# | Line 35 | Line 35 | |
---|---|---|
35 | * | |
36 | * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | |
37 | * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | |
38 | < | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 | < | * [4] Vardeman & Gezelter, in progress (2009). |
38 | > | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 | > | * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 | > | * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 | */ | |
42 | #include "parallel/ForceMatrixDecomposition.hpp" | |
43 | #include "math/SquareMatrix3.hpp" | |
# | Line 47 | Line 48 | namespace OpenMD { | |
48 | using namespace std; | |
49 | namespace OpenMD { | |
50 | ||
51 | + | ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { |
52 | + | |
53 | + | // In a parallel computation, row and colum scans must visit all |
54 | + | // surrounding cells (not just the 14 upper triangular blocks that |
55 | + | // are used when the processor can see all pairs) |
56 | + | #ifdef IS_MPI |
57 | + | cellOffsets_.clear(); |
58 | + | cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
59 | + | cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
60 | + | cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
61 | + | cellOffsets_.push_back( Vector3i(-1, 0,-1) ); |
62 | + | cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
63 | + | cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
64 | + | cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
65 | + | cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
66 | + | cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
67 | + | cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
68 | + | cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
69 | + | cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
70 | + | cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
71 | + | cellOffsets_.push_back( Vector3i( 0, 0, 0) ); |
72 | + | cellOffsets_.push_back( Vector3i( 1, 0, 0) ); |
73 | + | cellOffsets_.push_back( Vector3i(-1, 1, 0) ); |
74 | + | cellOffsets_.push_back( Vector3i( 0, 1, 0) ); |
75 | + | cellOffsets_.push_back( Vector3i( 1, 1, 0) ); |
76 | + | cellOffsets_.push_back( Vector3i(-1,-1, 1) ); |
77 | + | cellOffsets_.push_back( Vector3i( 0,-1, 1) ); |
78 | + | cellOffsets_.push_back( Vector3i( 1,-1, 1) ); |
79 | + | cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
80 | + | cellOffsets_.push_back( Vector3i( 0, 0, 1) ); |
81 | + | cellOffsets_.push_back( Vector3i( 1, 0, 1) ); |
82 | + | cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
83 | + | cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
84 | + | cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
85 | + | #endif |
86 | + | } |
87 | + | |
88 | + | |
89 | /** | |
90 | * distributeInitialData is essentially a copy of the older fortran | |
91 | * SimulationSetup | |
92 | */ | |
54 | – | |
93 | void ForceMatrixDecomposition::distributeInitialData() { | |
94 | snap_ = sman_->getCurrentSnapshot(); | |
95 | storageLayout_ = sman_->getStorageLayout(); | |
96 | ff_ = info_->getForceField(); | |
97 | nLocal_ = snap_->getNumberOfAtoms(); | |
98 | < | |
98 | > | |
99 | nGroups_ = info_->getNLocalCutoffGroups(); | |
100 | // gather the information for atomtype IDs (atids): | |
101 | < | identsLocal = info_->getIdentArray(); |
101 | > | idents = info_->getIdentArray(); |
102 | > | regions = info_->getRegions(); |
103 | AtomLocalToGlobal = info_->getGlobalAtomIndices(); | |
104 | cgLocalToGlobal = info_->getGlobalGroupIndices(); | |
105 | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); | |
67 | – | vector<RealType> massFactorsLocal = info_->getMassFactors(); |
68 | – | PairList excludes = info_->getExcludedInteractions(); |
69 | – | PairList oneTwo = info_->getOneTwoInteractions(); |
70 | – | PairList oneThree = info_->getOneThreeInteractions(); |
71 | – | PairList oneFour = info_->getOneFourInteractions(); |
106 | ||
107 | + | massFactors = info_->getMassFactors(); |
108 | + | |
109 | + | PairList* excludes = info_->getExcludedInteractions(); |
110 | + | PairList* oneTwo = info_->getOneTwoInteractions(); |
111 | + | PairList* oneThree = info_->getOneThreeInteractions(); |
112 | + | PairList* oneFour = info_->getOneFourInteractions(); |
113 | + | |
114 | + | if (needVelocities_) |
115 | + | snap_->cgData.setStorageLayout(DataStorage::dslPosition | |
116 | + | DataStorage::dslVelocity); |
117 | + | else |
118 | + | snap_->cgData.setStorageLayout(DataStorage::dslPosition); |
119 | + | |
120 | #ifdef IS_MPI | |
121 | ||
122 | < | AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
123 | < | AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
77 | < | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
78 | < | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
79 | < | AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
122 | > | MPI_Comm row = rowComm.getComm(); |
123 | > | MPI_Comm col = colComm.getComm(); |
124 | ||
125 | < | AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
126 | < | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
127 | < | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
128 | < | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
129 | < | AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
125 | > | AtomPlanIntRow = new Plan<int>(row, nLocal_); |
126 | > | AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
127 | > | AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); |
128 | > | AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); |
129 | > | AtomPlanPotRow = new Plan<potVec>(row, nLocal_); |
130 | ||
131 | < | cgCommIntRow = new Communicator<Row,int>(nGroups_); |
132 | < | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
133 | < | cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
134 | < | cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
131 | > | AtomPlanIntColumn = new Plan<int>(col, nLocal_); |
132 | > | AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); |
133 | > | AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); |
134 | > | AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); |
135 | > | AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); |
136 | ||
137 | < | nAtomsInRow_ = AtomCommIntRow->getSize(); |
138 | < | nAtomsInCol_ = AtomCommIntColumn->getSize(); |
139 | < | nGroupsInRow_ = cgCommIntRow->getSize(); |
140 | < | nGroupsInCol_ = cgCommIntColumn->getSize(); |
137 | > | cgPlanIntRow = new Plan<int>(row, nGroups_); |
138 | > | cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); |
139 | > | cgPlanIntColumn = new Plan<int>(col, nGroups_); |
140 | > | cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); |
141 | ||
142 | + | nAtomsInRow_ = AtomPlanIntRow->getSize(); |
143 | + | nAtomsInCol_ = AtomPlanIntColumn->getSize(); |
144 | + | nGroupsInRow_ = cgPlanIntRow->getSize(); |
145 | + | nGroupsInCol_ = cgPlanIntColumn->getSize(); |
146 | + | |
147 | // Modify the data storage objects with the correct layouts and sizes: | |
148 | atomRowData.resize(nAtomsInRow_); | |
149 | atomRowData.setStorageLayout(storageLayout_); | |
# | Line 102 | Line 152 | namespace OpenMD { | |
152 | cgRowData.resize(nGroupsInRow_); | |
153 | cgRowData.setStorageLayout(DataStorage::dslPosition); | |
154 | cgColData.resize(nGroupsInCol_); | |
155 | < | cgColData.setStorageLayout(DataStorage::dslPosition); |
156 | < | |
155 | > | if (needVelocities_) |
156 | > | // we only need column velocities if we need them. |
157 | > | cgColData.setStorageLayout(DataStorage::dslPosition | |
158 | > | DataStorage::dslVelocity); |
159 | > | else |
160 | > | cgColData.setStorageLayout(DataStorage::dslPosition); |
161 | > | |
162 | identsRow.resize(nAtomsInRow_); | |
163 | identsCol.resize(nAtomsInCol_); | |
164 | ||
165 | < | AtomCommIntRow->gather(identsLocal, identsRow); |
166 | < | AtomCommIntColumn->gather(identsLocal, identsCol); |
165 | > | AtomPlanIntRow->gather(idents, identsRow); |
166 | > | AtomPlanIntColumn->gather(idents, identsCol); |
167 | > | |
168 | > | regionsRow.resize(nAtomsInRow_); |
169 | > | regionsCol.resize(nAtomsInCol_); |
170 | ||
171 | < | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
172 | < | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
171 | > | AtomPlanIntRow->gather(regions, regionsRow); |
172 | > | AtomPlanIntColumn->gather(regions, regionsCol); |
173 | ||
174 | < | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
175 | < | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
174 | > | // allocate memory for the parallel objects |
175 | > | atypesRow.resize(nAtomsInRow_); |
176 | > | atypesCol.resize(nAtomsInCol_); |
177 | ||
178 | < | AtomCommRealRow->gather(massFactorsLocal, massFactorsRow); |
179 | < | AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol); |
178 | > | for (int i = 0; i < nAtomsInRow_; i++) |
179 | > | atypesRow[i] = ff_->getAtomType(identsRow[i]); |
180 | > | for (int i = 0; i < nAtomsInCol_; i++) |
181 | > | atypesCol[i] = ff_->getAtomType(identsCol[i]); |
182 | ||
183 | + | pot_row.resize(nAtomsInRow_); |
184 | + | pot_col.resize(nAtomsInCol_); |
185 | + | |
186 | + | expot_row.resize(nAtomsInRow_); |
187 | + | expot_col.resize(nAtomsInCol_); |
188 | + | |
189 | + | AtomRowToGlobal.resize(nAtomsInRow_); |
190 | + | AtomColToGlobal.resize(nAtomsInCol_); |
191 | + | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
192 | + | AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
193 | + | |
194 | + | cgRowToGlobal.resize(nGroupsInRow_); |
195 | + | cgColToGlobal.resize(nGroupsInCol_); |
196 | + | cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
197 | + | cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
198 | + | |
199 | + | massFactorsRow.resize(nAtomsInRow_); |
200 | + | massFactorsCol.resize(nAtomsInCol_); |
201 | + | AtomPlanRealRow->gather(massFactors, massFactorsRow); |
202 | + | AtomPlanRealColumn->gather(massFactors, massFactorsCol); |
203 | + | |
204 | groupListRow_.clear(); | |
205 | groupListRow_.resize(nGroupsInRow_); | |
206 | for (int i = 0; i < nGroupsInRow_; i++) { | |
# | Line 141 | Line 223 | namespace OpenMD { | |
223 | } | |
224 | } | |
225 | ||
226 | < | skipsForRowAtom.clear(); |
227 | < | skipsForRowAtom.resize(nAtomsInRow_); |
226 | > | excludesForAtom.clear(); |
227 | > | excludesForAtom.resize(nAtomsInRow_); |
228 | > | toposForAtom.clear(); |
229 | > | toposForAtom.resize(nAtomsInRow_); |
230 | > | topoDist.clear(); |
231 | > | topoDist.resize(nAtomsInRow_); |
232 | for (int i = 0; i < nAtomsInRow_; i++) { | |
233 | int iglob = AtomRowToGlobal[i]; | |
234 | + | |
235 | for (int j = 0; j < nAtomsInCol_; j++) { | |
236 | < | int jglob = AtomColToGlobal[j]; |
237 | < | if (excludes.hasPair(iglob, jglob)) |
238 | < | skipsForRowAtom[i].push_back(j); |
236 | > | int jglob = AtomColToGlobal[j]; |
237 | > | |
238 | > | if (excludes->hasPair(iglob, jglob)) |
239 | > | excludesForAtom[i].push_back(j); |
240 | > | |
241 | > | if (oneTwo->hasPair(iglob, jglob)) { |
242 | > | toposForAtom[i].push_back(j); |
243 | > | topoDist[i].push_back(1); |
244 | > | } else { |
245 | > | if (oneThree->hasPair(iglob, jglob)) { |
246 | > | toposForAtom[i].push_back(j); |
247 | > | topoDist[i].push_back(2); |
248 | > | } else { |
249 | > | if (oneFour->hasPair(iglob, jglob)) { |
250 | > | toposForAtom[i].push_back(j); |
251 | > | topoDist[i].push_back(3); |
252 | > | } |
253 | > | } |
254 | > | } |
255 | } | |
256 | } | |
257 | ||
258 | < | toposForRowAtom.clear(); |
259 | < | toposForRowAtom.resize(nAtomsInRow_); |
260 | < | for (int i = 0; i < nAtomsInRow_; i++) { |
261 | < | int iglob = AtomRowToGlobal[i]; |
262 | < | int nTopos = 0; |
263 | < | for (int j = 0; j < nAtomsInCol_; j++) { |
264 | < | int jglob = AtomColToGlobal[j]; |
265 | < | if (oneTwo.hasPair(iglob, jglob)) { |
266 | < | toposForRowAtom[i].push_back(j); |
267 | < | topoDistRow[i][nTopos] = 1; |
268 | < | nTopos++; |
258 | > | #else |
259 | > | excludesForAtom.clear(); |
260 | > | excludesForAtom.resize(nLocal_); |
261 | > | toposForAtom.clear(); |
262 | > | toposForAtom.resize(nLocal_); |
263 | > | topoDist.clear(); |
264 | > | topoDist.resize(nLocal_); |
265 | > | |
266 | > | for (int i = 0; i < nLocal_; i++) { |
267 | > | int iglob = AtomLocalToGlobal[i]; |
268 | > | |
269 | > | for (int j = 0; j < nLocal_; j++) { |
270 | > | int jglob = AtomLocalToGlobal[j]; |
271 | > | |
272 | > | if (excludes->hasPair(iglob, jglob)) |
273 | > | excludesForAtom[i].push_back(j); |
274 | > | |
275 | > | if (oneTwo->hasPair(iglob, jglob)) { |
276 | > | toposForAtom[i].push_back(j); |
277 | > | topoDist[i].push_back(1); |
278 | > | } else { |
279 | > | if (oneThree->hasPair(iglob, jglob)) { |
280 | > | toposForAtom[i].push_back(j); |
281 | > | topoDist[i].push_back(2); |
282 | > | } else { |
283 | > | if (oneFour->hasPair(iglob, jglob)) { |
284 | > | toposForAtom[i].push_back(j); |
285 | > | topoDist[i].push_back(3); |
286 | > | } |
287 | > | } |
288 | } | |
167 | – | if (oneThree.hasPair(iglob, jglob)) { |
168 | – | toposForRowAtom[i].push_back(j); |
169 | – | topoDistRow[i][nTopos] = 2; |
170 | – | nTopos++; |
171 | – | } |
172 | – | if (oneFour.hasPair(iglob, jglob)) { |
173 | – | toposForRowAtom[i].push_back(j); |
174 | – | topoDistRow[i][nTopos] = 3; |
175 | – | nTopos++; |
176 | – | } |
289 | } | |
290 | } | |
179 | – | |
291 | #endif | |
292 | + | |
293 | + | // allocate memory for the parallel objects |
294 | + | atypesLocal.resize(nLocal_); |
295 | + | |
296 | + | for (int i = 0; i < nLocal_; i++) |
297 | + | atypesLocal[i] = ff_->getAtomType(idents[i]); |
298 | + | |
299 | groupList_.clear(); | |
300 | groupList_.resize(nGroups_); | |
301 | for (int i = 0; i < nGroups_; i++) { | |
# | Line 186 | Line 304 | namespace OpenMD { | |
304 | int aid = AtomLocalToGlobal[j]; | |
305 | if (globalGroupMembership[aid] == gid) { | |
306 | groupList_[i].push_back(j); | |
189 | – | |
307 | } | |
308 | } | |
309 | } | |
310 | ||
194 | – | skipsForLocalAtom.clear(); |
195 | – | skipsForLocalAtom.resize(nLocal_); |
311 | ||
312 | < | for (int i = 0; i < nLocal_; i++) { |
198 | < | int iglob = AtomLocalToGlobal[i]; |
199 | < | for (int j = 0; j < nLocal_; j++) { |
200 | < | int jglob = AtomLocalToGlobal[j]; |
201 | < | if (excludes.hasPair(iglob, jglob)) |
202 | < | skipsForLocalAtom[i].push_back(j); |
203 | < | } |
204 | < | } |
205 | < | toposForLocalAtom.clear(); |
206 | < | toposForLocalAtom.resize(nLocal_); |
207 | < | for (int i = 0; i < nLocal_; i++) { |
208 | < | int iglob = AtomLocalToGlobal[i]; |
209 | < | int nTopos = 0; |
210 | < | for (int j = 0; j < nLocal_; j++) { |
211 | < | int jglob = AtomLocalToGlobal[j]; |
212 | < | if (oneTwo.hasPair(iglob, jglob)) { |
213 | < | toposForLocalAtom[i].push_back(j); |
214 | < | topoDistLocal[i][nTopos] = 1; |
215 | < | nTopos++; |
216 | < | } |
217 | < | if (oneThree.hasPair(iglob, jglob)) { |
218 | < | toposForLocalAtom[i].push_back(j); |
219 | < | topoDistLocal[i][nTopos] = 2; |
220 | < | nTopos++; |
221 | < | } |
222 | < | if (oneFour.hasPair(iglob, jglob)) { |
223 | < | toposForLocalAtom[i].push_back(j); |
224 | < | topoDistLocal[i][nTopos] = 3; |
225 | < | nTopos++; |
226 | < | } |
227 | < | } |
228 | < | } |
312 | > | createGtypeCutoffMap(); |
313 | ||
314 | } | |
315 | ||
316 | void ForceMatrixDecomposition::createGtypeCutoffMap() { | |
317 | + | |
318 | + | GrCut.clear(); |
319 | + | GrCutSq.clear(); |
320 | + | GrlistSq.clear(); |
321 | ||
322 | RealType tol = 1e-6; | |
323 | < | RealType rc; |
323 | > | largestRcut_ = 0.0; |
324 | int atid; | |
325 | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); | |
326 | < | vector<RealType> atypeCutoff; |
327 | < | atypeCutoff.resize( atypes.size() ); |
328 | < | |
329 | < | for (set<AtomType*>::iterator at = atypes.begin(); at != atypes.end(); ++at){ |
330 | < | rc = interactionMan_->getSuggestedCutoffRadius(*at); |
326 | > | |
327 | > | map<int, RealType> atypeCutoff; |
328 | > | |
329 | > | for (set<AtomType*>::iterator at = atypes.begin(); |
330 | > | at != atypes.end(); ++at){ |
331 | atid = (*at)->getIdent(); | |
332 | < | atypeCutoff[atid] = rc; |
332 | > | if (userChoseCutoff_) |
333 | > | atypeCutoff[atid] = userCutoff_; |
334 | > | else |
335 | > | atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
336 | } | |
337 | < | |
337 | > | |
338 | vector<RealType> gTypeCutoffs; | |
248 | – | |
339 | // first we do a single loop over the cutoff groups to find the | |
340 | // largest cutoff for any atypes present in this group. | |
341 | #ifdef IS_MPI | |
342 | vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); | |
343 | + | groupRowToGtype.resize(nGroupsInRow_); |
344 | for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { | |
345 | vector<int> atomListRow = getAtomsInGroupRow(cg1); | |
346 | for (vector<int>::iterator ia = atomListRow.begin(); | |
# | Line 275 | Line 366 | namespace OpenMD { | |
366 | ||
367 | } | |
368 | vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); | |
369 | + | groupColToGtype.resize(nGroupsInCol_); |
370 | for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { | |
371 | vector<int> atomListCol = getAtomsInGroupColumn(cg2); | |
372 | for (vector<int>::iterator jb = atomListCol.begin(); | |
# | Line 298 | Line 390 | namespace OpenMD { | |
390 | } | |
391 | } | |
392 | #else | |
393 | + | |
394 | vector<RealType> groupCutoff(nGroups_, 0.0); | |
395 | + | groupToGtype.resize(nGroups_); |
396 | for (int cg1 = 0; cg1 < nGroups_; cg1++) { | |
397 | groupCutoff[cg1] = 0.0; | |
398 | vector<int> atomList = getAtomsInGroupRow(cg1); | |
399 | for (vector<int>::iterator ia = atomList.begin(); | |
400 | ia != atomList.end(); ++ia) { | |
401 | int atom1 = (*ia); | |
402 | < | atid = identsLocal[atom1]; |
403 | < | if (atypeCutoff[atid] > groupCutoff[cg1]) { |
402 | > | atid = idents[atom1]; |
403 | > | if (atypeCutoff[atid] > groupCutoff[cg1]) |
404 | groupCutoff[cg1] = atypeCutoff[atid]; | |
311 | – | } |
405 | } | |
406 | < | |
406 | > | |
407 | bool gTypeFound = false; | |
408 | < | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
408 | > | for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
409 | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { | |
410 | groupToGtype[cg1] = gt; | |
411 | gTypeFound = true; | |
412 | } | |
413 | } | |
414 | < | if (!gTypeFound) { |
414 | > | if (!gTypeFound) { |
415 | gTypeCutoffs.push_back( groupCutoff[cg1] ); | |
416 | groupToGtype[cg1] = gTypeCutoffs.size() - 1; | |
417 | } | |
# | Line 327 | Line 420 | namespace OpenMD { | |
420 | ||
421 | // Now we find the maximum group cutoff value present in the simulation | |
422 | ||
423 | < | vector<RealType>::iterator groupMaxLoc = max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); |
424 | < | RealType groupMax = *groupMaxLoc; |
423 | > | RealType groupMax = *max_element(gTypeCutoffs.begin(), |
424 | > | gTypeCutoffs.end()); |
425 | ||
426 | #ifdef IS_MPI | |
427 | < | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); |
427 | > | MPI_Allreduce(MPI_IN_PLACE, &groupMax, 1, MPI_REALTYPE, |
428 | > | MPI_MAX, MPI_COMM_WORLD); |
429 | #endif | |
430 | ||
431 | RealType tradRcut = groupMax; | |
432 | ||
433 | < | for (int i = 0; i < gTypeCutoffs.size(); i++) { |
434 | < | for (int j = 0; j < gTypeCutoffs.size(); j++) { |
435 | < | |
433 | > | GrCut.resize( gTypeCutoffs.size() ); |
434 | > | GrCutSq.resize( gTypeCutoffs.size() ); |
435 | > | GrlistSq.resize( gTypeCutoffs.size() ); |
436 | > | |
437 | > | |
438 | > | for (unsigned int i = 0; i < gTypeCutoffs.size(); i++) { |
439 | > | GrCut[i].resize( gTypeCutoffs.size() , 0.0); |
440 | > | GrCutSq[i].resize( gTypeCutoffs.size(), 0.0 ); |
441 | > | GrlistSq[i].resize( gTypeCutoffs.size(), 0.0 ); |
442 | > | |
443 | > | for (unsigned int j = 0; j < gTypeCutoffs.size(); j++) { |
444 | RealType thisRcut; | |
445 | switch(cutoffPolicy_) { | |
446 | case TRADITIONAL: | |
447 | thisRcut = tradRcut; | |
448 | + | break; |
449 | case MIX: | |
450 | thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); | |
451 | + | break; |
452 | case MAX: | |
453 | thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); | |
454 | + | break; |
455 | default: | |
456 | sprintf(painCave.errMsg, | |
457 | "ForceMatrixDecomposition::createGtypeCutoffMap " | |
458 | "hit an unknown cutoff policy!\n"); | |
459 | painCave.severity = OPENMD_ERROR; | |
460 | painCave.isFatal = 1; | |
461 | < | simError(); |
461 | > | simError(); |
462 | > | break; |
463 | } | |
464 | ||
465 | < | pair<int,int> key = make_pair(i,j); |
360 | < | gTypeCutoffMap[key].first = thisRcut; |
361 | < | |
465 | > | GrCut[i][j] = thisRcut; |
466 | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; | |
467 | + | GrCutSq[i][j] = thisRcut * thisRcut; |
468 | + | GrlistSq[i][j] = pow(thisRcut + skinThickness_, 2); |
469 | ||
470 | < | gTypeCutoffMap[key].second = thisRcut*thisRcut; |
471 | < | |
472 | < | gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
367 | < | |
470 | > | // pair<int,int> key = make_pair(i,j); |
471 | > | // gTypeCutoffMap[key].first = thisRcut; |
472 | > | // gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
473 | // sanity check | |
474 | ||
475 | if (userChoseCutoff_) { | |
476 | < | if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
476 | > | if (abs(GrCut[i][j] - userCutoff_) > 0.0001) { |
477 | sprintf(painCave.errMsg, | |
478 | "ForceMatrixDecomposition::createGtypeCutoffMap " | |
479 | < | "user-specified rCut does not match computed group Cutoff\n"); |
479 | > | "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
480 | painCave.severity = OPENMD_ERROR; | |
481 | painCave.isFatal = 1; | |
482 | simError(); | |
# | Line 381 | Line 486 | namespace OpenMD { | |
486 | } | |
487 | } | |
488 | ||
489 | < | |
490 | < | groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
386 | < | int i, j; |
387 | < | |
489 | > | void ForceMatrixDecomposition::getGroupCutoffs(int &cg1, int &cg2, RealType &rcut, RealType &rcutsq, RealType &rlistsq) { |
490 | > | int i, j; |
491 | #ifdef IS_MPI | |
492 | i = groupRowToGtype[cg1]; | |
493 | j = groupColToGtype[cg2]; | |
494 | #else | |
495 | i = groupToGtype[cg1]; | |
496 | j = groupToGtype[cg2]; | |
497 | < | #endif |
498 | < | |
499 | < | return gTypeCutoffMap[make_pair(i,j)]; |
497 | > | #endif |
498 | > | rcut = GrCut[i][j]; |
499 | > | rcutsq = GrCutSq[i][j]; |
500 | > | rlistsq = GrlistSq[i][j]; |
501 | > | return; |
502 | > | //return gTypeCutoffMap[make_pair(i,j)]; |
503 | } | |
504 | ||
505 | + | int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
506 | + | for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) { |
507 | + | if (toposForAtom[atom1][j] == atom2) |
508 | + | return topoDist[atom1][j]; |
509 | + | } |
510 | + | return 0; |
511 | + | } |
512 | ||
513 | void ForceMatrixDecomposition::zeroWorkArrays() { | |
514 | + | pairwisePot = 0.0; |
515 | + | embeddingPot = 0.0; |
516 | + | excludedPot = 0.0; |
517 | + | excludedSelfPot = 0.0; |
518 | ||
402 | – | for (int j = 0; j < N_INTERACTION_FAMILIES; j++) { |
403 | – | longRangePot_[j] = 0.0; |
404 | – | } |
405 | – | |
519 | #ifdef IS_MPI | |
520 | if (storageLayout_ & DataStorage::dslForce) { | |
521 | fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); | |
# | Line 418 | Line 531 | namespace OpenMD { | |
531 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
532 | ||
533 | fill(pot_col.begin(), pot_col.end(), | |
534 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
535 | + | |
536 | + | fill(expot_row.begin(), expot_row.end(), |
537 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
422 | – | |
423 | – | pot_local = Vector<RealType, N_INTERACTION_FAMILIES>(0.0); |
538 | ||
539 | + | fill(expot_col.begin(), expot_col.end(), |
540 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
541 | + | |
542 | if (storageLayout_ & DataStorage::dslParticlePot) { | |
543 | < | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); |
544 | < | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); |
543 | > | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
544 | > | 0.0); |
545 | > | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), |
546 | > | 0.0); |
547 | } | |
548 | ||
549 | if (storageLayout_ & DataStorage::dslDensity) { | |
# | Line 433 | Line 552 | namespace OpenMD { | |
552 | } | |
553 | ||
554 | if (storageLayout_ & DataStorage::dslFunctional) { | |
555 | < | fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); |
556 | < | fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); |
555 | > | fill(atomRowData.functional.begin(), atomRowData.functional.end(), |
556 | > | 0.0); |
557 | > | fill(atomColData.functional.begin(), atomColData.functional.end(), |
558 | > | 0.0); |
559 | } | |
560 | ||
561 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
# | Line 444 | Line 565 | namespace OpenMD { | |
565 | atomColData.functionalDerivative.end(), 0.0); | |
566 | } | |
567 | ||
568 | < | #else |
569 | < | |
568 | > | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
569 | > | fill(atomRowData.skippedCharge.begin(), |
570 | > | atomRowData.skippedCharge.end(), 0.0); |
571 | > | fill(atomColData.skippedCharge.begin(), |
572 | > | atomColData.skippedCharge.end(), 0.0); |
573 | > | } |
574 | > | |
575 | > | if (storageLayout_ & DataStorage::dslFlucQForce) { |
576 | > | fill(atomRowData.flucQFrc.begin(), |
577 | > | atomRowData.flucQFrc.end(), 0.0); |
578 | > | fill(atomColData.flucQFrc.begin(), |
579 | > | atomColData.flucQFrc.end(), 0.0); |
580 | > | } |
581 | > | |
582 | > | if (storageLayout_ & DataStorage::dslElectricField) { |
583 | > | fill(atomRowData.electricField.begin(), |
584 | > | atomRowData.electricField.end(), V3Zero); |
585 | > | fill(atomColData.electricField.begin(), |
586 | > | atomColData.electricField.end(), V3Zero); |
587 | > | } |
588 | > | |
589 | > | if (storageLayout_ & DataStorage::dslSitePotential) { |
590 | > | fill(atomRowData.sitePotential.begin(), |
591 | > | atomRowData.sitePotential.end(), 0.0); |
592 | > | fill(atomColData.sitePotential.begin(), |
593 | > | atomColData.sitePotential.end(), 0.0); |
594 | > | } |
595 | > | |
596 | > | #endif |
597 | > | // even in parallel, we need to zero out the local arrays: |
598 | > | |
599 | if (storageLayout_ & DataStorage::dslParticlePot) { | |
600 | fill(snap_->atomData.particlePot.begin(), | |
601 | snap_->atomData.particlePot.end(), 0.0); | |
# | Line 455 | Line 605 | namespace OpenMD { | |
605 | fill(snap_->atomData.density.begin(), | |
606 | snap_->atomData.density.end(), 0.0); | |
607 | } | |
608 | + | |
609 | if (storageLayout_ & DataStorage::dslFunctional) { | |
610 | fill(snap_->atomData.functional.begin(), | |
611 | snap_->atomData.functional.end(), 0.0); | |
612 | } | |
613 | + | |
614 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
615 | fill(snap_->atomData.functionalDerivative.begin(), | |
616 | snap_->atomData.functionalDerivative.end(), 0.0); | |
617 | } | |
618 | < | #endif |
619 | < | |
618 | > | |
619 | > | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
620 | > | fill(snap_->atomData.skippedCharge.begin(), |
621 | > | snap_->atomData.skippedCharge.end(), 0.0); |
622 | > | } |
623 | > | |
624 | > | if (storageLayout_ & DataStorage::dslElectricField) { |
625 | > | fill(snap_->atomData.electricField.begin(), |
626 | > | snap_->atomData.electricField.end(), V3Zero); |
627 | > | } |
628 | > | if (storageLayout_ & DataStorage::dslSitePotential) { |
629 | > | fill(snap_->atomData.sitePotential.begin(), |
630 | > | snap_->atomData.sitePotential.end(), 0.0); |
631 | > | } |
632 | } | |
633 | ||
634 | ||
# | Line 474 | Line 638 | namespace OpenMD { | |
638 | #ifdef IS_MPI | |
639 | ||
640 | // gather up the atomic positions | |
641 | < | AtomCommVectorRow->gather(snap_->atomData.position, |
641 | > | AtomPlanVectorRow->gather(snap_->atomData.position, |
642 | atomRowData.position); | |
643 | < | AtomCommVectorColumn->gather(snap_->atomData.position, |
643 | > | AtomPlanVectorColumn->gather(snap_->atomData.position, |
644 | atomColData.position); | |
645 | ||
646 | // gather up the cutoff group positions | |
647 | < | cgCommVectorRow->gather(snap_->cgData.position, |
647 | > | |
648 | > | cgPlanVectorRow->gather(snap_->cgData.position, |
649 | cgRowData.position); | |
650 | < | cgCommVectorColumn->gather(snap_->cgData.position, |
650 | > | |
651 | > | cgPlanVectorColumn->gather(snap_->cgData.position, |
652 | cgColData.position); | |
653 | + | |
654 | + | |
655 | + | |
656 | + | if (needVelocities_) { |
657 | + | // gather up the atomic velocities |
658 | + | AtomPlanVectorColumn->gather(snap_->atomData.velocity, |
659 | + | atomColData.velocity); |
660 | + | |
661 | + | cgPlanVectorColumn->gather(snap_->cgData.velocity, |
662 | + | cgColData.velocity); |
663 | + | } |
664 | + | |
665 | ||
666 | // if needed, gather the atomic rotation matrices | |
667 | if (storageLayout_ & DataStorage::dslAmat) { | |
668 | < | AtomCommMatrixRow->gather(snap_->atomData.aMat, |
668 | > | AtomPlanMatrixRow->gather(snap_->atomData.aMat, |
669 | atomRowData.aMat); | |
670 | < | AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
670 | > | AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
671 | atomColData.aMat); | |
672 | } | |
673 | < | |
674 | < | // if needed, gather the atomic eletrostatic frames |
675 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { |
676 | < | AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
677 | < | atomRowData.electroFrame); |
678 | < | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
679 | < | atomColData.electroFrame); |
673 | > | |
674 | > | // if needed, gather the atomic eletrostatic information |
675 | > | if (storageLayout_ & DataStorage::dslDipole) { |
676 | > | AtomPlanVectorRow->gather(snap_->atomData.dipole, |
677 | > | atomRowData.dipole); |
678 | > | AtomPlanVectorColumn->gather(snap_->atomData.dipole, |
679 | > | atomColData.dipole); |
680 | } | |
681 | + | |
682 | + | if (storageLayout_ & DataStorage::dslQuadrupole) { |
683 | + | AtomPlanMatrixRow->gather(snap_->atomData.quadrupole, |
684 | + | atomRowData.quadrupole); |
685 | + | AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole, |
686 | + | atomColData.quadrupole); |
687 | + | } |
688 | + | |
689 | + | // if needed, gather the atomic fluctuating charge values |
690 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
691 | + | AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
692 | + | atomRowData.flucQPos); |
693 | + | AtomPlanRealColumn->gather(snap_->atomData.flucQPos, |
694 | + | atomColData.flucQPos); |
695 | + | } |
696 | + | |
697 | #endif | |
698 | } | |
699 | ||
# | Line 513 | Line 707 | namespace OpenMD { | |
707 | ||
708 | if (storageLayout_ & DataStorage::dslDensity) { | |
709 | ||
710 | < | AtomCommRealRow->scatter(atomRowData.density, |
710 | > | AtomPlanRealRow->scatter(atomRowData.density, |
711 | snap_->atomData.density); | |
712 | ||
713 | int n = snap_->atomData.density.size(); | |
714 | vector<RealType> rho_tmp(n, 0.0); | |
715 | < | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
715 | > | AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); |
716 | for (int i = 0; i < n; i++) | |
717 | snap_->atomData.density[i] += rho_tmp[i]; | |
718 | } | |
719 | + | |
720 | + | // this isn't necessary if we don't have polarizable atoms, but |
721 | + | // we'll leave it here for now. |
722 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
723 | + | |
724 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, |
725 | + | snap_->atomData.electricField); |
726 | + | |
727 | + | int n = snap_->atomData.electricField.size(); |
728 | + | vector<Vector3d> field_tmp(n, V3Zero); |
729 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, |
730 | + | field_tmp); |
731 | + | for (int i = 0; i < n; i++) |
732 | + | snap_->atomData.electricField[i] += field_tmp[i]; |
733 | + | } |
734 | #endif | |
735 | } | |
736 | ||
# | Line 534 | Line 743 | namespace OpenMD { | |
743 | storageLayout_ = sman_->getStorageLayout(); | |
744 | #ifdef IS_MPI | |
745 | if (storageLayout_ & DataStorage::dslFunctional) { | |
746 | < | AtomCommRealRow->gather(snap_->atomData.functional, |
746 | > | AtomPlanRealRow->gather(snap_->atomData.functional, |
747 | atomRowData.functional); | |
748 | < | AtomCommRealColumn->gather(snap_->atomData.functional, |
748 | > | AtomPlanRealColumn->gather(snap_->atomData.functional, |
749 | atomColData.functional); | |
750 | } | |
751 | ||
752 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | |
753 | < | AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
753 | > | AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, |
754 | atomRowData.functionalDerivative); | |
755 | < | AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
755 | > | AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, |
756 | atomColData.functionalDerivative); | |
757 | } | |
758 | #endif | |
# | Line 557 | Line 766 | namespace OpenMD { | |
766 | int n = snap_->atomData.force.size(); | |
767 | vector<Vector3d> frc_tmp(n, V3Zero); | |
768 | ||
769 | < | AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
769 | > | AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); |
770 | for (int i = 0; i < n; i++) { | |
771 | snap_->atomData.force[i] += frc_tmp[i]; | |
772 | frc_tmp[i] = 0.0; | |
773 | } | |
774 | ||
775 | < | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
776 | < | for (int i = 0; i < n; i++) |
775 | > | AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); |
776 | > | for (int i = 0; i < n; i++) { |
777 | snap_->atomData.force[i] += frc_tmp[i]; | |
778 | < | |
779 | < | |
778 | > | } |
779 | > | |
780 | if (storageLayout_ & DataStorage::dslTorque) { | |
781 | ||
782 | < | int nt = snap_->atomData.force.size(); |
782 | > | int nt = snap_->atomData.torque.size(); |
783 | vector<Vector3d> trq_tmp(nt, V3Zero); | |
784 | ||
785 | < | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
786 | < | for (int i = 0; i < n; i++) { |
785 | > | AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); |
786 | > | for (int i = 0; i < nt; i++) { |
787 | snap_->atomData.torque[i] += trq_tmp[i]; | |
788 | trq_tmp[i] = 0.0; | |
789 | } | |
790 | ||
791 | < | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
792 | < | for (int i = 0; i < n; i++) |
791 | > | AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); |
792 | > | for (int i = 0; i < nt; i++) |
793 | snap_->atomData.torque[i] += trq_tmp[i]; | |
794 | } | |
795 | + | |
796 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
797 | + | |
798 | + | int ns = snap_->atomData.skippedCharge.size(); |
799 | + | vector<RealType> skch_tmp(ns, 0.0); |
800 | + | |
801 | + | AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
802 | + | for (int i = 0; i < ns; i++) { |
803 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
804 | + | skch_tmp[i] = 0.0; |
805 | + | } |
806 | + | |
807 | + | AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
808 | + | for (int i = 0; i < ns; i++) |
809 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
810 | + | |
811 | + | } |
812 | ||
813 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { |
814 | + | |
815 | + | int nq = snap_->atomData.flucQFrc.size(); |
816 | + | vector<RealType> fqfrc_tmp(nq, 0.0); |
817 | + | |
818 | + | AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); |
819 | + | for (int i = 0; i < nq; i++) { |
820 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
821 | + | fqfrc_tmp[i] = 0.0; |
822 | + | } |
823 | + | |
824 | + | AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); |
825 | + | for (int i = 0; i < nq; i++) |
826 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
827 | + | |
828 | + | } |
829 | + | |
830 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
831 | + | |
832 | + | int nef = snap_->atomData.electricField.size(); |
833 | + | vector<Vector3d> efield_tmp(nef, V3Zero); |
834 | + | |
835 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp); |
836 | + | for (int i = 0; i < nef; i++) { |
837 | + | snap_->atomData.electricField[i] += efield_tmp[i]; |
838 | + | efield_tmp[i] = 0.0; |
839 | + | } |
840 | + | |
841 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp); |
842 | + | for (int i = 0; i < nef; i++) |
843 | + | snap_->atomData.electricField[i] += efield_tmp[i]; |
844 | + | } |
845 | + | |
846 | + | if (storageLayout_ & DataStorage::dslSitePotential) { |
847 | + | |
848 | + | int nsp = snap_->atomData.sitePotential.size(); |
849 | + | vector<RealType> sp_tmp(nsp, 0.0); |
850 | + | |
851 | + | AtomPlanRealRow->scatter(atomRowData.sitePotential, sp_tmp); |
852 | + | for (int i = 0; i < nsp; i++) { |
853 | + | snap_->atomData.sitePotential[i] += sp_tmp[i]; |
854 | + | sp_tmp[i] = 0.0; |
855 | + | } |
856 | + | |
857 | + | AtomPlanRealColumn->scatter(atomColData.sitePotential, sp_tmp); |
858 | + | for (int i = 0; i < nsp; i++) |
859 | + | snap_->atomData.sitePotential[i] += sp_tmp[i]; |
860 | + | } |
861 | + | |
862 | nLocal_ = snap_->getNumberOfAtoms(); | |
863 | ||
864 | vector<potVec> pot_temp(nLocal_, | |
865 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
866 | + | vector<potVec> expot_temp(nLocal_, |
867 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
868 | ||
869 | // scatter/gather pot_row into the members of my column | |
870 | ||
871 | < | AtomCommPotRow->scatter(pot_row, pot_temp); |
871 | > | AtomPlanPotRow->scatter(pot_row, pot_temp); |
872 | > | AtomPlanPotRow->scatter(expot_row, expot_temp); |
873 | ||
874 | < | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
875 | < | pot_local += pot_temp[ii]; |
876 | < | |
874 | > | for (int ii = 0; ii < pot_temp.size(); ii++ ) |
875 | > | pairwisePot += pot_temp[ii]; |
876 | > | |
877 | > | for (int ii = 0; ii < expot_temp.size(); ii++ ) |
878 | > | excludedPot += expot_temp[ii]; |
879 | > | |
880 | > | if (storageLayout_ & DataStorage::dslParticlePot) { |
881 | > | // This is the pairwise contribution to the particle pot. The |
882 | > | // embedding contribution is added in each of the low level |
883 | > | // non-bonded routines. In single processor, this is done in |
884 | > | // unpackInteractionData, not in collectData. |
885 | > | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
886 | > | for (int i = 0; i < nLocal_; i++) { |
887 | > | // factor of two is because the total potential terms are divided |
888 | > | // by 2 in parallel due to row/ column scatter |
889 | > | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
890 | > | } |
891 | > | } |
892 | > | } |
893 | > | |
894 | fill(pot_temp.begin(), pot_temp.end(), | |
895 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | |
896 | + | fill(expot_temp.begin(), expot_temp.end(), |
897 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
898 | ||
899 | < | AtomCommPotColumn->scatter(pot_col, pot_temp); |
899 | > | AtomPlanPotColumn->scatter(pot_col, pot_temp); |
900 | > | AtomPlanPotColumn->scatter(expot_col, expot_temp); |
901 | ||
902 | for (int ii = 0; ii < pot_temp.size(); ii++ ) | |
903 | < | pot_local += pot_temp[ii]; |
903 | > | pairwisePot += pot_temp[ii]; |
904 | > | |
905 | > | for (int ii = 0; ii < expot_temp.size(); ii++ ) |
906 | > | excludedPot += expot_temp[ii]; |
907 | > | |
908 | > | if (storageLayout_ & DataStorage::dslParticlePot) { |
909 | > | // This is the pairwise contribution to the particle pot. The |
910 | > | // embedding contribution is added in each of the low level |
911 | > | // non-bonded routines. In single processor, this is done in |
912 | > | // unpackInteractionData, not in collectData. |
913 | > | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
914 | > | for (int i = 0; i < nLocal_; i++) { |
915 | > | // factor of two is because the total potential terms are divided |
916 | > | // by 2 in parallel due to row/ column scatter |
917 | > | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
918 | > | } |
919 | > | } |
920 | > | } |
921 | ||
922 | + | if (storageLayout_ & DataStorage::dslParticlePot) { |
923 | + | int npp = snap_->atomData.particlePot.size(); |
924 | + | vector<RealType> ppot_temp(npp, 0.0); |
925 | + | |
926 | + | // This is the direct or embedding contribution to the particle |
927 | + | // pot. |
928 | + | |
929 | + | AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); |
930 | + | for (int i = 0; i < npp; i++) { |
931 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; |
932 | + | } |
933 | + | |
934 | + | fill(ppot_temp.begin(), ppot_temp.end(), 0.0); |
935 | + | |
936 | + | AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); |
937 | + | for (int i = 0; i < npp; i++) { |
938 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; |
939 | + | } |
940 | + | } |
941 | + | |
942 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
943 | + | RealType ploc1 = pairwisePot[ii]; |
944 | + | RealType ploc2 = 0.0; |
945 | + | MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
946 | + | pairwisePot[ii] = ploc2; |
947 | + | } |
948 | + | |
949 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
950 | + | RealType ploc1 = excludedPot[ii]; |
951 | + | RealType ploc2 = 0.0; |
952 | + | MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
953 | + | excludedPot[ii] = ploc2; |
954 | + | } |
955 | + | |
956 | + | // Here be dragons. |
957 | + | MPI_Comm col = colComm.getComm(); |
958 | + | |
959 | + | MPI_Allreduce(MPI_IN_PLACE, |
960 | + | &snap_->frameData.conductiveHeatFlux[0], 3, |
961 | + | MPI_REALTYPE, MPI_SUM, col); |
962 | + | |
963 | + | |
964 | #endif | |
965 | + | |
966 | } | |
967 | ||
968 | < | int ForceMatrixDecomposition::getNAtomsInRow() { |
968 | > | /** |
969 | > | * Collects information obtained during the post-pair (and embedding |
970 | > | * functional) loops onto local data structures. |
971 | > | */ |
972 | > | void ForceMatrixDecomposition::collectSelfData() { |
973 | > | snap_ = sman_->getCurrentSnapshot(); |
974 | > | storageLayout_ = sman_->getStorageLayout(); |
975 | > | |
976 | #ifdef IS_MPI | |
977 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
978 | + | RealType ploc1 = embeddingPot[ii]; |
979 | + | RealType ploc2 = 0.0; |
980 | + | MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
981 | + | embeddingPot[ii] = ploc2; |
982 | + | } |
983 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
984 | + | RealType ploc1 = excludedSelfPot[ii]; |
985 | + | RealType ploc2 = 0.0; |
986 | + | MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
987 | + | excludedSelfPot[ii] = ploc2; |
988 | + | } |
989 | + | #endif |
990 | + | |
991 | + | } |
992 | + | |
993 | + | |
994 | + | |
995 | + | int& ForceMatrixDecomposition::getNAtomsInRow() { |
996 | + | #ifdef IS_MPI |
997 | return nAtomsInRow_; | |
998 | #else | |
999 | return nLocal_; | |
# | Line 618 | Line 1003 | namespace OpenMD { | |
1003 | /** | |
1004 | * returns the list of atoms belonging to this group. | |
1005 | */ | |
1006 | < | vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
1006 | > | vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
1007 | #ifdef IS_MPI | |
1008 | return groupListRow_[cg1]; | |
1009 | #else | |
# | Line 626 | Line 1011 | namespace OpenMD { | |
1011 | #endif | |
1012 | } | |
1013 | ||
1014 | < | vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
1014 | > | vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
1015 | #ifdef IS_MPI | |
1016 | return groupListCol_[cg2]; | |
1017 | #else | |
# | Line 643 | Line 1028 | namespace OpenMD { | |
1028 | d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; | |
1029 | #endif | |
1030 | ||
1031 | < | snap_->wrapVector(d); |
1031 | > | if (usePeriodicBoundaryConditions_) { |
1032 | > | snap_->wrapVector(d); |
1033 | > | } |
1034 | return d; | |
1035 | } | |
1036 | ||
1037 | + | Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ |
1038 | + | #ifdef IS_MPI |
1039 | + | return cgColData.velocity[cg2]; |
1040 | + | #else |
1041 | + | return snap_->cgData.velocity[cg2]; |
1042 | + | #endif |
1043 | + | } |
1044 | ||
1045 | + | Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ |
1046 | + | #ifdef IS_MPI |
1047 | + | return atomColData.velocity[atom2]; |
1048 | + | #else |
1049 | + | return snap_->atomData.velocity[atom2]; |
1050 | + | #endif |
1051 | + | } |
1052 | + | |
1053 | + | |
1054 | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ | |
1055 | ||
1056 | Vector3d d; | |
# | Line 657 | Line 1060 | namespace OpenMD { | |
1060 | #else | |
1061 | d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; | |
1062 | #endif | |
1063 | < | |
1064 | < | snap_->wrapVector(d); |
1063 | > | if (usePeriodicBoundaryConditions_) { |
1064 | > | snap_->wrapVector(d); |
1065 | > | } |
1066 | return d; | |
1067 | } | |
1068 | ||
# | Line 670 | Line 1074 | namespace OpenMD { | |
1074 | #else | |
1075 | d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; | |
1076 | #endif | |
1077 | < | |
1078 | < | snap_->wrapVector(d); |
1077 | > | if (usePeriodicBoundaryConditions_) { |
1078 | > | snap_->wrapVector(d); |
1079 | > | } |
1080 | return d; | |
1081 | } | |
1082 | ||
1083 | < | RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
1083 | > | RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
1084 | #ifdef IS_MPI | |
1085 | return massFactorsRow[atom1]; | |
1086 | #else | |
1087 | < | return massFactorsLocal[atom1]; |
1087 | > | return massFactors[atom1]; |
1088 | #endif | |
1089 | } | |
1090 | ||
1091 | < | RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
1091 | > | RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
1092 | #ifdef IS_MPI | |
1093 | return massFactorsCol[atom2]; | |
1094 | #else | |
1095 | < | return massFactorsLocal[atom2]; |
1095 | > | return massFactors[atom2]; |
1096 | #endif | |
1097 | ||
1098 | } | |
# | Line 700 | Line 1105 | namespace OpenMD { | |
1105 | #else | |
1106 | d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; | |
1107 | #endif | |
1108 | < | |
1109 | < | snap_->wrapVector(d); |
1108 | > | if (usePeriodicBoundaryConditions_) { |
1109 | > | snap_->wrapVector(d); |
1110 | > | } |
1111 | return d; | |
1112 | } | |
1113 | ||
1114 | < | vector<int> ForceMatrixDecomposition::getSkipsForRowAtom(int atom1) { |
1115 | < | #ifdef IS_MPI |
710 | < | return skipsForRowAtom[atom1]; |
711 | < | #else |
712 | < | return skipsForLocalAtom[atom1]; |
713 | < | #endif |
1114 | > | vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
1115 | > | return excludesForAtom[atom1]; |
1116 | } | |
1117 | ||
1118 | /** | |
1119 | < | * There are a number of reasons to skip a pair or a |
718 | < | * particle. Mostly we do this to exclude atoms who are involved in |
719 | < | * short range interactions (bonds, bends, torsions), but we also |
720 | < | * need to exclude some overcounted interactions that result from |
1119 | > | * We need to exclude some overcounted interactions that result from |
1120 | * the parallel decomposition. | |
1121 | */ | |
1122 | < | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
1122 | > | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { |
1123 | int unique_id_1, unique_id_2; | |
1124 | < | |
1124 | > | |
1125 | #ifdef IS_MPI | |
1126 | // in MPI, we have to look up the unique IDs for each atom | |
1127 | unique_id_1 = AtomRowToGlobal[atom1]; | |
1128 | unique_id_2 = AtomColToGlobal[atom2]; | |
1129 | + | // group1 = cgRowToGlobal[cg1]; |
1130 | + | // group2 = cgColToGlobal[cg2]; |
1131 | + | #else |
1132 | + | unique_id_1 = AtomLocalToGlobal[atom1]; |
1133 | + | unique_id_2 = AtomLocalToGlobal[atom2]; |
1134 | + | int group1 = cgLocalToGlobal[cg1]; |
1135 | + | int group2 = cgLocalToGlobal[cg2]; |
1136 | + | #endif |
1137 | ||
731 | – | // this situation should only arise in MPI simulations |
1138 | if (unique_id_1 == unique_id_2) return true; | |
1139 | < | |
1139 | > | |
1140 | > | #ifdef IS_MPI |
1141 | // this prevents us from doing the pair on multiple processors | |
1142 | if (unique_id_1 < unique_id_2) { | |
1143 | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; | |
1144 | } else { | |
1145 | < | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
1145 | > | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
1146 | } | |
1147 | < | #else |
1148 | < | // in the normal loop, the atom numbers are unique |
1149 | < | unique_id_1 = atom1; |
1150 | < | unique_id_2 = atom2; |
1147 | > | #endif |
1148 | > | |
1149 | > | #ifndef IS_MPI |
1150 | > | if (group1 == group2) { |
1151 | > | if (unique_id_1 < unique_id_2) return true; |
1152 | > | } |
1153 | #endif | |
1154 | ||
1155 | < | #ifdef IS_MPI |
747 | < | for (vector<int>::iterator i = skipsForRowAtom[atom1].begin(); |
748 | < | i != skipsForRowAtom[atom1].end(); ++i) { |
749 | < | if ( (*i) == unique_id_2 ) return true; |
750 | < | } |
751 | < | #else |
752 | < | for (vector<int>::iterator i = skipsForLocalAtom[atom1].begin(); |
753 | < | i != skipsForLocalAtom[atom1].end(); ++i) { |
754 | < | if ( (*i) == unique_id_2 ) return true; |
755 | < | } |
756 | < | #endif |
1155 | > | return false; |
1156 | } | |
1157 | ||
1158 | < | int ForceMatrixDecomposition::getTopoDistance(int atom1, int atom2) { |
1158 | > | /** |
1159 | > | * We need to handle the interactions for atoms who are involved in |
1160 | > | * the same rigid body as well as some short range interactions |
1161 | > | * (bonds, bends, torsions) differently from other interactions. |
1162 | > | * We'll still visit the pairwise routines, but with a flag that |
1163 | > | * tells those routines to exclude the pair from direct long range |
1164 | > | * interactions. Some indirect interactions (notably reaction |
1165 | > | * field) must still be handled for these pairs. |
1166 | > | */ |
1167 | > | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
1168 | > | |
1169 | > | // excludesForAtom was constructed to use row/column indices in the MPI |
1170 | > | // version, and to use local IDs in the non-MPI version: |
1171 | ||
1172 | < | #ifdef IS_MPI |
1173 | < | for (int i = 0; i < toposForRowAtom[atom1].size(); i++) { |
1174 | < | if ( toposForRowAtom[atom1][i] == atom2 ) return topoDistRow[atom1][i]; |
1172 | > | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
1173 | > | i != excludesForAtom[atom1].end(); ++i) { |
1174 | > | if ( (*i) == atom2 ) return true; |
1175 | } | |
765 | – | #else |
766 | – | for (int i = 0; i < toposForLocalAtom[atom1].size(); i++) { |
767 | – | if ( toposForLocalAtom[atom1][i] == atom2 ) return topoDistLocal[atom1][i]; |
768 | – | } |
769 | – | #endif |
1176 | ||
1177 | < | // zero is default for unconnected (i.e. normal) pair interactions |
772 | < | return 0; |
1177 | > | return false; |
1178 | } | |
1179 | ||
1180 | + | |
1181 | void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ | |
1182 | #ifdef IS_MPI | |
1183 | atomRowData.force[atom1] += fg; | |
# | Line 789 | Line 1195 | namespace OpenMD { | |
1195 | } | |
1196 | ||
1197 | // filling interaction blocks with pointers | |
1198 | < | InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) { |
1199 | < | InteractionData idat; |
1198 | > | void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
1199 | > | int atom1, int atom2) { |
1200 | ||
1201 | + | idat.excluded = excludeAtomPair(atom1, atom2); |
1202 | + | |
1203 | #ifdef IS_MPI | |
1204 | < | |
1205 | < | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
1206 | < | ff_->getAtomType(identsCol[atom2]) ); |
1204 | > | //idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
1205 | > | idat.atid1 = identsRow[atom1]; |
1206 | > | idat.atid2 = identsCol[atom2]; |
1207 | ||
1208 | < | |
1208 | > | if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) { |
1209 | > | idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]); |
1210 | > | } else { |
1211 | > | idat.sameRegion = false; |
1212 | > | } |
1213 | > | |
1214 | if (storageLayout_ & DataStorage::dslAmat) { | |
1215 | idat.A1 = &(atomRowData.aMat[atom1]); | |
1216 | idat.A2 = &(atomColData.aMat[atom2]); | |
1217 | } | |
1218 | ||
806 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { |
807 | – | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
808 | – | idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
809 | – | } |
810 | – | |
1219 | if (storageLayout_ & DataStorage::dslTorque) { | |
1220 | idat.t1 = &(atomRowData.torque[atom1]); | |
1221 | idat.t2 = &(atomColData.torque[atom2]); | |
1222 | + | } |
1223 | + | |
1224 | + | if (storageLayout_ & DataStorage::dslDipole) { |
1225 | + | idat.dipole1 = &(atomRowData.dipole[atom1]); |
1226 | + | idat.dipole2 = &(atomColData.dipole[atom2]); |
1227 | + | } |
1228 | + | |
1229 | + | if (storageLayout_ & DataStorage::dslQuadrupole) { |
1230 | + | idat.quadrupole1 = &(atomRowData.quadrupole[atom1]); |
1231 | + | idat.quadrupole2 = &(atomColData.quadrupole[atom2]); |
1232 | } | |
1233 | ||
1234 | if (storageLayout_ & DataStorage::dslDensity) { | |
# | Line 833 | Line 1251 | namespace OpenMD { | |
1251 | idat.particlePot2 = &(atomColData.particlePot[atom2]); | |
1252 | } | |
1253 | ||
1254 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
1255 | + | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
1256 | + | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
1257 | + | } |
1258 | + | |
1259 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1260 | + | idat.flucQ1 = &(atomRowData.flucQPos[atom1]); |
1261 | + | idat.flucQ2 = &(atomColData.flucQPos[atom2]); |
1262 | + | } |
1263 | + | |
1264 | #else | |
1265 | + | |
1266 | + | //idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
1267 | + | idat.atid1 = idents[atom1]; |
1268 | + | idat.atid2 = idents[atom2]; |
1269 | ||
1270 | < | idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), |
1271 | < | ff_->getAtomType(identsLocal[atom2]) ); |
1270 | > | if (regions[atom1] >= 0 && regions[atom2] >= 0) { |
1271 | > | idat.sameRegion = (regions[atom1] == regions[atom2]); |
1272 | > | } else { |
1273 | > | idat.sameRegion = false; |
1274 | > | } |
1275 | ||
1276 | if (storageLayout_ & DataStorage::dslAmat) { | |
1277 | idat.A1 = &(snap_->atomData.aMat[atom1]); | |
1278 | idat.A2 = &(snap_->atomData.aMat[atom2]); | |
1279 | } | |
1280 | ||
846 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { |
847 | – | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
848 | – | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
849 | – | } |
850 | – | |
1281 | if (storageLayout_ & DataStorage::dslTorque) { | |
1282 | idat.t1 = &(snap_->atomData.torque[atom1]); | |
1283 | idat.t2 = &(snap_->atomData.torque[atom2]); | |
1284 | } | |
1285 | ||
1286 | < | if (storageLayout_ & DataStorage::dslDensity) { |
1286 | > | if (storageLayout_ & DataStorage::dslDipole) { |
1287 | > | idat.dipole1 = &(snap_->atomData.dipole[atom1]); |
1288 | > | idat.dipole2 = &(snap_->atomData.dipole[atom2]); |
1289 | > | } |
1290 | > | |
1291 | > | if (storageLayout_ & DataStorage::dslQuadrupole) { |
1292 | > | idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]); |
1293 | > | idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]); |
1294 | > | } |
1295 | > | |
1296 | > | if (storageLayout_ & DataStorage::dslDensity) { |
1297 | idat.rho1 = &(snap_->atomData.density[atom1]); | |
1298 | idat.rho2 = &(snap_->atomData.density[atom2]); | |
1299 | } | |
# | Line 873 | Line 1313 | namespace OpenMD { | |
1313 | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); | |
1314 | } | |
1315 | ||
1316 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { |
1317 | + | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
1318 | + | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
1319 | + | } |
1320 | + | |
1321 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1322 | + | idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); |
1323 | + | idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); |
1324 | + | } |
1325 | + | |
1326 | #endif | |
877 | – | return idat; |
1327 | } | |
1328 | ||
1329 | ||
1330 | < | void ForceMatrixDecomposition::unpackInteractionData(InteractionData idat, int atom1, int atom2) { |
1330 | > | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
1331 | #ifdef IS_MPI | |
1332 | < | pot_row[atom1] += 0.5 * *(idat.pot); |
1333 | < | pot_col[atom2] += 0.5 * *(idat.pot); |
1332 | > | pot_row[atom1] += RealType(0.5) * *(idat.pot); |
1333 | > | pot_col[atom2] += RealType(0.5) * *(idat.pot); |
1334 | > | expot_row[atom1] += RealType(0.5) * *(idat.excludedPot); |
1335 | > | expot_col[atom2] += RealType(0.5) * *(idat.excludedPot); |
1336 | ||
1337 | atomRowData.force[atom1] += *(idat.f1); | |
1338 | atomColData.force[atom2] -= *(idat.f1); | |
888 | – | #else |
889 | – | longRangePot_ += *(idat.pot); |
890 | – | |
891 | – | snap_->atomData.force[atom1] += *(idat.f1); |
892 | – | snap_->atomData.force[atom2] -= *(idat.f1); |
893 | – | #endif |
1339 | ||
1340 | < | } |
1340 | > | if (storageLayout_ & DataStorage::dslFlucQForce) { |
1341 | > | atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1342 | > | atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1343 | > | } |
1344 | ||
1345 | + | if (storageLayout_ & DataStorage::dslElectricField) { |
1346 | + | atomRowData.electricField[atom1] += *(idat.eField1); |
1347 | + | atomColData.electricField[atom2] += *(idat.eField2); |
1348 | + | } |
1349 | ||
1350 | < | InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ |
1350 | > | if (storageLayout_ & DataStorage::dslSitePotential) { |
1351 | > | atomRowData.sitePotential[atom1] += *(idat.sPot1); |
1352 | > | atomColData.sitePotential[atom2] += *(idat.sPot2); |
1353 | > | } |
1354 | ||
1355 | < | InteractionData idat; |
1356 | < | #ifdef IS_MPI |
1357 | < | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
903 | < | ff_->getAtomType(identsCol[atom2]) ); |
1355 | > | #else |
1356 | > | pairwisePot += *(idat.pot); |
1357 | > | excludedPot += *(idat.excludedPot); |
1358 | ||
1359 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { |
1360 | < | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
1361 | < | idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
1359 | > | snap_->atomData.force[atom1] += *(idat.f1); |
1360 | > | snap_->atomData.force[atom2] -= *(idat.f1); |
1361 | > | |
1362 | > | if (idat.doParticlePot) { |
1363 | > | // This is the pairwise contribution to the particle pot. The |
1364 | > | // embedding contribution is added in each of the low level |
1365 | > | // non-bonded routines. In parallel, this calculation is done |
1366 | > | // in collectData, not in unpackInteractionData. |
1367 | > | snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); |
1368 | > | snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); |
1369 | } | |
1370 | < | if (storageLayout_ & DataStorage::dslTorque) { |
1371 | < | idat.t1 = &(atomRowData.torque[atom1]); |
1372 | < | idat.t2 = &(atomColData.torque[atom2]); |
1370 | > | |
1371 | > | if (storageLayout_ & DataStorage::dslFlucQForce) { |
1372 | > | snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1373 | > | snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1374 | } | |
913 | – | #else |
914 | – | idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), |
915 | – | ff_->getAtomType(identsLocal[atom2]) ); |
1375 | ||
1376 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { |
1377 | < | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
1378 | < | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
1376 | > | if (storageLayout_ & DataStorage::dslElectricField) { |
1377 | > | snap_->atomData.electricField[atom1] += *(idat.eField1); |
1378 | > | snap_->atomData.electricField[atom2] += *(idat.eField2); |
1379 | } | |
1380 | < | if (storageLayout_ & DataStorage::dslTorque) { |
1381 | < | idat.t1 = &(snap_->atomData.torque[atom1]); |
1382 | < | idat.t2 = &(snap_->atomData.torque[atom2]); |
1380 | > | |
1381 | > | if (storageLayout_ & DataStorage::dslSitePotential) { |
1382 | > | snap_->atomData.sitePotential[atom1] += *(idat.sPot1); |
1383 | > | snap_->atomData.sitePotential[atom2] += *(idat.sPot2); |
1384 | } | |
1385 | < | #endif |
1385 | > | |
1386 | > | #endif |
1387 | > | |
1388 | } | |
1389 | ||
1390 | /* | |
# | Line 931 | Line 1393 | namespace OpenMD { | |
1393 | * first element of pair is row-indexed CutoffGroup | |
1394 | * second element of pair is column-indexed CutoffGroup | |
1395 | */ | |
1396 | < | vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { |
1397 | < | |
1398 | < | vector<pair<int, int> > neighborList; |
1396 | > | void ForceMatrixDecomposition::buildNeighborList(vector<pair<int,int> >& neighborList) { |
1397 | > | |
1398 | > | neighborList.clear(); |
1399 | groupCutoffs cuts; | |
1400 | < | #ifdef IS_MPI |
939 | < | cellListRow_.clear(); |
940 | < | cellListCol_.clear(); |
941 | < | #else |
942 | < | cellList_.clear(); |
943 | < | #endif |
1400 | > | bool doAllPairs = false; |
1401 | ||
1402 | RealType rList_ = (largestRcut_ + skinThickness_); | |
1403 | < | RealType rl2 = rList_ * rList_; |
1403 | > | RealType rcut, rcutsq, rlistsq; |
1404 | Snapshot* snap_ = sman_->getCurrentSnapshot(); | |
1405 | < | Mat3x3d Hmat = snap_->getHmat(); |
1406 | < | Vector3d Hx = Hmat.getColumn(0); |
950 | < | Vector3d Hy = Hmat.getColumn(1); |
951 | < | Vector3d Hz = Hmat.getColumn(2); |
1405 | > | Mat3x3d box; |
1406 | > | Mat3x3d invBox; |
1407 | ||
953 | – | nCells_.x() = (int) ( Hx.length() )/ rList_; |
954 | – | nCells_.y() = (int) ( Hy.length() )/ rList_; |
955 | – | nCells_.z() = (int) ( Hz.length() )/ rList_; |
956 | – | |
957 | – | Mat3x3d invHmat = snap_->getInvHmat(); |
1408 | Vector3d rs, scaled, dr; | |
1409 | Vector3i whichCell; | |
1410 | int cellIndex; | |
1411 | ||
1412 | #ifdef IS_MPI | |
1413 | < | for (int i = 0; i < nGroupsInRow_; i++) { |
1414 | < | rs = cgRowData.position[i]; |
1415 | < | // scaled positions relative to the box vectors |
1416 | < | scaled = invHmat * rs; |
1417 | < | // wrap the vector back into the unit box by subtracting integer box |
1418 | < | // numbers |
1419 | < | for (int j = 0; j < 3; j++) |
1420 | < | scaled[j] -= roundMe(scaled[j]); |
1421 | < | |
1422 | < | // find xyz-indices of cell that cutoffGroup is in. |
1423 | < | whichCell.x() = nCells_.x() * scaled.x(); |
1424 | < | whichCell.y() = nCells_.y() * scaled.y(); |
975 | < | whichCell.z() = nCells_.z() * scaled.z(); |
976 | < | |
977 | < | // find single index of this cell: |
978 | < | cellIndex = Vlinear(whichCell, nCells_); |
979 | < | // add this cutoff group to the list of groups in this cell; |
980 | < | cellListRow_[cellIndex].push_back(i); |
1413 | > | cellListRow_.clear(); |
1414 | > | cellListCol_.clear(); |
1415 | > | #else |
1416 | > | cellList_.clear(); |
1417 | > | #endif |
1418 | > | |
1419 | > | if (!usePeriodicBoundaryConditions_) { |
1420 | > | box = snap_->getBoundingBox(); |
1421 | > | invBox = snap_->getInvBoundingBox(); |
1422 | > | } else { |
1423 | > | box = snap_->getHmat(); |
1424 | > | invBox = snap_->getInvHmat(); |
1425 | } | |
1426 | < | |
1427 | < | for (int i = 0; i < nGroupsInCol_; i++) { |
1428 | < | rs = cgColData.position[i]; |
1429 | < | // scaled positions relative to the box vectors |
1430 | < | scaled = invHmat * rs; |
1431 | < | // wrap the vector back into the unit box by subtracting integer box |
1432 | < | // numbers |
1433 | < | for (int j = 0; j < 3; j++) |
1434 | < | scaled[j] -= roundMe(scaled[j]); |
1435 | < | |
1436 | < | // find xyz-indices of cell that cutoffGroup is in. |
1437 | < | whichCell.x() = nCells_.x() * scaled.x(); |
1438 | < | whichCell.y() = nCells_.y() * scaled.y(); |
1439 | < | whichCell.z() = nCells_.z() * scaled.z(); |
1440 | < | |
1441 | < | // find single index of this cell: |
1442 | < | cellIndex = Vlinear(whichCell, nCells_); |
1443 | < | // add this cutoff group to the list of groups in this cell; |
1444 | < | cellListCol_[cellIndex].push_back(i); |
1445 | < | } |
1426 | > | |
1427 | > | Vector3d boxX = box.getColumn(0); |
1428 | > | Vector3d boxY = box.getColumn(1); |
1429 | > | Vector3d boxZ = box.getColumn(2); |
1430 | > | |
1431 | > | nCells_.x() = int( boxX.length() / rList_ ); |
1432 | > | nCells_.y() = int( boxY.length() / rList_ ); |
1433 | > | nCells_.z() = int( boxZ.length() / rList_ ); |
1434 | > | |
1435 | > | // handle small boxes where the cell offsets can end up repeating cells |
1436 | > | |
1437 | > | if (nCells_.x() < 3) doAllPairs = true; |
1438 | > | if (nCells_.y() < 3) doAllPairs = true; |
1439 | > | if (nCells_.z() < 3) doAllPairs = true; |
1440 | > | |
1441 | > | int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
1442 | > | |
1443 | > | #ifdef IS_MPI |
1444 | > | cellListRow_.resize(nCtot); |
1445 | > | cellListCol_.resize(nCtot); |
1446 | #else | |
1447 | < | for (int i = 0; i < nGroups_; i++) { |
1448 | < | rs = snap_->cgData.position[i]; |
1449 | < | // scaled positions relative to the box vectors |
1450 | < | scaled = invHmat * rs; |
1451 | < | // wrap the vector back into the unit box by subtracting integer box |
1452 | < | // numbers |
1453 | < | for (int j = 0; j < 3; j++) |
1454 | < | scaled[j] -= roundMe(scaled[j]); |
1447 | > | cellList_.resize(nCtot); |
1448 | > | #endif |
1449 | > | |
1450 | > | if (!doAllPairs) { |
1451 | > | #ifdef IS_MPI |
1452 | > | |
1453 | > | for (int i = 0; i < nGroupsInRow_; i++) { |
1454 | > | rs = cgRowData.position[i]; |
1455 | > | |
1456 | > | // scaled positions relative to the box vectors |
1457 | > | scaled = invBox * rs; |
1458 | > | |
1459 | > | // wrap the vector back into the unit box by subtracting integer box |
1460 | > | // numbers |
1461 | > | for (int j = 0; j < 3; j++) { |
1462 | > | scaled[j] -= roundMe(scaled[j]); |
1463 | > | scaled[j] += 0.5; |
1464 | > | // Handle the special case when an object is exactly on the |
1465 | > | // boundary (a scaled coordinate of 1.0 is the same as |
1466 | > | // scaled coordinate of 0.0) |
1467 | > | if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1468 | > | } |
1469 | > | |
1470 | > | // find xyz-indices of cell that cutoffGroup is in. |
1471 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1472 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1473 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1474 | > | |
1475 | > | // find single index of this cell: |
1476 | > | cellIndex = Vlinear(whichCell, nCells_); |
1477 | > | |
1478 | > | // add this cutoff group to the list of groups in this cell; |
1479 | > | cellListRow_[cellIndex].push_back(i); |
1480 | > | } |
1481 | > | for (int i = 0; i < nGroupsInCol_; i++) { |
1482 | > | rs = cgColData.position[i]; |
1483 | > | |
1484 | > | // scaled positions relative to the box vectors |
1485 | > | scaled = invBox * rs; |
1486 | > | |
1487 | > | // wrap the vector back into the unit box by subtracting integer box |
1488 | > | // numbers |
1489 | > | for (int j = 0; j < 3; j++) { |
1490 | > | scaled[j] -= roundMe(scaled[j]); |
1491 | > | scaled[j] += 0.5; |
1492 | > | // Handle the special case when an object is exactly on the |
1493 | > | // boundary (a scaled coordinate of 1.0 is the same as |
1494 | > | // scaled coordinate of 0.0) |
1495 | > | if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1496 | > | } |
1497 | > | |
1498 | > | // find xyz-indices of cell that cutoffGroup is in. |
1499 | > | whichCell.x() = nCells_.x() * scaled.x(); |
1500 | > | whichCell.y() = nCells_.y() * scaled.y(); |
1501 | > | whichCell.z() = nCells_.z() * scaled.z(); |
1502 | > | |
1503 | > | // find single index of this cell: |
1504 | > | cellIndex = Vlinear(whichCell, nCells_); |
1505 | > | |
1506 | > | // add this cutoff group to the list of groups in this cell; |
1507 | > | cellListCol_[cellIndex].push_back(i); |
1508 | > | } |
1509 | > | |
1510 | > | #else |
1511 | > | for (int i = 0; i < nGroups_; i++) { |
1512 | > | rs = snap_->cgData.position[i]; |
1513 | > | |
1514 | > | // scaled positions relative to the box vectors |
1515 | > | scaled = invBox * rs; |
1516 | > | |
1517 | > | // wrap the vector back into the unit box by subtracting integer box |
1518 | > | // numbers |
1519 | > | for (int j = 0; j < 3; j++) { |
1520 | > | scaled[j] -= roundMe(scaled[j]); |
1521 | > | scaled[j] += 0.5; |
1522 | > | // Handle the special case when an object is exactly on the |
1523 | > | // boundary (a scaled coordinate of 1.0 is the same as |
1524 | > | // scaled coordinate of 0.0) |
1525 | > | if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1526 | > | } |
1527 | > | |
1528 | > | // find xyz-indices of cell that cutoffGroup is in. |
1529 | > | whichCell.x() = int(nCells_.x() * scaled.x()); |
1530 | > | whichCell.y() = int(nCells_.y() * scaled.y()); |
1531 | > | whichCell.z() = int(nCells_.z() * scaled.z()); |
1532 | > | |
1533 | > | // find single index of this cell: |
1534 | > | cellIndex = Vlinear(whichCell, nCells_); |
1535 | > | |
1536 | > | // add this cutoff group to the list of groups in this cell; |
1537 | > | cellList_[cellIndex].push_back(i); |
1538 | > | } |
1539 | ||
1012 | – | // find xyz-indices of cell that cutoffGroup is in. |
1013 | – | whichCell.x() = nCells_.x() * scaled.x(); |
1014 | – | whichCell.y() = nCells_.y() * scaled.y(); |
1015 | – | whichCell.z() = nCells_.z() * scaled.z(); |
1016 | – | |
1017 | – | // find single index of this cell: |
1018 | – | cellIndex = Vlinear(whichCell, nCells_); |
1019 | – | // add this cutoff group to the list of groups in this cell; |
1020 | – | cellList_[cellIndex].push_back(i); |
1021 | – | } |
1540 | #endif | |
1541 | ||
1542 | < | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1543 | < | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1544 | < | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1545 | < | Vector3i m1v(m1x, m1y, m1z); |
1546 | < | int m1 = Vlinear(m1v, nCells_); |
1029 | < | |
1030 | < | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1031 | < | os != cellOffsets_.end(); ++os) { |
1542 | > | for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1543 | > | for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1544 | > | for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1545 | > | Vector3i m1v(m1x, m1y, m1z); |
1546 | > | int m1 = Vlinear(m1v, nCells_); |
1547 | ||
1548 | < | Vector3i m2v = m1v + (*os); |
1549 | < | |
1550 | < | if (m2v.x() >= nCells_.x()) { |
1551 | < | m2v.x() = 0; |
1552 | < | } else if (m2v.x() < 0) { |
1038 | < | m2v.x() = nCells_.x() - 1; |
1039 | < | } |
1040 | < | |
1041 | < | if (m2v.y() >= nCells_.y()) { |
1042 | < | m2v.y() = 0; |
1043 | < | } else if (m2v.y() < 0) { |
1044 | < | m2v.y() = nCells_.y() - 1; |
1045 | < | } |
1046 | < | |
1047 | < | if (m2v.z() >= nCells_.z()) { |
1048 | < | m2v.z() = 0; |
1049 | < | } else if (m2v.z() < 0) { |
1050 | < | m2v.z() = nCells_.z() - 1; |
1051 | < | } |
1052 | < | |
1053 | < | int m2 = Vlinear (m2v, nCells_); |
1548 | > | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1549 | > | os != cellOffsets_.end(); ++os) { |
1550 | > | |
1551 | > | Vector3i m2v = m1v + (*os); |
1552 | > | |
1553 | ||
1554 | < | #ifdef IS_MPI |
1555 | < | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1556 | < | j1 != cellListRow_[m1].end(); ++j1) { |
1557 | < | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1558 | < | j2 != cellListCol_[m2].end(); ++j2) { |
1559 | < | |
1560 | < | // Always do this if we're in different cells or if |
1561 | < | // we're in the same cell and the global index of the |
1562 | < | // j2 cutoff group is less than the j1 cutoff group |
1554 | > | if (m2v.x() >= nCells_.x()) { |
1555 | > | m2v.x() = 0; |
1556 | > | } else if (m2v.x() < 0) { |
1557 | > | m2v.x() = nCells_.x() - 1; |
1558 | > | } |
1559 | > | |
1560 | > | if (m2v.y() >= nCells_.y()) { |
1561 | > | m2v.y() = 0; |
1562 | > | } else if (m2v.y() < 0) { |
1563 | > | m2v.y() = nCells_.y() - 1; |
1564 | > | } |
1565 | > | |
1566 | > | if (m2v.z() >= nCells_.z()) { |
1567 | > | m2v.z() = 0; |
1568 | > | } else if (m2v.z() < 0) { |
1569 | > | m2v.z() = nCells_.z() - 1; |
1570 | > | } |
1571 | ||
1572 | < | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1572 | > | int m2 = Vlinear (m2v, nCells_); |
1573 | > | |
1574 | > | #ifdef IS_MPI |
1575 | > | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1576 | > | j1 != cellListRow_[m1].end(); ++j1) { |
1577 | > | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1578 | > | j2 != cellListCol_[m2].end(); ++j2) { |
1579 | > | |
1580 | > | // In parallel, we need to visit *all* pairs of row |
1581 | > | // & column indicies and will divide labor in the |
1582 | > | // force evaluation later. |
1583 | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | |
1584 | < | snap_->wrapVector(dr); |
1585 | < | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1069 | < | if (dr.lengthSquare() < cuts.third) { |
1070 | < | neighborList.push_back(make_pair((*j1), (*j2))); |
1584 | > | if (usePeriodicBoundaryConditions_) { |
1585 | > | snap_->wrapVector(dr); |
1586 | } | |
1587 | + | getGroupCutoffs( (*j1), (*j2), rcut, rcutsq, rlistsq ); |
1588 | + | if (dr.lengthSquare() < rlistsq) { |
1589 | + | neighborList.push_back(make_pair((*j1), (*j2))); |
1590 | + | } |
1591 | } | |
1592 | } | |
1074 | – | } |
1593 | #else | |
1594 | < | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1595 | < | j1 != cellList_[m1].end(); ++j1) { |
1596 | < | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1597 | < | j2 != cellList_[m2].end(); ++j2) { |
1598 | < | |
1599 | < | // Always do this if we're in different cells or if |
1600 | < | // we're in the same cell and the global index of the |
1601 | < | // j2 cutoff group is less than the j1 cutoff group |
1594 | > | for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1595 | > | j1 != cellList_[m1].end(); ++j1) { |
1596 | > | for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1597 | > | j2 != cellList_[m2].end(); ++j2) { |
1598 | > | |
1599 | > | // Always do this if we're in different cells or if |
1600 | > | // we're in the same cell and the global index of |
1601 | > | // the j2 cutoff group is greater than or equal to |
1602 | > | // the j1 cutoff group. Note that Rappaport's code |
1603 | > | // has a "less than" conditional here, but that |
1604 | > | // deals with atom-by-atom computation. OpenMD |
1605 | > | // allows atoms within a single cutoff group to |
1606 | > | // interact with each other. |
1607 | ||
1608 | < | if (m2 != m1 || (*j2) < (*j1)) { |
1609 | < | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1610 | < | snap_->wrapVector(dr); |
1611 | < | cuts = getGroupCutoffs( (*j1), (*j2) ); |
1612 | < | if (dr.lengthSquare() < cuts.third) { |
1613 | < | neighborList.push_back(make_pair((*j1), (*j2))); |
1608 | > | if (m2 != m1 || (*j2) >= (*j1) ) { |
1609 | > | |
1610 | > | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1611 | > | if (usePeriodicBoundaryConditions_) { |
1612 | > | snap_->wrapVector(dr); |
1613 | > | } |
1614 | > | getGroupCutoffs( (*j1), (*j2), rcut, rcutsq, rlistsq ); |
1615 | > | if (dr.lengthSquare() < rlistsq) { |
1616 | > | neighborList.push_back(make_pair((*j1), (*j2))); |
1617 | > | } |
1618 | } | |
1619 | } | |
1620 | } | |
1094 | – | } |
1621 | #endif | |
1622 | + | } |
1623 | } | |
1624 | } | |
1625 | } | |
1626 | + | } else { |
1627 | + | // branch to do all cutoff group pairs |
1628 | + | #ifdef IS_MPI |
1629 | + | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1630 | + | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1631 | + | dr = cgColData.position[j2] - cgRowData.position[j1]; |
1632 | + | if (usePeriodicBoundaryConditions_) { |
1633 | + | snap_->wrapVector(dr); |
1634 | + | } |
1635 | + | getGroupCutoffs( j1, j2, rcut, rcutsq, rlistsq); |
1636 | + | if (dr.lengthSquare() < rlistsq) { |
1637 | + | neighborList.push_back(make_pair(j1, j2)); |
1638 | + | } |
1639 | + | } |
1640 | + | } |
1641 | + | #else |
1642 | + | // include all groups here. |
1643 | + | for (int j1 = 0; j1 < nGroups_; j1++) { |
1644 | + | // include self group interactions j2 == j1 |
1645 | + | for (int j2 = j1; j2 < nGroups_; j2++) { |
1646 | + | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1647 | + | if (usePeriodicBoundaryConditions_) { |
1648 | + | snap_->wrapVector(dr); |
1649 | + | } |
1650 | + | getGroupCutoffs( j1, j2, rcut, rcutsq, rlistsq ); |
1651 | + | if (dr.lengthSquare() < rlistsq) { |
1652 | + | neighborList.push_back(make_pair(j1, j2)); |
1653 | + | } |
1654 | + | } |
1655 | + | } |
1656 | + | #endif |
1657 | } | |
1658 | < | |
1658 | > | |
1659 | // save the local cutoff group positions for the check that is | |
1660 | // done on each loop: | |
1661 | saved_CG_positions_.clear(); | |
1662 | for (int i = 0; i < nGroups_; i++) | |
1663 | saved_CG_positions_.push_back(snap_->cgData.position[i]); | |
1106 | – | |
1107 | – | return neighborList; |
1664 | } | |
1665 | } //end namespace OpenMD |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |