| 310 |  |  | 
| 311 |  | RealType tol = 1e-6; | 
| 312 |  | largestRcut_ = 0.0; | 
| 313 | – | RealType rc; | 
| 313 |  | int atid; | 
| 314 |  | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); | 
| 315 |  |  | 
| 394 |  | } | 
| 395 |  |  | 
| 396 |  | bool gTypeFound = false; | 
| 397 | < | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 397 | > | for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 398 |  | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { | 
| 399 |  | groupToGtype[cg1] = gt; | 
| 400 |  | gTypeFound = true; | 
| 419 |  |  | 
| 420 |  | RealType tradRcut = groupMax; | 
| 421 |  |  | 
| 422 | < | for (int i = 0; i < gTypeCutoffs.size();  i++) { | 
| 423 | < | for (int j = 0; j < gTypeCutoffs.size();  j++) { | 
| 422 | > | for (unsigned int i = 0; i < gTypeCutoffs.size();  i++) { | 
| 423 | > | for (unsigned int j = 0; j < gTypeCutoffs.size();  j++) { | 
| 424 |  | RealType thisRcut; | 
| 425 |  | switch(cutoffPolicy_) { | 
| 426 |  | case TRADITIONAL: | 
| 476 |  | } | 
| 477 |  |  | 
| 478 |  | int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { | 
| 479 | < | for (int j = 0; j < toposForAtom[atom1].size(); j++) { | 
| 479 | > | for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) { | 
| 480 |  | if (toposForAtom[atom1][j] == atom2) | 
| 481 |  | return topoDist[atom1][j]; | 
| 482 |  | } | 
| 1389 |  | for (int j = 0; j < 3; j++) { | 
| 1390 |  | scaled[j] -= roundMe(scaled[j]); | 
| 1391 |  | scaled[j] += 0.5; | 
| 1392 | + | // Handle the special case when an object is exactly on the | 
| 1393 | + | // boundary (a scaled coordinate of 1.0 is the same as | 
| 1394 | + | // scaled coordinate of 0.0) | 
| 1395 | + | if (scaled[j] >= 1.0) scaled[j] -= 1.0; | 
| 1396 |  | } | 
| 1397 |  |  | 
| 1398 |  | // find xyz-indices of cell that cutoffGroup is in. |