::getSkipsForAtom(int atom1) { |
1089 | < | return skipsForAtom[atom1]; |
1088 | > | vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
1089 | > | return excludesForAtom[atom1]; |
1090 | } | |
1091 | ||
1092 | /** | |
1093 | < | * There are a number of reasons to skip a pair or a |
733 | < | * particle. Mostly we do this to exclude atoms who are involved in |
734 | < | * short range interactions (bonds, bends, torsions), but we also |
735 | < | * need to exclude some overcounted interactions that result from |
1093 | > | * We need to exclude some overcounted interactions that result from |
1094 | * the parallel decomposition. | |
1095 | */ | |
1096 | < | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
1096 | > | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { |
1097 | int unique_id_1, unique_id_2; | |
1098 | < | |
1098 | > | |
1099 | #ifdef IS_MPI | |
1100 | // in MPI, we have to look up the unique IDs for each atom | |
1101 | unique_id_1 = AtomRowToGlobal[atom1]; | |
1102 | unique_id_2 = AtomColToGlobal[atom2]; | |
1103 | + | // group1 = cgRowToGlobal[cg1]; |
1104 | + | // group2 = cgColToGlobal[cg2]; |
1105 | + | #else |
1106 | + | unique_id_1 = AtomLocalToGlobal[atom1]; |
1107 | + | unique_id_2 = AtomLocalToGlobal[atom2]; |
1108 | + | int group1 = cgLocalToGlobal[cg1]; |
1109 | + | int group2 = cgLocalToGlobal[cg2]; |
1110 | + | #endif |
1111 | ||
746 | – | // this situation should only arise in MPI simulations |
1112 | if (unique_id_1 == unique_id_2) return true; | |
1113 | < | |
1113 | > | |
1114 | > | #ifdef IS_MPI |
1115 | // this prevents us from doing the pair on multiple processors | |
1116 | if (unique_id_1 < unique_id_2) { | |
1117 | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; | |
1118 | } else { | |
1119 | < | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
1119 | > | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
1120 | } | |
1121 | < | #else |
1122 | < | // in the normal loop, the atom numbers are unique |
1123 | < | unique_id_1 = atom1; |
1124 | < | unique_id_2 = atom2; |
1121 | > | #endif |
1122 | > | |
1123 | > | #ifndef IS_MPI |
1124 | > | if (group1 == group2) { |
1125 | > | if (unique_id_1 < unique_id_2) return true; |
1126 | > | } |
1127 | #endif | |
1128 | ||
1129 | < | for (vector<int>::iterator i = skipsForAtom[atom1].begin(); |
1130 | < | i != skipsForAtom[atom1].end(); ++i) { |
1131 | < | if ( (*i) == unique_id_2 ) return true; |
1129 | > | return false; |
1130 | > | } |
1131 | > | |
1132 | > | /** |
1133 | > | * We need to handle the interactions for atoms who are involved in |
1134 | > | * the same rigid body as well as some short range interactions |
1135 | > | * (bonds, bends, torsions) differently from other interactions. |
1136 | > | * We'll still visit the pairwise routines, but with a flag that |
1137 | > | * tells those routines to exclude the pair from direct long range |
1138 | > | * interactions. Some indirect interactions (notably reaction |
1139 | > | * field) must still be handled for these pairs. |
1140 | > | */ |
1141 | > | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
1142 | > | |
1143 | > | // excludesForAtom was constructed to use row/column indices in the MPI |
1144 | > | // version, and to use local IDs in the non-MPI version: |
1145 | > | |
1146 | > | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
1147 | > | i != excludesForAtom[atom1].end(); ++i) { |
1148 | > | if ( (*i) == atom2 ) return true; |
1149 | } | |
1150 | ||
1151 | return false; | |
# | Line 785 | Line 1170 | namespace OpenMD { | |
1170 | ||
1171 | // filling interaction blocks with pointers | |
1172 | void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, | |
1173 | < | int atom1, int atom2) { |
1173 | > | int atom1, int atom2) { |
1174 | > | |
1175 | > | idat.excluded = excludeAtomPair(atom1, atom2); |
1176 | > | |
1177 | #ifdef IS_MPI | |
1178 | < | |
1179 | < | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
1180 | < | ff_->getAtomType(identsCol[atom2]) ); |
1181 | < | |
1178 | > | //idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
1179 | > | idat.atid1 = identsRow[atom1]; |
1180 | > | idat.atid2 = identsCol[atom2]; |
1181 | > | |
1182 | > | if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) { |
1183 | > | idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]); |
1184 | > | } else { |
1185 | > | idat.sameRegion = false; |
1186 | > | } |
1187 | > | |
1188 | if (storageLayout_ & DataStorage::dslAmat) { | |
1189 | idat.A1 = &(atomRowData.aMat[atom1]); | |
1190 | idat.A2 = &(atomColData.aMat[atom2]); | |
1191 | } | |
1192 | ||
799 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { |
800 | – | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
801 | – | idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
802 | – | } |
803 | – | |
1193 | if (storageLayout_ & DataStorage::dslTorque) { | |
1194 | idat.t1 = &(atomRowData.torque[atom1]); | |
1195 | idat.t2 = &(atomColData.torque[atom2]); | |
1196 | } | |
1197 | ||
1198 | + | if (storageLayout_ & DataStorage::dslDipole) { |
1199 | + | idat.dipole1 = &(atomRowData.dipole[atom1]); |
1200 | + | idat.dipole2 = &(atomColData.dipole[atom2]); |
1201 | + | } |
1202 | + | |
1203 | + | if (storageLayout_ & DataStorage::dslQuadrupole) { |
1204 | + | idat.quadrupole1 = &(atomRowData.quadrupole[atom1]); |
1205 | + | idat.quadrupole2 = &(atomColData.quadrupole[atom2]); |
1206 | + | } |
1207 | + | |
1208 | if (storageLayout_ & DataStorage::dslDensity) { | |
1209 | idat.rho1 = &(atomRowData.density[atom1]); | |
1210 | idat.rho2 = &(atomColData.density[atom2]); | |
# | Line 826 | Line 1225 | namespace OpenMD { | |
1225 | idat.particlePot2 = &(atomColData.particlePot[atom2]); | |
1226 | } | |
1227 | ||
1228 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
1229 | + | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
1230 | + | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
1231 | + | } |
1232 | + | |
1233 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1234 | + | idat.flucQ1 = &(atomRowData.flucQPos[atom1]); |
1235 | + | idat.flucQ2 = &(atomColData.flucQPos[atom2]); |
1236 | + | } |
1237 | + | |
1238 | #else | |
1239 | + | |
1240 | + | //idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
1241 | + | idat.atid1 = idents[atom1]; |
1242 | + | idat.atid2 = idents[atom2]; |
1243 | ||
1244 | < | idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
1245 | < | ff_->getAtomType(idents[atom2]) ); |
1244 | > | if (regions[atom1] >= 0 && regions[atom2] >= 0) { |
1245 | > | idat.sameRegion = (regions[atom1] == regions[atom2]); |
1246 | > | } else { |
1247 | > | idat.sameRegion = false; |
1248 | > | } |
1249 | ||
1250 | if (storageLayout_ & DataStorage::dslAmat) { | |
1251 | idat.A1 = &(snap_->atomData.aMat[atom1]); | |
1252 | idat.A2 = &(snap_->atomData.aMat[atom2]); | |
1253 | } | |
1254 | ||
839 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { |
840 | – | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
841 | – | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
842 | – | } |
843 | – | |
1255 | if (storageLayout_ & DataStorage::dslTorque) { | |
1256 | idat.t1 = &(snap_->atomData.torque[atom1]); | |
1257 | idat.t2 = &(snap_->atomData.torque[atom2]); | |
1258 | } | |
1259 | ||
1260 | + | if (storageLayout_ & DataStorage::dslDipole) { |
1261 | + | idat.dipole1 = &(snap_->atomData.dipole[atom1]); |
1262 | + | idat.dipole2 = &(snap_->atomData.dipole[atom2]); |
1263 | + | } |
1264 | + | |
1265 | + | if (storageLayout_ & DataStorage::dslQuadrupole) { |
1266 | + | idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]); |
1267 | + | idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]); |
1268 | + | } |
1269 | + | |
1270 | if (storageLayout_ & DataStorage::dslDensity) { | |
1271 | idat.rho1 = &(snap_->atomData.density[atom1]); | |
1272 | idat.rho2 = &(snap_->atomData.density[atom2]); | |
# | Line 866 | Line 1287 | namespace OpenMD { | |
1287 | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); | |
1288 | } | |
1289 | ||
1290 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
1291 | + | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
1292 | + | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
1293 | + | } |
1294 | + | |
1295 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1296 | + | idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); |
1297 | + | idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); |
1298 | + | } |
1299 | + | |
1300 | #endif | |
1301 | } | |
1302 | ||
1303 | ||
1304 | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { | |
1305 | #ifdef IS_MPI | |
1306 | < | pot_row[atom1] += 0.5 * *(idat.pot); |
1307 | < | pot_col[atom2] += 0.5 * *(idat.pot); |
1306 | > | pot_row[atom1] += RealType(0.5) * *(idat.pot); |
1307 | > | pot_col[atom2] += RealType(0.5) * *(idat.pot); |
1308 | > | expot_row[atom1] += RealType(0.5) * *(idat.excludedPot); |
1309 | > | expot_col[atom2] += RealType(0.5) * *(idat.excludedPot); |
1310 | ||
1311 | atomRowData.force[atom1] += *(idat.f1); | |
1312 | atomColData.force[atom2] -= *(idat.f1); | |
880 | – | #else |
881 | – | pairwisePot += *(idat.pot); |
1313 | ||
1314 | < | snap_->atomData.force[atom1] += *(idat.f1); |
1315 | < | snap_->atomData.force[atom2] -= *(idat.f1); |
1316 | < | #endif |
886 | < | |
887 | < | } |
888 | < | |
889 | < | |
890 | < | void ForceMatrixDecomposition::fillSkipData(InteractionData &idat, |
891 | < | int atom1, int atom2) { |
892 | < | #ifdef IS_MPI |
893 | < | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
894 | < | ff_->getAtomType(identsCol[atom2]) ); |
895 | < | |
896 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { |
897 | < | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
898 | < | idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
1314 | > | if (storageLayout_ & DataStorage::dslFlucQForce) { |
1315 | > | atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1316 | > | atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1317 | } | |
1318 | ||
1319 | < | if (storageLayout_ & DataStorage::dslTorque) { |
1320 | < | idat.t1 = &(atomRowData.torque[atom1]); |
1321 | < | idat.t2 = &(atomColData.torque[atom2]); |
1319 | > | if (storageLayout_ & DataStorage::dslElectricField) { |
1320 | > | atomRowData.electricField[atom1] += *(idat.eField1); |
1321 | > | atomColData.electricField[atom2] += *(idat.eField2); |
1322 | } | |
1323 | ||
906 | – | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
907 | – | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
908 | – | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
909 | – | } |
1324 | #else | |
1325 | < | idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
1326 | < | ff_->getAtomType(idents[atom2]) ); |
1325 | > | pairwisePot += *(idat.pot); |
1326 | > | excludedPot += *(idat.excludedPot); |
1327 | ||
1328 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { |
1329 | < | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
916 | < | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
917 | < | } |
1328 | > | snap_->atomData.force[atom1] += *(idat.f1); |
1329 | > | snap_->atomData.force[atom2] -= *(idat.f1); |
1330 | ||
1331 | < | if (storageLayout_ & DataStorage::dslTorque) { |
1332 | < | idat.t1 = &(snap_->atomData.torque[atom1]); |
1333 | < | idat.t2 = &(snap_->atomData.torque[atom2]); |
1331 | > | if (idat.doParticlePot) { |
1332 | > | // This is the pairwise contribution to the particle pot. The |
1333 | > | // embedding contribution is added in each of the low level |
1334 | > | // non-bonded routines. In parallel, this calculation is done |
1335 | > | // in collectData, not in unpackInteractionData. |
1336 | > | snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); |
1337 | > | snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); |
1338 | } | |
1339 | + | |
1340 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
1341 | + | snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1342 | + | snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1343 | + | } |
1344 | ||
1345 | < | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
1346 | < | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
1347 | < | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
1345 | > | if (storageLayout_ & DataStorage::dslElectricField) { |
1346 | > | snap_->atomData.electricField[atom1] += *(idat.eField1); |
1347 | > | snap_->atomData.electricField[atom2] += *(idat.eField2); |
1348 | } | |
928 | – | #endif |
929 | – | } |
1349 | ||
931 | – | |
932 | – | void ForceMatrixDecomposition::unpackSkipData(InteractionData &idat, int atom1, int atom2) { |
933 | – | #ifdef IS_MPI |
934 | – | pot_row[atom1] += 0.5 * *(idat.pot); |
935 | – | pot_col[atom2] += 0.5 * *(idat.pot); |
936 | – | #else |
937 | – | pairwisePot += *(idat.pot); |
1350 | #endif | |
1351 | < | |
1351 | > | |
1352 | } | |
1353 | ||
942 | – | |
1354 | /* | |
1355 | * buildNeighborList | |
1356 | * | |
1357 | * first element of pair is row-indexed CutoffGroup | |
1358 | * second element of pair is column-indexed CutoffGroup | |
1359 | */ | |
1360 | < | vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { |
1361 | < | |
1362 | < | vector<pair<int, int> > neighborList; |
1360 | > | void ForceMatrixDecomposition::buildNeighborList(vector<pair<int,int> >& neighborList) { |
1361 | > | |
1362 | > | neighborList.clear(); |
1363 | groupCutoffs cuts; | |
1364 | < | #ifdef IS_MPI |
954 | < | cellListRow_.clear(); |
955 | < | cellListCol_.clear(); |
956 | < | #else |
957 | < | cellList_.clear(); |
958 | < | #endif |
1364 | > | bool doAllPairs = false; |
1365 | ||
1366 | RealType rList_ = (largestRcut_ + skinThickness_); | |
1367 | < | RealType rl2 = rList_ * rList_; |
1367 | > | RealType rcut, rcutsq, rlistsq; |
1368 | Snapshot* snap_ = sman_->getCurrentSnapshot(); | |
1369 | < | Mat3x3d Hmat = snap_->getHmat(); |
1370 | < | Vector3d Hx = Hmat.getColumn(0); |
965 | < | Vector3d Hy = Hmat.getColumn(1); |
966 | < | Vector3d Hz = Hmat.getColumn(2); |
1369 | > | Mat3x3d box; |
1370 | > | Mat3x3d invBox; |
1371 | ||
968 | – | nCells_.x() = (int) ( Hx.length() )/ rList_; |
969 | – | nCells_.y() = (int) ( Hy.length() )/ rList_; |
970 | – | nCells_.z() = (int) ( Hz.length() )/ rList_; |
971 | – | |
972 | – | Mat3x3d invHmat = snap_->getInvHmat(); |
1372 | Vector3d rs, scaled, dr; | |
1373 | Vector3i whichCell; | |
1374 | int cellIndex; | |
976 | – | int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
1375 | ||
1376 | #ifdef IS_MPI | |
1377 | + | cellListRow_.clear(); |
1378 | + | cellListCol_.clear(); |
1379 | + | #else |
1380 | + | cellList_.clear(); |
1381 | + | #endif |
1382 | + | |
1383 | + | if (!usePeriodicBoundaryConditions_) { |
1384 | + | box = snap_->getBoundingBox(); |
1385 | + | invBox = snap_->getInvBoundingBox(); |
1386 | + | } else { |
1387 | + | box = snap_->getHmat(); |
1388 | + | invBox = snap_->getInvHmat(); |
1389 | + | } |
1390 | + | |
1391 | + | Vector3d boxX = box.getColumn(0); |
1392 | + | Vector3d boxY = box.getColumn(1); |
1393 | + | Vector3d boxZ = box.getColumn(2); |
1394 | + | |
1395 | + | nCells_.x() = int( boxX.length() / rList_ ); |
1396 | + | nCells_.y() = int( boxY.length() / rList_ ); |
1397 | + | nCells_.z() = int( boxZ.length() / rList_ ); |
1398 | + | |
1399 | + | // handle small boxes where the cell offsets can end up repeating cells |
1400 | + | |
1401 | + | if (nCells_.x() < 3) doAllPairs = true; |
1402 | + | if (nCells_.y() < 3) doAllPairs = true; |
1403 | + | if (nCells_.z() < 3) doAllPairs = true; |
1404 | + | |
1405 | + | int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
1406 | + | |
1407 | + | #ifdef IS_MPI |
1408 | cellListRow_.resize(nCtot); | |
1409 | cellListCol_.resize(nCtot); | |
1410 | #else | |
1411 | cellList_.resize(nCtot); | |
1412 | #endif | |
1413 | < | |
1413 | > | |
1414 | > | if (!doAllPairs) { |
1415 | #ifdef IS_MPI | |
1416 | < | for (int i = 0; i < nGroupsInRow_; i++) { |
1417 | < | rs = cgRowData.position[i]; |
1418 | < | |
1419 | < | // scaled positions relative to the box vectors |
1420 | < | scaled = invHmat * rs; |
1421 | < | |
1422 | < | // wrap the vector back into the unit box by subtracting integer box |
1423 | < | // numbers |
1424 | < | for (int j = 0; j < 3; j++) { |
1425 | < | scaled[j] -= roundMe(scaled[j]); |
1426 | < | scaled[j] += 0.5; |
1416 | > | |
1417 | > | for (int i = 0; i < nGroupsInRow_; i++) { |
1418 | > | rs = cgRowData.position[i]; |
1419 | > | |
1420 | > | // scaled positions relative to the box vectors |
1421 | > | scaled = invBox * rs; |
1422 | > | |
1423 | > | // wrap the vector back into the unit box by subtracting integer box |
1424 | > | // numbers |
1425 | > | for (int j = 0; j < 3; j++) { |
1426 | > | scaled[j] -= roundMe(scaled[j]); |
1427 | > | scaled[j] += 0.5; |
1428 | > | // Handle the special case when an object is exactly on the |
1429 | > | // boundary (a scaled coordinate of 1.0 is the same as |
1430 | > | // scaled coordinate of 0.0) |
1431 | > | if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1432 | > | } |
1433 | > | |
1434 | > | // find xyz-indices of cell that cutoffGroup is in. |
1435 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1436 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1437 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1438 | > | |
1439 | > | // find single index of this cell: |
1440 | > | cellIndex = Vlinear(whichCell, nCells_); |
1441 | > | |
1442 | > | // add this cutoff group to the list of groups in this cell; |
1443 | > | cellListRow_[cellIndex].push_back(i); |
1444 | } | |
1445 | < | |
1446 | < | // find xyz-indices of cell that cutoffGroup is in. |
1447 | < | whichCell.x() = nCells_.x() * scaled.x(); |
1448 | < | whichCell.y() = nCells_.y() * scaled.y(); |
1449 | < | whichCell.z() = nCells_.z() * scaled.z(); |
1450 | < | |
1451 | < | // find single index of this cell: |
1452 | < | cellIndex = Vlinear(whichCell, nCells_); |
1453 | < | |
1454 | < | // add this cutoff group to the list of groups in this cell; |
1455 | < | cellListRow_[cellIndex].push_back(i); |
1456 | < | } |
1457 | < | |
1458 | < | for (int i = 0; i < nGroupsInCol_; i++) { |
1459 | < | rs = cgColData.position[i]; |
1460 | < | |
1461 | < | // scaled positions relative to the box vectors |
1462 | < | scaled = invHmat * rs; |
1463 | < | |
1464 | < | // wrap the vector back into the unit box by subtracting integer box |
1465 | < | // numbers |
1466 | < | for (int j = 0; j < 3; j++) { |
1467 | < | scaled[j] -= roundMe(scaled[j]); |
1468 | < | scaled[j] += 0.5; |
1445 | > | for (int i = 0; i < nGroupsInCol_; i++) { |
1446 | > | rs = cgColData.position[i]; |
1447 | > | |
1448 | > | // scaled positions relative to the box vectors |
1449 | > | scaled = invBox * rs; |
1450 | > | |
1451 | > | // wrap the vector back into the unit box by subtracting integer box |
1452 | > | // numbers |
1453 | > | for (int j = 0; j < 3; j++) { |
1454 | > | scaled[j] -= roundMe(scaled[j]); |
1455 | > | scaled[j] += 0.5; |
1456 | > | // Handle the special case when an object is exactly on the |
1457 | > | // boundary (a scaled coordinate of 1.0 is the same as |
1458 | > | // scaled coordinate of 0.0) |
1459 | > | if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1460 | > | } |
1461 | > | |
1462 | > | // find xyz-indices of cell that cutoffGroup is in. |
1463 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1464 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1465 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1466 | > | |
1467 | > | // find single index of this cell: |
1468 | > | cellIndex = Vlinear(whichCell, nCells_); |
1469 | > | |
1470 | > | // add this cutoff group to the list of groups in this cell; |
1471 | > | cellListCol_[cellIndex].push_back(i); |
1472 | } | |
1473 | < | |
1024 | < | // find xyz-indices of cell that cutoffGroup is in. |
1025 | < | whichCell.x() = nCells_.x() * scaled.x(); |
1026 | < | whichCell.y() = nCells_.y() * scaled.y(); |
1027 | < | whichCell.z() = nCells_.z() * scaled.z(); |
1028 | < | |
1029 | < | // find single index of this cell: |
1030 | < | cellIndex = Vlinear(whichCell, nCells_); |
1031 | < | |
1032 | < | // add this cutoff group to the list of groups in this cell; |
1033 | < | cellListCol_[cellIndex].push_back(i); |
1034 | < | } |
1473 | > | |
1474 | #else | |
1475 | < | for (int i = 0; i < nGroups_; i++) { |
1476 | < | rs = snap_->cgData.position[i]; |
1477 | < | |
1478 | < | // scaled positions relative to the box vectors |
1479 | < | scaled = invHmat * rs; |
1480 | < | |
1481 | < | // wrap the vector back into the unit box by subtracting integer box |
1482 | < | // numbers |
1483 | < | for (int j = 0; j < 3; j++) { |
1484 | < | scaled[j] -= roundMe(scaled[j]); |
1485 | < | scaled[j] += 0.5; |
1475 | > | for (int i = 0; i < nGroups_; i++) { |
1476 | > | rs = snap_->cgData.position[i]; |
1477 | > | |
1478 | > | // scaled positions relative to the box vectors |
1479 | > | scaled = invBox * rs; |
1480 | > | |
1481 | > | // wrap the vector back into the unit box by subtracting integer box |
1482 | > | // numbers |
1483 | > | for (int j = 0; j < 3; j++) { |
1484 | > | scaled[j] -= roundMe(scaled[j]); |
1485 | > | scaled[j] += 0.5; |
1486 | > | // Handle the special case when an object is exactly on the |
1487 | > | // boundary (a scaled coordinate of 1.0 is the same as |
1488 | > | // scaled coordinate of 0.0) |
1489 | > | if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1490 | > | } |
1491 | > | |
1492 | > | // find xyz-indices of cell that cutoffGroup is in. |
1493 | > | whichCell.x() = int(nCells_.x() * scaled.x()); |
1494 | > | whichCell.y() = int(nCells_.y() * scaled.y()); |
1495 | > | whichCell.z() = int(nCells_.z() * scaled.z()); |
1496 | > | |
1497 | > | // find single index of this cell: |
1498 | > | cellIndex = Vlinear(whichCell, nCells_); |
1499 | > | |
1500 | > | // add this cutoff group to the list of groups in this cell; |
1501 | > | cellList_[cellIndex].push_back(i); |
1502 | } | |
1503 | ||
1049 | – | // find xyz-indices of cell that cutoffGroup is in. |
1050 | – | whichCell.x() = nCells_.x() * scaled.x(); |
1051 | – | whichCell.y() = nCells_.y() * scaled.y(); |
1052 | – | whichCell.z() = nCells_.z() * scaled.z(); |
1053 | – | |
1054 | – | // find single index of this cell: |
1055 | – | cellIndex = Vlinear(whichCell, nCells_); |
1056 | – | |
1057 | – | // add this cutoff group to the list of groups in this cell; |
1058 | – | cellList_[cellIndex].push_back(i); |
1059 | – | } |
1504 | #endif | |
1505 | ||
1506 | < | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1507 | < | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1508 | < | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1509 | < | Vector3i m1v(m1x, m1y, m1z); |
1510 | < | int m1 = Vlinear(m1v, nCells_); |
1067 | < | |
1068 | < | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1069 | < | os != cellOffsets_.end(); ++os) { |
1506 | > | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1507 | > | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1508 | > | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1509 | > | Vector3i m1v(m1x, m1y, m1z); |
1510 | > | int m1 = Vlinear(m1v, nCells_); |
1511 | ||
1512 | < | Vector3i m2v = m1v + (*os); |
1513 | < | |
1514 | < | if (m2v.x() >= nCells_.x()) { |
1515 | < | m2v.x() = 0; |
1516 | < | } else if (m2v.x() < 0) { |
1076 | < | m2v.x() = nCells_.x() - 1; |
1077 | < | } |
1078 | < | |
1079 | < | if (m2v.y() >= nCells_.y()) { |
1080 | < | m2v.y() = 0; |
1081 | < | } else if (m2v.y() < 0) { |
1082 | < | m2v.y() = nCells_.y() - 1; |
1083 | < | } |
1084 | < | |
1085 | < | if (m2v.z() >= nCells_.z()) { |
1086 | < | m2v.z() = 0; |
1087 | < | } else if (m2v.z() < 0) { |
1088 | < | m2v.z() = nCells_.z() - 1; |
1089 | < | } |
1090 | < | |
1091 | < | int m2 = Vlinear (m2v, nCells_); |
1512 | > | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1513 | > | os != cellOffsets_.end(); ++os) { |
1514 | > | |
1515 | > | Vector3i m2v = m1v + (*os); |
1516 | > | |
1517 | ||
1518 | < | #ifdef IS_MPI |
1519 | < | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1520 | < | j1 != cellListRow_[m1].end(); ++j1) { |
1521 | < | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1522 | < | j2 != cellListCol_[m2].end(); ++j2) { |
1523 | < | |
1524 | < | // Always do this if we're in different cells or if |
1525 | < | // we're in the same cell and the global index of the |
1526 | < | // j2 cutoff group is less than the j1 cutoff group |
1518 | > | if (m2v.x() >= nCells_.x()) { |
1519 | > | m2v.x() = 0; |
1520 | > | } else if (m2v.x() < 0) { |
1521 | > | m2v.x() = nCells_.x() - 1; |
1522 | > | } |
1523 | > | |
1524 | > | if (m2v.y() >= nCells_.y()) { |
1525 | > | m2v.y() = 0; |
1526 | > | } else if (m2v.y() < 0) { |
1527 | > | m2v.y() = nCells_.y() - 1; |
1528 | > | } |
1529 | > | |
1530 | > | if (m2v.z() >= nCells_.z()) { |
1531 | > | m2v.z() = 0; |
1532 | > | } else if (m2v.z() < 0) { |
1533 | > | m2v.z() = nCells_.z() - 1; |
1534 | > | } |
1535 | ||
1536 | < | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1536 | > | int m2 = Vlinear (m2v, nCells_); |
1537 | > | |
1538 | > | #ifdef IS_MPI |
1539 | > | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1540 | > | j1 != cellListRow_[m1].end(); ++j1) { |
1541 | > | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1542 | > | j2 != cellListCol_[m2].end(); ++j2) { |
1543 | > | |
1544 | > | // In parallel, we need to visit *all* pairs of row |
1545 | > | // & column indicies and will divide labor in the |
1546 | > | // force evaluation later. |
1547 | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | |
1548 | < | snap_->wrapVector(dr); |
1549 | < | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1107 | < | if (dr.lengthSquare() < cuts.third) { |
1108 | < | neighborList.push_back(make_pair((*j1), (*j2))); |
1548 | > | if (usePeriodicBoundaryConditions_) { |
1549 | > | snap_->wrapVector(dr); |
1550 | } | |
1551 | + | getGroupCutoffs( (*j1), (*j2), rcut, rcutsq, rlistsq ); |
1552 | + | if (dr.lengthSquare() < rlistsq) { |
1553 | + | neighborList.push_back(make_pair((*j1), (*j2))); |
1554 | + | } |
1555 | } | |
1556 | } | |
1112 | – | } |
1557 | #else | |
1558 | + | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1559 | + | j1 != cellList_[m1].end(); ++j1) { |
1560 | + | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1561 | + | j2 != cellList_[m2].end(); ++j2) { |
1562 | + | |
1563 | + | // Always do this if we're in different cells or if |
1564 | + | // we're in the same cell and the global index of |
1565 | + | // the j2 cutoff group is greater than or equal to |
1566 | + | // the j1 cutoff group. Note that Rappaport's code |
1567 | + | // has a "less than" conditional here, but that |
1568 | + | // deals with atom-by-atom computation. OpenMD |
1569 | + | // allows atoms within a single cutoff group to |
1570 | + | // interact with each other. |
1571 | ||
1572 | < | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1116 | < | j1 != cellList_[m1].end(); ++j1) { |
1117 | < | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1118 | < | j2 != cellList_[m2].end(); ++j2) { |
1572 | > | if (m2 != m1 || (*j2) >= (*j1) ) { |
1573 | ||
1574 | < | // Always do this if we're in different cells or if |
1575 | < | // we're in the same cell and the global index of the |
1576 | < | // j2 cutoff group is less than the j1 cutoff group |
1577 | < | |
1578 | < | if (m2 != m1 || (*j2) < (*j1)) { |
1579 | < | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1580 | < | snap_->wrapVector(dr); |
1581 | < | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1128 | < | if (dr.lengthSquare() < cuts.third) { |
1129 | < | neighborList.push_back(make_pair((*j1), (*j2))); |
1574 | > | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1575 | > | if (usePeriodicBoundaryConditions_) { |
1576 | > | snap_->wrapVector(dr); |
1577 | > | } |
1578 | > | getGroupCutoffs( (*j1), (*j2), rcut, rcutsq, rlistsq ); |
1579 | > | if (dr.lengthSquare() < rlistsq) { |
1580 | > | neighborList.push_back(make_pair((*j1), (*j2))); |
1581 | > | } |
1582 | } | |
1583 | } | |
1584 | } | |
1133 | – | } |
1585 | #endif | |
1586 | + | } |
1587 | } | |
1588 | } | |
1589 | } | |
1590 | + | } else { |
1591 | + | // branch to do all cutoff group pairs |
1592 | + | #ifdef IS_MPI |
1593 | + | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1594 | + | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1595 | + | dr = cgColData.position[j2] - cgRowData.position[j1]; |
1596 | + | if (usePeriodicBoundaryConditions_) { |
1597 | + | snap_->wrapVector(dr); |
1598 | + | } |
1599 | + | getGroupCutoffs( j1, j2, rcut, rcutsq, rlistsq); |
1600 | + | if (dr.lengthSquare() < rlistsq) { |
1601 | + | neighborList.push_back(make_pair(j1, j2)); |
1602 | + | } |
1603 | + | } |
1604 | + | } |
1605 | + | #else |
1606 | + | // include all groups here. |
1607 | + | for (int j1 = 0; j1 < nGroups_; j1++) { |
1608 | + | // include self group interactions j2 == j1 |
1609 | + | for (int j2 = j1; j2 < nGroups_; j2++) { |
1610 | + | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1611 | + | if (usePeriodicBoundaryConditions_) { |
1612 | + | snap_->wrapVector(dr); |
1613 | + | } |
1614 | + | getGroupCutoffs( j1, j2, rcut, rcutsq, rlistsq ); |
1615 | + | if (dr.lengthSquare() < rlistsq) { |
1616 | + | neighborList.push_back(make_pair(j1, j2)); |
1617 | + | } |
1618 | + | } |
1619 | + | } |
1620 | + | #endif |
1621 | } | |
1622 | < | |
1622 | > | |
1623 | // save the local cutoff group positions for the check that is | |
1624 | // done on each loop: | |
1625 | saved_CG_positions_.clear(); | |
1626 | for (int i = 0; i < nGroups_; i++) | |
1627 | saved_CG_positions_.push_back(snap_->cgData.position[i]); | |
1145 | – | |
1146 | – | return neighborList; |
1628 | } | |
1629 | } //end namespace OpenMD |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |